
0

REVIEW OF HASKELL

A lightening tour in 45 minutes
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What is a Functional Language?

! Functional programming is style of programming 
in which the basic method of computation is the 
application of functions to arguments;

! A functional language is one that supports and 
encourages the functional style.

Opinions differ, and it is difficult to give a precise 
definition, but generally speaking:



Example

Summing the integers 1 to 10 in Java:

total = 0;

for (i = 1; i £ 10; ++i)

total = total+i;

The computation method is variable assignment. 
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Example

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.
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This Lecture

A series of six micro-lectures on Haskell:

! First steps;
! Types in Haskell;
! Defining functions;
! List comprehensions;
! Recursive functions;
! Declaring types.



5

REVIEW OF HASKELL

1 - First Steps
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Glasgow Haskell Compiler

! GHC is the leading implementation of Haskell, 
and comprises a compiler and interpreter;

! The interactive nature of the interpreter makes 
it well suited for teaching and prototyping;

! GHC is freely available from:

www.haskell.org/downloads
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Starting GHC

% ghci

GHCi, version 8.0.1: http://www.haskell.org/ghc/  :? for help

Prelude>

The GHC interpreter can be started from the Unix 
command prompt % by simply typing ghci:
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The GHCi prompt > means that the interpreter is 
ready to evaluate an expression.

For example:

> 2+3*4
14

> (2+3)*4
20

> sqrt (3^2 + 4^2)
5.0
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Function Application

In mathematics, function application is denoted 
using parentheses, and multiplication is often 
denoted using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add 
the result to the product of c and d.
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In Haskell, function application is denoted using 
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.
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Moreover, function application is assumed to have 
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).
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2 - Types in Haskell
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What is a Type?

A type is a name for a collection of related values.  
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:
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Types in Haskell

! If evaluating an expression e would produce a 
value of type t, then e has type t, written

e :: t

! Every well formed expression has a type, which 
can be automatically calculated at compile time 
using a process called type inference.
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Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

String - strings of characters

Int - fixed-precision integers
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List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’]  :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.
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Tuple Types

A tuple is a sequence of values of different types:

(False,True)     :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith 
components have type ti for any i in 1…n.
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Function Types

not     :: Bool ® Bool

isDigit :: Char ® Bool

In general:

A function is a mapping from values of one type 
to values of another type:

t1 ® t2 is the type of functions that map 
values of type t1 to values to type t2.
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Polymorphic Functions
A function is called polymorphic (“of many 
forms”) if its type contains one or more type 
variables.

length :: [a] ® Int

for any type a, length takes a list of 
values of type a and returns an integer.
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REVIEW OF HASKELL

3 - Defining Functions
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Conditional Expressions

As in most programming languages, functions can 
be defined using conditional expressions.

abs  :: Int ® Int
abs n = if n ³ 0 then n else -n

abs takes an integer n and returns n if it 
is non-negative and -n otherwise.
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Pattern Matching

Many functions have a particularly clear definition 
using pattern matching on their arguments.

not      :: Bool ® Bool
not False = True
not True  = False

not maps False to True, and True to False.
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List Patterns

Internally, every non-empty list is constructed by 
repeated use of an operator (:) called “cons” that 
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).
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Functions on lists can be defined using x:xs patterns.

head       :: [a] ® a
head (x:_)  = x

tail       :: [a] ® [a]
tail (_:xs) = xs

head and tail map any non-empty list to 
its first and remaining elements.
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Lambda Expressions

A function can be constructed without giving it a 
name by using a lambda expression.

lx ® x+1

The nameless function that takes a 
number x and returns the result x+1.
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Why Are Lambda's Useful?

Lambda expressions can be used to give a formal 
meaning to functions defined using currying.

For example:

add x y = x+y

add = lx ® (ly ® x+y)

means
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REVIEW OF HASKELL

4 - List Comprehensions
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Lists Comprehensions

In Haskell, the comprehension notation can be used 
to construct new lists from old lists.

[x^2 | x ¬ [1..5]]

The list [1,4,9,16,25] of all numbers x^2
such that x is an element of the list [1..5].
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Note:

! The expression x ¬ [1..5] is called a generator, 
as it states how to generate values for x.

! Comprehensions can have multiple generators, 
separated by commas.  For example:

> [(x,y) | x ¬ [1,2,3], y ¬ [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
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Dependant Generators

Later generators can depend on the variables that 
are introduced by earlier generators.

[(x,y) | x ¬ [1..3], y ¬ [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are 

elements of the list [1..3] and y ³ x.
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Using a dependant generator we can define the 
library function that concatenates a list of lists:

concat    :: [[a]] ® [a]

concat xss = [x | xs ¬ xss, x ¬ xs]

For example:

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]
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Guards

List comprehensions can use guards to restrict the 
values produced by earlier generators.

[x | x ¬ [1..10], even x]

The list [2,4,6,8,10] of all numbers x 
such that x is an element of the list 

[1..10] and x is even.
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factors  :: Int ® [Int]
factors n =

[x | x ¬ [1..n], n `mod` x == 0]

Using a guard we can define a function that maps 
a positive integer to its list of factors:

For example:

> factors 15

[1,3,5,15]
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5 - Recursive Functions
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Recursive Functions

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive.

factorial 0 = 1

factorial n = n * factorial (n-1)

factorial maps 0 to 1, and any other 
integer to the product of itself and 

the factorial of its predecessor.
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For example:

factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=
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Why is Recursion Useful?

! Some functions, such as factorial, are simpler to 
define in terms of other functions.

! As we shall see, however, many functions can 
naturally be defined in terms of themselves.

! Properties of functions defined using recursion 
can be proved using the simple but powerful 
mathematical technique of induction.
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Recursion on Lists

Recursion is not restricted to numbers, but can also 
be used to define functions on lists.

product       :: [Int] ® Int
product []     = 1
product (n:ns) = n * product ns

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail.
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For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=
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REVIEW OF HASKELL

6 - Declaring Types
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Data Declarations

A new type can be declared by specifying its set of 
values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.
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answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip        :: Answer ® Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways 
as those of built in types.  For example, given 
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Recursive Types

In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat ® Nat.
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Note:

! A value of type Nat is either Zero, or of the form 
Succ n where n :: Nat.  That is, Nat contains the 
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int         :: Nat ® Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat  :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))
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Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add    :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 


