
0

REVIEW OF HASKELL

A lightening tour in 45 minutes

1

What is a Functional Language?

! Functional programming is style of programming
in which the basic method of computation is the
application of functions to arguments;

! A functional language is one that supports and
encourages the functional style.

Opinions differ, and it is difficult to give a precise
definition, but generally speaking:

Example

Summing the integers 1 to 10 in Java:

total = 0;

for (i = 1; i £ 10; ++i)

total = total+i;

The computation method is variable assignment.

2

Example

Summing the integers 1 to 10 in Haskell:

sum [1..10]

The computation method is function application.

3

4

This Lecture

A series of six micro-lectures on Haskell:

! First steps;
! Types in Haskell;
! Defining functions;
! List comprehensions;
! Recursive functions;
! Declaring types.

5

REVIEW OF HASKELL

1 - First Steps

6

Glasgow Haskell Compiler

! GHC is the leading implementation of Haskell,
and comprises a compiler and interpreter;

! The interactive nature of the interpreter makes
it well suited for teaching and prototyping;

! GHC is freely available from:

www.haskell.org/downloads

7

Starting GHC

% ghci

GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help

Prelude>

The GHC interpreter can be started from the Unix
command prompt % by simply typing ghci:

8

The GHCi prompt > means that the interpreter is
ready to evaluate an expression.

For example:

> 2+3*4
14

> (2+3)*4
20

> sqrt (3^2 + 4^2)
5.0

9

Function Application

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add
the result to the product of c and d.

10

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.

11

Moreover, function application is assumed to have
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a + b).

12

REVIEW OF HASKELL

2 - Types in Haskell

13

What is a Type?

A type is a name for a collection of related values.
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:

14

Types in Haskell

! If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

! Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

15

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

String - strings of characters

Int - fixed-precision integers

16

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.

17

Tuple Types

A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith
components have type ti for any i in 1…n.

18

Function Types

not :: Bool ® Bool

isDigit :: Char ® Bool

In general:

A function is a mapping from values of one type
to values of another type:

t1 ® t2 is the type of functions that map
values of type t1 to values to type t2.

19

Polymorphic Functions
A function is called polymorphic (“of many
forms”) if its type contains one or more type
variables.

length :: [a] ® Int

for any type a, length takes a list of
values of type a and returns an integer.

20

REVIEW OF HASKELL

3 - Defining Functions

21

Conditional Expressions

As in most programming languages, functions can
be defined using conditional expressions.

abs :: Int ® Int
abs n = if n ³ 0 then n else -n

abs takes an integer n and returns n if it
is non-negative and -n otherwise.

22

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

not :: Bool ® Bool
not False = True
not True = False

not maps False to True, and True to False.

23

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

24

Functions on lists can be defined using x:xs patterns.

head :: [a] ® a
head (x:_) = x

tail :: [a] ® [a]
tail (_:xs) = xs

head and tail map any non-empty list to
its first and remaining elements.

25

Lambda Expressions

A function can be constructed without giving it a
name by using a lambda expression.

lx ® x+1

The nameless function that takes a
number x and returns the result x+1.

26

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal
meaning to functions defined using currying.

For example:

add x y = x+y

add = lx ® (ly ® x+y)

means

27

REVIEW OF HASKELL

4 - List Comprehensions

28

Lists Comprehensions

In Haskell, the comprehension notation can be used
to construct new lists from old lists.

[x^2 | x ¬ [1..5]]

The list [1,4,9,16,25] of all numbers x^2
such that x is an element of the list [1..5].

29

Note:

! The expression x ¬ [1..5] is called a generator,
as it states how to generate values for x.

! Comprehensions can have multiple generators,
separated by commas. For example:

> [(x,y) | x ¬ [1,2,3], y ¬ [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

30

Dependant Generators

Later generators can depend on the variables that
are introduced by earlier generators.

[(x,y) | x ¬ [1..3], y ¬ [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are

elements of the list [1..3] and y ³ x.

31

Using a dependant generator we can define the
library function that concatenates a list of lists:

concat :: [[a]] ® [a]

concat xss = [x | xs ¬ xss, x ¬ xs]

For example:

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

32

Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

[x | x ¬ [1..10], even x]

The list [2,4,6,8,10] of all numbers x
such that x is an element of the list

[1..10] and x is even.

33

factors :: Int ® [Int]
factors n =

[x | x ¬ [1..n], n `mod` x == 0]

Using a guard we can define a function that maps
a positive integer to its list of factors:

For example:

> factors 15

[1,3,5,15]

34

REVIEW OF HASKELL

5 - Recursive Functions

35

Recursive Functions

In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive.

factorial 0 = 1

factorial n = n * factorial (n-1)

factorial maps 0 to 1, and any other
integer to the product of itself and

the factorial of its predecessor.

36

For example:

factorial 3

3 * factorial 2
=

3 * (2 * factorial 1)
=

3 * (2 * (1 * factorial 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=

37

Why is Recursion Useful?

! Some functions, such as factorial, are simpler to
define in terms of other functions.

! As we shall see, however, many functions can
naturally be defined in terms of themselves.

! Properties of functions defined using recursion
can be proved using the simple but powerful
mathematical technique of induction.

38

Recursion on Lists

Recursion is not restricted to numbers, but can also
be used to define functions on lists.

product :: [Int] ® Int
product [] = 1
product (n:ns) = n * product ns

product maps the empty list to 1,
and any non-empty list to its head
multiplied by the product of its tail.

39

For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=

40

REVIEW OF HASKELL

6 - Declaring Types

41

Data Declarations

A new type can be declared by specifying its set of
values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.

42

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer ® Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways
as those of built in types. For example, given

43

Recursive Types

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat ® Nat.

44

Note:

! A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•

45

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat ® Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int ® Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

46

Two naturals can be added by converting them to
integers, adding, and then converting back:

However, using recursion the function add can be
defined without the need for conversions:

add :: Nat ® Nat ® Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

