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ABSTRACT
Hyper-heuristics are methodologies that allow us to selec-
tively apply the most suitable heuristic given the properties
of the problem at hand. They can be applied in CSP in
different ways, but one way which has received attention in
recent years is variable ordering by using hyper-heuristics.
To select the next variable, a set of heuristics exist and
the hyper-heuristic decides, considering the features that de-
scribe the instance at hand, which heuristic is more suitable
to be applied at the moment. This paper explores a hyper-
heuristic model for variable ordering within CSP based on
vector hyper-heuristics. Each hyper-heuristic is represented
as a set of vectors that maps instance features to heuristics.
These vector hyper-heuristics are constructed by going into a
local search method that modifies the hyper-heuristics. The
results suggest that the approach is able to combine the
strengths of different heuristics to perform well on a wide
range of instances and compensate for their weaknesses on
specific instances, resulting in an improvement in the perfor-
mance of the search compared against the heuristics applied
in isolation.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods, Graph and tree
search strategies

General Terms
Algorithms
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1. INTRODUCTION
A Constraint Satisfaction Problem (CSP) is defined by a

set of n variables, each one with its respective domain of m
possible values and a set of constraints, each one restricting
the values some variables can take simultaneously. The task
when solving a CSP instance is to find one possible assign-
ment for the n variables that satisfies all the constraints. For
this research we have only considered those CSP in which
the domains are discrete, finite sets and the constraints in-
volve only one or two variables (binary constraints).

CSP are usually solved by using systematic algorithms.
Systematic algorithms explore the search tree which is based
on the possible values for each of the variables of the prob-
lem [11]. These algorithms start from an empty variable
assignment that is extended until obtaining a complete as-
signment that satisfies all the constraints in the problem [20].
For small instances, it is feasible to explore the complete
search space and find one solution. For large instances it is
not possible to run an exhaustive search due to the exponen-
tial growth in the search space with respect to the number
of variables and the time needed to explore it. Thus, every
CSP can be treated as a classic search problem over a search
space and can be solved using any of the conventional search
methods like Depth First Search (DFS) [28].

In the search tree, every time a variable is instantiated,
the constraints in which that variable is involved must be
checked to verify that none of them is violated; this is known
as a consistency check. When an assignation violates one or
more constraints, the instantiation must be undone, and an-
other value must be considered for that variable. If there are
not any more values available, the value of the previous in-
stantiated variable must be changed; this technique is known
as backtracking [4]. There are some improvements to this
basic search method which try to reduce the number of revi-
sions of the constraints (consistency checks) like constraint
propagation [15] and backjumping [16]. The CSP solver
used for this investigation incorporates constraint propaga-
tion by using the AC3 algorithm [21] and also implements
backjumping.

The selection of the next variable to instantiate affects the
search complexity and represents an opportunity to optimize
the search. Different orderings to instantiate the variables
produce different trees, and different trees have different



search costs. Then, if we decide correctly, we can construct
a search tree which is considerably cheaper than others and
save computational effort. When trying to construct this
ordering of variables, we know that there are some features
that make one instance more suitable to a certain heuristic
than others [23]. If these features can be identified, then
the problems would be solved more efficiently. The isolated
application of heuristics has not proved to be an efficient
method for solving sets with a large diversity of instances of
the problem. When presented with a problem instance, it
may not be obvious which heuristic to apply, even though
one of them might end up performing much better than oth-
ers on a group of instances [2].
A technique that provides some advice about which heuris-

tic is to be best for the current instance would be very use-
ful [19]. A more efficient alternative to the isolated applica-
tion of heuristics to the whole instance is to apply a different
heuristic as the search progresses depending on the current
problem state; this is the task of a hyper-heuristic. A hyper-
heuristic is used to define a high-level heuristic which con-
trols the application of the heuristics [8].
This paper is organized as follows: Section 2 presents a

small survey of other hyper-heuristic works for CSP along
with the variable ordering heuristics used in this investiga-
tion. Section 3 describes in detail the vector hyper-heuristic
and the local search method developed in this research and
the instances used. The experiments and main results are
shown in Section 4. Finally, Section 5 presents the conclu-
sions and future work.

2. RELATED BACKGROUND
In this section we present a brief description of previous

works on hyper-heuristics for CSP and the variable ordering
heuristics used in this investigation.

2.1 Hyper-heuristics
The idea of combining algorithms or heuristics goes back

to 1960s [14] and has been used in many investigations under
different names [34, 29, 36, 12]. Hyper-heuristics are one
alternative to combine the strengths of heuristics based on
the current problem features.
Hyper-heuristics can be divided into two main classes:

those which select from existing heuristics and those that
generate new heuristics. A more detailed description about
the classification of hyper-heuristics can be found in [9, 7].
In this investigation we will focus our attention on hyper-
heuristics that select from existing heuristics.
With respect to CSP, one of the first attempts to sys-

tematically map CSP to algorithms and heuristics accord-
ing to the features of the instances was presented by Tsang
and Kwan in 1993 [37]. In that study, Tsang and Kwan
presented a survey of algorithms and heuristics for solving
CSP and proposed a relation between the formulation of
the CSP and the most adequate solving method for that
formulation. Also, algorithm portfolios for Constraint pro-
gramming have been successfully studied before [13]. Petro-
vic and Eipstein [25] studied the idea of combining various
heuristics to produce mixtures that work well on particular
classes of instances. More recent studies about the dynamic
combination of heuristics applied to CSP include the work
done by Terashima-Maŕın et al. [35], who proposed an evolu-
tionary framework to generate hyper-heuristics for variable
ordering in CSP and the research developed by Bittle and

Fox [5] who presented a hyper-heuristic approach for vari-
able and value ordering for CSP based on a symbolic cog-
nitive architecture augmented with case based reasoning as
the machine learning mechanism for their hyper-heuristics.
Ortiz-Bayliss et al [24] recently presented a study where they
represent variable ordering hyper-heuristics as integer ma-
trices and a genetic algorithm is used to evolve the structure
of the matrices in order to generate hyper-heuristics.

2.2 Variable Ordering
Many researchers have proved the importance of the or-

der of the variables and its impact in the cost of the solu-
tion search [26]. The search space grows exponentially with
respect to the number of variables, and so does the time
for finding the optimal ordering. Once a variable has been
selected to be instantiated we need to decide which value,
among all the feasible ones, will be used for instantiation.
This ordering also has relevance to the search but the selec-
tion of value ordering heuristics is beyond the scope of this
investigation.

Various heuristic and approximate approaches have been
proposed that find good solutions for some instances of the
problem. However, it has not been possible to find a reliable
method to solve well all instances of CSP. In this study, we
have included four variable ordering heuristics: Minimum
Remaining Values (MRV) [18], Kappa (K) [17], Maximum
Forward Degree (MFD) [38] and Brelaz (BZ) [6].

A solution to any given CSP is constructed selecting one
variable at a time based on one of the four variable order-
ing heuristics used in this investigation. Each one of these
heuristics reorders the variables to be instantiated dynami-
cally at each step during the construction process. Later, a
value must be selected and assigned to the chosen variable
considering the constraints and using MNC as value ordering
heuristic depending on the instance features. The ordering
heuristics used in this investigation are briefly explained in
the following lines:

MRV (also known as Fail First (FF) [30] and Dynamic
Search Rearrangement (DSR) [27]) is one of the most
simple and effective heuristics to determine which vari-
able to instantiate next [27, 33]. This heuristic selects
the variable with the smallest number of available val-
ues in its domain. The idea consists basically in taking
the most restricted variable from those which have not
been instantiated yet and by doing so, reducing the
branching factor of the search.

K selects the variable in such a way that the resulting sub-
problem minimizes the kappa factor κ, which is defined
as [17]:

κ =
−

∑
ci∈C log2(1−pci )∑
xi∈X log2(mxi

) (1)

where pci is the fraction of forbidden pairs of values by
constraint Ci and mxi is the domain size of variable
xi.

The constrainedness parameter κ represents a notion
of how restricted a problem is. It is likely that prob-
lems with κ ≪ 1 are less restricted and may have many
solutions, while the problems with κ ≫ 1 are likely to
be highly restricted and may not be solved [17]. It has



been found that hard problems take place when κ ≈ 1.
With this heuristic, we branch on a variable that is
estimated to be the most constrained, giving the least
constrained subproblem; this is, the subproblem with
smallest κ.

MFD is a very simple heuristic that selects the variable
which instantiation will produce a subproblem that
minimizes the number of conflicts among the variables
left to instantiate. Then, MFD selects the variable
that is connected to the larger number of uninstanti-
ated variables.

BZ (also known as dom/deg [3, 32]) was originally devel-
oped for graph colouring and has since been applied to
CSP. BZ chooses a variable with the smallest remain-
ing domain, but in case of a tie, chooses from these,
the variable with the largest future degree, that is the
one which constraints the largest number of unassigned
variables. It can be observed that BZ is then a com-
posed heuristic; it is essentially MRV but tie breaking
on the variable with most constraints acting into a fu-
ture subproblem [6]. BZ addresses a flaw of the MRV
heuristic, that it takes no account of the constraint
graph.

In all cases, the heuristics break ties by using the lexi-
cal ordering criterion. The variable ordering heuristics are
combined with the MNC value ordering heuristic to improve
the search. MNC is one simple and commonly used value
ordering heuristic for CSP. MNC prefers the value (from the
selected variable) that is involved in the minimum number
of conflicts [22]. MNC tries to leave the maximum flexibility
for subsequent variable assignments.

2.3 CSP Instances and The Problem State Rep-
resentation

Various studies have been developed to randomly gener-
ate instances of binary CSP (see for example [1, 26]), and
those studies have shown that random binary CSP have very
interesting properties which make them an important topic
of study. Binary CSP present two important properties that
are used in this research: the constraint density (p1) and the
constraint tightness (p2). The constraint density is a mea-
sure of the proportion of constraints within the instance;
the closer the value of p1 to 1, the larger the number of
constraints within the instance. The constraint tightness
(p2) represents a proportion of the conflicts within the con-
straints. A conflict is a pair of values ⟨x, y⟩ that is not
allowed for two variables at the same time. The higher the
number of conflicts, the more unlikely an instance has a so-
lution. Of course, there are many CSP features that can be
used to represent the problem state (for example, κ [17]).
We have reduced the problem representation only to p1 and
p2 because they are the most common properties of CSP
instances.
The binary CSP instances included in this research were

randomly generated by using the standard model B [31].
In the first stage, a constraint graph G with n nodes is
randomly constructed and then, in the second stage, the
incompatibility graph C is formed by randomly selecting
a set of edges (incompatible pairs of values) for each edge
(constraint) in G. The parameter p1 determines how many

Figure 1: The distribution of the instances contained
in S-Sat, S-Unsat and S-Hard in the space p1 × p2

constraints exist in the CSP instance, whereas p2 deter-
mines how restrictive the constraints are. In model B, there
should be exactly p1n(n− 1)/2 constraints (rounded to the
nearest integer), and for each pair of constrained variables,
the number of inconsistent pairs of values should be exactly
m2p2 (where m is the uniform domain size of the variables).
To determine the hardness of a given instance, it has been
widely accepted to use the κ as a measure of the constrained-
ness of combinatorial problems [17]. For small values of κ,
the instances tend to have many solutions, in contrary to
larger values of κ where the instances tend to be unsolvable.
For values of κ ≈ 1, a phase transition in solvability takes
place [10], a region where the instances change from having
many solutions to being unsolvable. In this region, a peak
in the median search cost occurs and we can expect that the
instances inside this region are hard to solve with respect to
their size.

Every time a variable is assigned a new value and the
infeasible values are removed from domains of the remaining
uninstantiated variables, the values of p1 and p2 change and
a sub-problem with new features appears. This is the reason
why we decided to use the constraint density and tightness
to represent the problem state and guide the selection of the
heuristics. Our idea is that these two features can be used
to describe a CSP instance and to create a relation between
instances and heuristics.

The collection of instances used for this investigation in-
cludes 90 instances used both for training and testing, and
300 instances used only for testing. The first 90 instances
are divided into three small sets: a set of 30 satisfiable in-
stances, a set of 30 unsatisfiable instances and a set of 30
hard instances (κ ≈ 1). From now on we will refer to these
sets as S-Sat, S-Unsat and S-Hard, respectively. Each set
contains randomly generated instances, with different val-
ues of p1 and p2. Figure 1 presents the distribution of the
instances in S-Sat and S-Unsat in the space p1 × p2.

The additional 300 instances used only for testing pur-
poses are contained in Set S-Sat/Unsat. This set includes
150 satisfiable and 150 unsatisfiable instances. These in-
stances were also randomly generated with model B and are
randomly distributed in the space p1 × p2.



3. THE VECTOR HYPER-HEURISTIC AND
THE LOCAL SEARCH METHOD

Any hyper-heuristic that selects among heuristics can be
represented as a function that maps from problem features
to one variable ordering heuristic. We propose to use a vec-
tor representation, where any vector hyper-heuristic will be
represented as a set of pairs:

HH = {(f⃗0, h0), (f⃗1, h1), . . . (f⃗l, hk)} (2)

where f⃗i represents a vector of features, and hj is the vari-
able ordering heuristic to apply when the instance has a

vector of features I⃗ that is close enough to f⃗i. In our repre-
sentation, all the vectors start at the origin (their magnitude
is equal to the distance from the end of the vector to the ori-
gin). In this investigation we decided to use the euclidean

distance to measure the distance between the input vector I⃗
(the vector formed by the features of the instance at hand)

and f⃗i. Then, only one of the vectors contained in HH will
be selected given an input vector. The pair that minimizes

distance(I⃗ , f⃗i) is selected and the heuristic in the pair is ap-
plied.
Each vector hyper-heuristic contains all the information

needed to decide which heuristic to apply given an input
vector of features I⃗. For example, let us imagine a vec-
tor hyper-heuristic HHx with only two vectors of features

f⃗1 = (0.2, 0.6) and f⃗2 = (0.7, 0.3) (the values of p1 and p2,
respectively), and two possible variable ordering heuristics

h1 and h2. Imagine that HHx = {(f⃗1, h1), (f⃗2, h2)}. Given

an input vector of features I⃗ = (0.4, 0.5), the heuristic to

apply would be h1 because distance(f⃗1, I⃗) < distance(f⃗2, I⃗).

3.1 The Local Search Method
We define a run of the local search method by the 4-tuple

⟨h0, n, δd, T ⟩, where h0 indicates the default heuristic, n the
number of cycles, δd the maximum allowed distance between
vectors and T the set of instances used for generating the
hyper-heuristic. We will describe these parameters in detail
in the following lines.
At the beginning of the process, one vector hyper-heuristic

is created. The hyper-heuristic contains only one random
vector with the default heuristic h0 attached to it. Every
time the hyper-heuristic explores a node of the search tree,
a different pair of values (p1, p2) is explored. Then, for each
instance in T , the hyper-heuristic will try to find one vector
f which is close enough to the input vector I⃗. The hyper-

heuristic calculates the distance di = distance(f⃗i, I⃗) for each
vector in the hyper-heuristic. The vector with the minimum
distance di and di < δd (where δd is the maximum allowed

distance to I⃗), will provide the heuristic to use. If no vector
that fulfils the requirements is found, a new vector with
the same components of I⃗ is added to the hyper-heuristic,
attaching the default heuristic to the new vector.
After solving all the instances in T , we will have a hyper-

heuristic with more than one vector, all attached to the de-
fault heuristic. These vectors correspond to the values of
p1 and p2 of the nodes explored, it is, all the points vis-
ited during the search for all the instances in T . Because
each vector is attached the same heuristic in the first cycle
(the default one), at this point the behaviour of the hyper-
heuristic will not be different from the default heuristic. The

local search method works based on the idea of changing
the heuristics attached to the vectors in the hyper-heuristic,
only one change per cycle. Our model changes the vectors
with larger magnitudes first. Then, at each cycle of the local
search process, the heuristic attached to the vector with the
largest magnitude, which has not achieved the maximum
number of allowed changes, will be changed. If k heuristics
are being used, the maximum number of allowed changes
per heuristic will be k − 1. Because one heuristic is used to
initialize the vectors, k−1 changes are enough to try all the
possible heuristics for a given vector. After the change of
the heuristic, the hyper-heuristic is used to solve the whole
training set again. If the change reduces the average con-
sistency checks required to solve all the instances in the set,
the change is kept, otherwise the change is undone and the
heuristic returns to the previous configuration. After the
change has been accepted or rejected, a new cycle occurs
where another vector (it could also be the same vector) will
have its heuristic changed. If after the k− 1 changes no im-
provement has been achieved, the vector will stay attached
to the default heuristic for the rest of the process. At the
end of the n cycles, the hyper-heuristic will contain the set of

pairs (f⃗i, hj) that minimizes the average consistency checks
required to solve all the instances in the training set.

The local search method can be summarized in the fol-
lowing steps:

1. Initialize the vector hyper-heuristic HH with one vec-
tor attached the default heuristic h0.

2. Solve the instances in the T with the HH. For each
node visited during the search. If no vector that fulfils
di < δd exists, create a new vector with the values of
p1 and p2 of the node under exploration and attach
the default heuristic.

3. Obtain the average consistency checks for the whole set
of instances avg0(HH) (the result of the solver running
with single heuristics).

4. Change the heuristic attached to one of the vectors.
Only the heuristic from one vector is changed accord-
ing to the criteria already described.

5. Solve the instances in the T with the changed hyper-
heuristic and obtain the average consistency checks for
the set (avg(HH)). If avg(HH) < avg0(HH), make
avg0(HH) = avg(HH) and accept the change. Oth-
erwise, cancel the change and return the vector hyper-
heuristic to the previous configuration.

6. Repeat from step 4 until the maximum number of cy-
cles is reached.

3.1.1 Time Analysis
The extra time needed to generate a hyper-heuristic is one

of the main criticisms to the hyper-heuristic approach. It is
true that an additional time is needed to produce one hyper-
heuristic and that for a specific instance it may be better to
use all the heuristics available and keep the best result. Un-
fortunately, this is not feasible when we are dealing with a
large set of instances. As the number of instances grows,
more expensive it will be to solve such instances with differ-
ent heuristics to obtain the best result. Also, if we could do



that, we would observe that the best results are not always
achieved by the same heuristic.
To produce one vector hyper-heuristic with the proposed

approach, our model requires to solve the instances in T , n
times, one per change to the hyper-heuristic. If the time to
solve the instances in T with the k heuristics is τ , it can be
assumed that the time to solve the instances in T with a
given hyper-heuristic is τ

k
. Then, the cost of producing one

hyper-heuristic with the methodology described is around
n τ

k
.
Once the vector hyper-heuristic is produced, using it re-

quires a few extra operations compared to the application of
the single heuristics. Different heuristics require a different
number of operations to decide the next variable to instanti-
ate. For example, K requires more computational effort than
MRV to produce a decision, but the difference in practice is
not significant. With a hyper-heuristic, extra operations are
needed to decide which heuristic to apply and later, the oper-
ations of the selected heuristic will be performed. If m nodes
are expanded during the search and we use a vector variable
ordering hyper-heuristic of l vectors, the extra operations
required to apply the hyper-heuristic will be ml. Thus, the
extra cost of applying the hyper-heuristic depends both on
the number of nodes expanded (number of decisions made)
and the number of vectors within the hyper-heuristic. Even
though we have identified these differences in the number of
operations for heuristics and hyper-heuristics, we have not
identified a significant difference in practice with regard to
the execution time.

4. EXPERIMENTS AND RESULTS
We conducted three different experiments in this investi-

gation. The first experiment explores the local search method,
producing hyper-heuristics that are applied on the same sets
that were used for training. The second experiment tries to
demonstrate the change in the performance of the heuris-
tics when the instance features change and unseen instances
are included. Also, the second experiment tries to show the
flexibility of the hyper-heuristics produced in the first ex-
periment and how they can be applied to unseen instances
without losing quality. Finally, the third experiment ex-
plores the implications of changing the set of heuristics to
be used for the hyper-heuristics, and how this affects the
performance of the hyper-heuristics produced.

4.1 Experiment I
In this first set of experiments we produced 12 hyper-

heuristics. Because each time we create a hyper-heuristic
with the proposed approach we use a default ordering heuris-
tic for initialization, four hyper-heuristics can be produced
out of the four heuristics. Also, three sets are defined, what
makes it possible to produce four distinct hyper-heuristics
per set, giving a total of 12 hyper-heuristics. In all cases,
the local search process ran for 100 cycles (n = 100) and the
maximum distance between vectors δd was set to 0.2.
Table 1 presents the results of hyper-heuristics HH01-

HH04. The columns must be interpreted in the follow-
ing way: HH indicates the hyper-heuristic ID, obtained in
the order the hyper-heuristics were generated, h0 indicates
the default heuristic used for each run of the local search
method, Avg0 is the average number of consistency checks
of the hyper-heuristic at the beginning of the process (which
is equivalent to the average consistency checks achieved by

Table 1: Performance of HH01-04 on S-Sat
HH h0 Avg0 Avgn Reduction

HH01 MRV 28688 19881 30.6%
HH02 K 77209 22890 70.3%
HH03 MFD 26020 23211 10.7%
HH04 BZ 52815 25664 51.4%

Table 2: Performance of HH05-08 on S-Unsat
HH h0 Avg0 Avgn Reduction

HH05 MRV 91832 91149 0.7%
HH06 K 111053 91212 17.9%
HH07 MFD 104682 91212 12.9%
HH08 BZ 132741 91212 31.3%

h0 on the same set), Avgn is the average consistency checks
required by the hyper-heuristic on the set at the end of the
process, and the column ‘Reduction’ represents the percent-
age of consistency checks reduced (with respect to h0 of each
run) once the process has finished. Hyper-heuristics HH01-
04 were trained by using the instances contained in S-Sat.
We can observe that MRV seems to be the best variable or-
dering heuristic for S-Sat because it has the smaller average
number of consistency checks among the four heuristics. The
four hyper-heuristics produce very competitive results, each
one achieving an average performance which is smaller than
the average obtained with MRV (and any other heuristic).

The case for the hyper-heuristics trained with the instances
from S-Unsat is slightly different from the previous exper-
iment. Here, the hyper-heuristics converge to an almost
identical performance and the average consistence checks
saved by the hyper-heuristics compared against MRV is not
significant in practice (less than 0.7%). Even thought the
hyper-heuristics achieve a very large reduction with respect
to K, MFD and BZ, MRV is still the best option among the
heuristics and it seems to be equally good than any of the
hyper-heuristics produced.

The set of hard instances, S-Hard, was used as training set
to produce hyper-heuristics HH09-12. The results suggest
that K is the best heuristic for hard instances. The hyper-
heuristics produced reduce the number of consistency checks
required by their corresponding default heuristics, but as in
the case of unsatisfiable instances, the reduction between the
best hyper-heuristic HH09 and K is small, approximately
1.5% (which corresponds to 18807 consistency checks).

4.2 Experiment II
For this experiment we decided to test the performance

of the hyper-heuristics on a set that combines satisfiable
and unsatisfiable instances. The idea with this experiment
is to test how flexible the hyper-heuristics are, given that
they are used on a set of more diverse instances. The set
of instances used for this experiment is S-Sat/Unsat, which

Table 3: Performance of HH09-12 on S-Hard
HH h0 Avg0 Avgn Reduction

HH09 MRV 1560914 1233209 21.0%
HH10 K 1252016 1242421 0.8%
HH11 MFD 1817252 1239895 31.8%
HH12 BZ 2492328 1240081 50.2%



Table 4: Performance of MRV, K, MFD, BZ and
HH01-04 on S-Sat/Unsat

HH Avg. Checks
MRV 146793
K 110262

MFD 160934
BZ 225827

HH01 110868
HH02 121455
HH03 133077
HH04 120881

Table 5: Confidence intervals (with a 5% of con-
fidence) for MRV, K, MFD, BZ and HH01-04 on
S-Sat/Unsat

HH Avg. Checks
MRV: 65150 < µMRV < 228437
K: 60283 < µK < 160242

MFD: 74224 < µMFD < 247645
BZ: 119606 < µBZ < 332047

HH01: 61052 < µHH01 < 160684
HH02: 66464 < µHH02 < 176446
HH03: 70220 < µHH03 < 195934
HH04: 65875 < µHH04 < 175887

contains both satisfiable and unsatisfiable instances. The
results of this experiment are shown in Table 4.
It is interesting to observe that even though MRV achieved

the best average performance in S-Sat and S-Unsat, it does
not achieve the best result for S-Sat/Unsat. This is actu-
ally one of the main drawbacks with heuristics: they may be
the best option for a set of instances but we have no guar-
antee that they will also provide the best results when the
instances change. Of course, with hyper-heuristics there is
also no guarantee that once a hyper-heuristic is good for a
set of instances it will remain working well for a different
set. Nevertheless, hyper-heuristics combine the strengths of
the single heuristics, and that is why it is likely that when
the hyper-heuristics are tested on different sets of instances,
they will achieve good results. This idea of generality is sup-
ported by the results in Table 4, where the hyper-heuristics
HH01-04, which were trained with the set of satisfiable in-
stances S-Sat, achieve results which are better than the ones
of MRV, MFD and BZ on S-Sat/Unsat. Furthermore, the
difference between K and HH01 is really small (only 606 con-
sistency checks). Of course, these results are based only on
the sample means. For this reason we decided to estimate
the confidence intervals for the real means (by using a t dis-
tribution and a 5% of confidence), in order to confirm that
the differences are statistically significant.
We can observe from Table 5 that the intervals of K and

HH01 are very similar. The variance among the results of
HH01 is slightly larger than the variance obtained with K,
and that is the reason why the interval for HH01 is slightly
wider than the interval for K. The upper bounds of HH02-04
are below the upper bounds of MRV, MFD and BZ, which
confirms that they are good methods to solve the mixed
instances in S-Sat/Unsat.
What properties does HH01 have that make it a flexible

hyper-heuristic? To answer this, we analysed HH01 with

Figure 2: The space p1 × p2 classified per regions
according to the vectors in HH01

Table 6: Performance of HH013-15 on S-Sat (MRV
removed from the set of heuristics)

HH h0 Avg0 Avgn Reduction
HH13 K 77209 23430 70.3%
HH14 MFD 26020 20220 10.7%
HH15 BZ 52815 22980 51.4%

more detail. HH01 contains nine vectors. If we analyse
the space p1 × p2 according to HH01, the space is divided
into regions where the heuristics should be applied. The
space and the regions where each heuristic should be applied
according to HH01 are presented in Figure 2. As we can
observe, the hyper-heuristic represents by itself a rule for
the application of the heuristics according to the instance
features. According to the results of the single heuristics
for S-Sat, MRV achieved the best results (see Table 1 for
more information) and then, we can understand why the
local search process assigned a large portion of the space
to such heuristic (29.5%). But it is something strange that
even when K obtained the worst average performance for
S-Sat, the local search method assigned a largest proportion
of the space to K, 42.5%. The smallest regions correspond
to MFD and BZ, with 19.25% and 6%, respectively.

4.3 Experiment III
We observed that for the instances in S-Sat and S-Unsat,

MRV seems to be the best heuristic. It is then expected that
the local search method attaches MRV to a large number of
vectors within the hyper-heuristics. What happens if we re-
move MRV from the list of available heuristics and we run
the local search algorithm? Can we expect that a combi-
nation of ‘not-so-good’ heuristics provides results which are
comparable to the results of the best heuristic? To answer
these questions we ran the local search algorithm three more
times, once per heuristic (K, MFD and BZ) and using S-Sat
as training set. For each run 100 cycles and a maximum
distance between vectors of 0.2 were used.

The results presented in Table 6 indicate that it was not
possible to achieve results as good as the ones presented in
Section 4.1 when MRV was removed from the set of heuris-
tics that could be attached to the vectors. Nevertheless,



we found something interesting: HH14 and HH15 improved
their average performance with respect to HH03 and HH04,
respectively, when MRV was not included in these hyper-
heuristics. This finding is important because suggests that
the way the local search process explores the heuristic space
may exclude some important points in the space given the
set of heuristics, even though a good set of heuristics is pro-
vided.

5. CONCLUSIONS AND FUTURE WORK
We have described a methodology based on a local search

strategy to produce hyper-heuristics for variable ordering
within CSP. The hyper-heuristics produced are very compet-
itive, being able to improve the average performance of the
heuristics, specially on satisfiable instances. We found that
the set of heuristics to be used to produce a hyper-heuristic
is a critical element to consider and it is not enough to pro-
vide good heuristics but to also provide diversity to achieve
better results.
When tested on mixed instances, the hyper-heuristics showed

their real contribution. The four hyper-heuristics produced
for a set of only satisfiable instances achieved really good
results on a set of unseen satisfiable and unsatisfiable in-
stances. These hyper-heuristics, which were not trained for
unsatisfiable instances, performed better than three of the
four heuristics. K, which resulted to be the best heuristic
for the set of mixed instances, has a behaviour which is sta-
tistically similar to the performance of HH01 (which used
MRV as default heuristic). Then, results confirm our initial
idea that once a hyper-heuristic has been trained (even on
an specific set of instances), the properties and strengths of
the different heuristics involved help the hyper-heuristic to
obtain an acceptable performance even when the instances
change. Regarding the CSP instances used in this inves-
tigation, we are aware that it is not enough to test our
approach only on random instances. We want to test our
hyper-heuristics on structured instances taken from existing
CSP repositories.
Even though the improvements achieved by the hyper-

heuristics produced are small for some sets, it must not be
interpreted as a failure in the model. The hyper-heuristics
reduce the average effort on the sets where they were trained
for and also behave well and produce acceptable results when
tested on unseen instances with different properties to the
ones used for training. We suspect that the use of very ho-
mogeneous instances does not provide enough structure for
the hyper-heuristics to be able to grip on, then a simple but
good heuristic specialized for those instances is very difficult
to overcome. Then, it seems natural that in future devel-
opments we include more structured instances or at least,
instances from different random CSP generators to produce
such heterogeneity in the CSP instances.
As future work we have considered including new variable

ordering heuristics and also incorporating a decision process
for value ordering, in such a way that the hyper-heuristic also
can decide among a set of value ordering heuristics to com-
plement the search. Additionally, we want to explore more
alternatives to test the performance of the hyper-heuristics,
not only the average consistency checks on the sets.
Finally, we are considering the effect of the frequency the

hyper-heuristic decides which heuristic to apply. The cur-
rent implementation invokes the selection of heuristics every
time a variable is to be instantiated. We want to consider the

effect of postponing the selection of the next ordering heuris-
tic by one or two variables, instead of doing the selection at
each node of the search. With this, the hyper-heuristic will
be invoked fewer times, and once a variable ordering heuris-
tic has been selected for being used, it would be active for
various nodes until a new selection process takes place.
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S. E. Conant-Pablos. Evolution of neural networks
topologies and learning parameters to produce
hyper-heuristics for constraint satisfaction problems.
In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation
(GECCO’11), pages 261–262. ACM, 2011.

[25] S. Petrovic and S. L. Epstein. Random subsets support
learning a mixture of heuristics. International Journal
on Artificial Intelligence Tools, pages 501–520, 2008.

[26] P. Prosser. Binary constraint satisfaction problems:
Some are harder than others. In Proceedings of the
European Conference in Artificial Intelligence, pages
95–99, 1994.

[27] P. W. Purdom. Search rearrangement backtracking
and polynomial average time. Artificial Intelligence,
21:117–133, 1983.

[28] S. Russell and P. Norvig. Artificial Intelligence A
Modern Approach. Prentice Hall, 1995.

[29] J. D. Schaffer and L. J. Eshelman. Combinatorial
optimisation by genetic algorithms: The value of the
genotype/phenotype distinction. In First International
Conference on Evolutionary Computation and its
applications (EvCa’96), pages 110–120. Springer, 1996.

[30] B. M. Smith. A tutorial on constraint programming.
Technical report, University of Leeds, 1995.

[31] B. M. Smith. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence,
81:155–181, 1996.

[32] B. M. Smith and S. A. Grant. Trying harder to fail
first. In Thirteenth European Conference on Artificial
Intelligence (ECAI’97), pages 249–253. John Wiley &
Sons, 1997.

[33] H. S. Stone and J. M. Stone. Efficient search
techniques: an empirical study of the n-queens
problem. IBM Journal of Research and Development,
31(4):464–474, 1987.

[34] R. H. Storer, S. D. Wu, and R. Vaccari. New search
spaces for sequencing problems with application to job
shop scheduling. Management Science,
38(10):1495–1509, 1992.
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