Between Functions and Relations
in
Calculating Programs

Graham Muir Hutton

A thesis submitted for the degree of Ph.D. at the
Department of Computing Science,
University of Glasgow

16th October 1992

Abstract

This thesis is about the calculational approach to programming, in which one de-
rives programs from specifications. One such calculational paradigm is Ruby, a
relational calculus for designing digital circuits. We identify two shortcomings with
derivations made using Ruby. The first is that the notion of a program being an
implementation of a specification has never been made precise. The second is that
certain type assertions that arise during derivations have been verified either by
informal arguments or by using predicate calculus, rather than by applying alge-
braic laws from Ruby. In this thesis we address both of the shortcomings noted
above. We define what it means for a Ruby program to be an implementation, by
introducing the notion of a causal relation, and the network denoted by a program.
Moreover, we present an interpreter for programs that are implementations. We
show how to verify type assertions within Ruby by using algebraic properties of

operators that give the best left and right types for a relation.

Contents

1 Introduction

2 Survey
2.0.1 Classical logic
2.0.2 Linear logic
2.0.3 Extending functors oo

3 Prelude
3.1 Proofs
3.2 Lattices
3.2.1 Monotonicity and junctivity L.
3.2.2 Galois connectionso
3.3 Relational algebrao
3.3.1 Factors.o
3.4 Rubyo

4 Causal Relations and Networks
4.1 Causal relations

4.2 Causality categorically oL

10

11

12

14

14

15

17

18

23

25

27

38

4.2.1 Subobjects. 41

422 The category rel(C) 41
4.2.3 Causality 43
4.3 Networks. 46
4.4 TImplementations o 50
The Ruby Interpreter 56
5.1 Executable networks oL 26
5.2 Worked examples o7
5.3 Converting Ruby terms to LML syntax 72
5.4 Extending the interpreter oL 75
5.4.1 Simplifying symbolic expressions 76
5.4.2 Causal primitives 76
5.4.3 A relational interpreter 7
5.4.4 Typeinference oL 7
Pers and Difunctionals 80
6.1 Partial equivalence relations 00 80
6.1.1 Orderings 83
6.1.2 Persastypes o 85
6.1.3 Domain operators 87
6.2 Difunctional relations oL 89
6.2.1 Domains Lo 92
6.2.2 Difunctional = Factorisable 95
6.2.3 Difunctional = Invertible 96
6.2.4 Difunctional = Per—functional 97
6.3 Counting pers and difunctionals 97

7 Calculating Programs 100

71 More Rubylaws 100
7.2 Representing numberso 104
7.3 Representation changers 107
7.4 Binary addition00 110
7.5 Binary addition IT. oL 117
7.6 Baseconversion 0 oo 120
8 Summary and Future Work 129
81 Summary 129
82 Futurework 132

Chapter 1

Introduction

In the calculational approach to programming, one derives programs from specifi-
cations. There are many calculational paradigms; examples include the fold/unfold
style of Burstall and Darlington [14], the imperative refinement calculus of Back,
Morgan, Morris and others [2, 51, 52|, the functional Squiggol of Bird and Meertens
[8, 48], the relational Ruby of Jones and Sheeran [41, 37|, and recently, the categor-
ical approach of Bird and de Moor [20, 9]. In this thesis we work with Ruby.

Ruby is a relational language that is used for designing programs that repre-
sent hardware circuits. Ruby programs denote binary relations, and programs are
built-up inductively from primitive relations using a pre-defined set of operators.
Ruby programs also have a pictorial interpretation using boxes and wires, which is
important when circuit layout is considered in circuit design. The Ruby approach
to circuit design is to derive executable terms from specifications in the following
way. We first formulate a term that clearly expresses the desired relationships be-
tween inputs and outputs, but typically has no direct translation as a circuit. We
then transform this term using algebraic laws for the operators of Ruby, aiming
towards a term that does represent a circuit. There are several reasons why Ruby
is based upon a calculus of relations rather than a calculus of functions. Relational
languages offer a rich set of operators and laws for combining and transforming
terms, and afford a natural treatment of non-determinism in specifications. Fur-

thermore, many methods of combining circuits (viewed as networks of functions)

are unified if the distinction between input and output is removed [58]. Ruby has
been successfully used in the design of many different kinds of circuits, including

systolic arrays [59], arithmetic circuits [43], and butterfly networks [60].

We identify two shortcomings with derivations made using Ruby. The first
is that the notion of a program being an implementation of a specification has
never been made precise. The second is to do with types. Fundamental to the
use of type information in deriving programs is the idea of having types as special
kinds of programs. In Ruby, types are partial equivalence relations (pers) [43,
38]. Unfortunately, manipulating some formulae involving types has proved difficult
within Ruby. In particular, the preconditions of the ‘induction’ laws that are much
used within program derivation often work out to be assertions about types; such
assertions have typically been verified either by informal arguments or by using

predicate calculus, rather than by applying algebraic laws from Ruby.

In this thesis we address both of the shortcomings noted above. We define what
it means for a Ruby program to be an implementation, by introducing the notion of
a causal relation, and the network denoted by a Ruby program. A relation is causal
if it is functional in some structural way, but not necessarily from domain to range;
a network captures the connectivity between the primitive relations in a program.
Moreover, we present an interpreter for Ruby programs that are implementations.
Our technique for verifying an assertion about types is to express it using operators
that give the best left and right types for a relation, and then verify this assertion

by using algebraic properties of these operators.

The thesis is structured as follows. We begin in chapter 2 with a brief survey
of work that is related to our use of a relational language in deriving programs.
Chapter 3 introduces our style for calculations, some useful concepts from lattice
theory, the basic algebra of relations, and the relational language Ruby. In chapter 4
we introduce the notion of a causal relation, and the network denoted by a Ruby
program, and define when a Ruby program is an implementation. In chapter 5 we
present an interpreter for a natural sub-class of the implementations. Chapter 6

introduces the idea of pers as types; also introduced here are the difunctional re-

lations, which generalise pers in a natural way. Finally, in chapter 7 everything is
put into practice: we present a number of program derivations in Ruby, and run
the resulting implementations on the interpreter; pers and difunctionals are much
in evidence in our derivations. The thesis concludes in chapter 8 with a summary

of our achievements, and some directions for future research.

The title “Between Functions and Relations in Calculating Programs” of this
thesis reflects that causal relations and difunctional relations can both be viewed

as natural generalisations of the notion of a functional relation.

Acknowledgements

Over the last 3 years, I have benefitted greatly from contact with a number of
people. I am grateful in particular to Roland Backhouse, Carolyn Brown, Maarten
Fokkinga, Netty van Gasteren, John Hughes, Geraint Jones, John Launchbury, Erik
Meijer, David Murphy, Ed Voermans, and Jaap van der Woude. The hospitality of
Backhouse’s group in Eindhoven during my two visits is much appreciated. I would
like to thank my thesis examiners (John Launchbury, Simon Peyton Jones, Colin
Runciman) for pointing out errors and omissions, and for suggesting a number of
improvements. Special thanks are due to my family, and to my supervisor Mary
Sheeran. The work reported in this thesis was funded by SERC projects ‘relational

programming’ and ‘structured parallel programming’.

Authors current address: Department of Computing Science, Chalmers Univer-

sity of Technology, S-412 96 Goteborg, Sweden. Email: graham@cs.chalmers.se.

Chapter 2

Survey

In this chapter we briefly survey some work that is related to our use of relational
languages in deriving programs. First some notation. Recall that a (binary) relation
on a universe U is a set of pairs of elements of . Throughout this thesis, letters
R,S,T,... denote relations. If R is a relation, then a R b means (a,b) € R, and
the domain and range of R are the sets defined by dom R = {a | 3b. a R b} and
rmg R=1{b | Ja. a R b}. Inclusion C, equality =, union U, intersection N, and
complement — are defined for relations just as for any other sets. We write 1L
for the empty relation (), TT for the full relation U x U, and id for the identity
(or diagonal) relation {(a,a) | a € U}. (Writing TT rather than the more usual
lattice-theoretic symbol T avoids confusion with the use of 7' to denote an arbitrary
relation.) The converse operator for relations is defined by R™* = {(b,a) | a R b}.
Composition of relations is defined by R ; S = {(a,¢) | 3. a Rb A b S c}.

The basic theory of binary relations was developed by Peirce, around 1870.
Schroder extended the theory in a very thorough and systematic way around 1895.
Tarksi’s aim in writing his well-known article [62] in 1941 was to “awaken interest
in a certain neglected logical theory”, saying that “the calculus of relations deserves
much more attention than it receives”, having “an intrinsic charm and beauty which
makes it a source of intellectual delight to all who become acquainted with it.”
Tarksi [62] proposes a few simple axioms as the definition for a relational algebra.

Modern introductions to Tarski’s calculus that may be of interest to calculational

programmers are given by Dijkstra [22] and van Gasteren and Feijen [25]. Schmidt
and Strohlein have recently published a textbook on the calculus of relations [56].

An introduction to the algebraic properties of relations is given in section 3.3.

Several authors have proposed the use of a relational calculus as a programming
language. Jones and Sheeran’s relational language Ruby [58, 37, 41] is used to
design circuits. Bird and de Moor [20, 9] are developing a (categorical) relational
language, building on the work of Bird and Meertens on the functional language
Squiggol [8, 48]. Backhouse et al [1] have similar aims with their Spec calculus.
MacLennan’s language RPL [46] is a relational generalisation of Backus’ pioneering
functional language FP [5]. Cattrall [17] extends the work of MacLennan on the im-
plementation of RPL in the light of advances in functional programming languages,
notably the use of lazy evaluation and polymorphic type inference. Haeberer and

Veloso [68] derive a number of simple programs using a relational language.

Both Ruby and the Spec calculus have much in common with Bird and Meertens’
functional language Squiggol. It is interesting then to briefly survey some devel-
opments of the basic Squiggol language. Programs in Squiggol work upon trees,
lists, bags and sets, the so—called ‘Boom hierarchy’. The framework was uniformly
extended to cover recursive types by Malcolm [47], by means of the ‘F-algebra’
paradigm of type definition, and the resulting ‘catamorphic’ programming style.
(A catamorphism is a unique homomorphism from an initial F-algebra.) Gibbons’
recent thesis [29] is an extensive exploration of these ideas in deriving programs that
operate upon different kinds of trees. Meijer’s thesis [49] shows how Malcolm’s work
can be cast in a framework where types are cpo’s rather than unstructured sets,
with the advantage that finite and infinite objects can inhabit the same type; ap-
plications in deriving compilers from denotational semantics are given. Fokkinga’s
thesis [27] shows how the F-algebra paradigm may be extended to handle types

whose constructors are required to satisfy laws.

Berghammer [7] proposes the use of relational algebra to specify types and pro-
grams; the idea of characterising types by a number of relational formulae is also

explored in Desharnais’ thesis [21]. Haeberer and Veloso [67] have returned to

Tarski’s question of how the basic calculus of relations might be extended to gain
the expressive power of first-order logic; section 2.0.1 gives more details. A cate-
gorical treatment of binary relations is given by Freyd and Scedrov in their recent
book [28]; other relevant categorical work includes that of Barr [6], and Carboni,
Kasangian and Street [16]. In his D.Phil. thesis [20] de Moor shows how categorical
results about relations can be used in solving dynamic programming problems. In
section 2.0.3 we summarise an interesting categorical result about relations, namely

that functors on functions uniquely extend to functors on relations.

A simpler notion than a relational algebra that has received much attention re-
cently is that of a quantale [55]. Brown and Gurr [12] show that relational quantales
[13] are models for a special variant of linear logic; section 2.0.2 gives more details.
Quantales have been proposed by Hoare and He [31] as models for the semantics of

non—deterministic ‘while’ programs and for program specification.

The space of relations is isomorphic to the space of set—valued functions; de
Moor [19] has experimented with manipulating set—valued functions. Every relation
can be expressed as the composition of the converse of a functional relation and
a functional relation; Riguet [54] explores the algebraic properties of the special
class of relations that can be expressed the other way around, as the composition
of a functional relation and the converse of a functional relation; such relations are

called difunctional. All the programs that we derive in chapter 7 are difunctional.

In the remainder of this chapter we expand upon a few interesting references

above that are perhaps not so well-known to calculational programmers.

2.0.1 Classical logic

Many properties of binary relations can be succinctly expressed using only the
operators of Tarski’s relational calculus. For example, that a relation R is a pre—
ordering (reflexive and transitive) can be expressed as (R ; R) U id C R. One
is led to ask whether all properties of relations that can be written using first—

order classical logic can be expressed within relational calculus? The answer is

10

no. The problem is with existential quantification. Logical terms involving 3 are
translated to relational terms involving “;”, this being the only operator of the
calculus defined using 4. Observe that the 3-bound variable b occurs twice within
R ;S = {(a,¢) | 3b.a Rb N b S c}. Relational calculus provides no means to
make extra copies of such a b if it is required at more than two occurrences, and
hence such logical terms can’t be translated into relational terms. The desire to
extend relational calculus such that the answer to the translation question becomes

yes lead to the development of ‘cylindric algebras’ and ‘polyadic algebras’.

Veloso and Haeberer [67] present a simple new approach to gaining the expressive
power of first—order logic, based upon the introduction of a product construction on
relations (notably, a product operator x on relations, defined by (a,b) R x S (¢, d)
iff a RcAbS d.) Since Jones and Sheeran’s calculus Ruby provides such a product
construction, this result tells us that the calculus that we use in this thesis to derive

programs has at least the expressive power of first-order logic.

2.0.2 Linear logic

A quantale [55] is a 4-tuple (Q, <, ®,1) such that (Q, <) is a complete lattice,
(@, ®,1) is a monoid, and ® is universally disjunctive (distributes through all |J’s)
in both arguments. Quantales are relevant to us in this thesis because the space
P(Ax A) of binary relations over a universe A forms a quantale, with < as set
inclusion, ® as relational composition, and 1 as the identity relation on A. In fact,
such relational models are canonical, in the sense that every quantale is isomorphic

to a quantale of relations on its underlying set [13].

That a function f on a complete lattice be universally disjunctive is precisely
the condition for there being a unique function ¢ satisfying f * <y = 2 < g v.
Such a g is known as the right adjoint to f. Adjoint functions are interesting to
us because they have properties that can be useful in calculation; section 3.2.2

w.»

gives more details. That relational composition “;” is universally disjunctive in

both arguments means that the functions (R ; —) and (— ; R) have right adjoints.

11

Backhouse [1] denotes the adjoint functions by (R/-) and (-\R). The operators /

and \ have proved to be very useful in manipulating relational formulae [1, 35].

In [12] Brown and Gurr extend their work on quantales, showing that relational
quantales form a sound and complete class of models for ‘non—commutative intu-
itionistic linear logic.” (Linear intuitionistic logic differs from intuitionistic logic
primarily in the absence of the structural rules of weakening and contraction, with
the effect that each premise in a sequent must be used precisely once in proving
the single consequent. In non—commutative linear logic, the exchange rule is also
discarded, with the effect that the position of a premise within a sequent becomes
significant, and that two linear implication operators become necessary.) This re-
sult is interesting to us because the linear implication operators are modelled within
a relational quantale as / and \, operators which are so useful in calculating with
relations; moreover, the result suggests that studying relational algebra might be a

useful stepping stone to understanding linear logic.

2.0.3 Extending functors

The map operator from functional programming [10] is a well-known example of a
‘functor’. (Recall that a functor is a mapping from types to types, together with
a mapping from functions to functions that must preserve identity functions and
distribute through composition.) There is also a functor map’, defined below, that
works with relations rather than functions:

true,
r Ry N xs (map’ R) ys.

[l map' B]
(x.xs) map’ R (y.ys)

As one would expect, the relational map’ is an extension of the functional map, in

that map’ behaves as map when applied to functional relations. Being precise,
map’ (lift f) = lift (map f),

where [ift converts a function to a relation in the obvious way, that is,
lift f ={(a, fa) | a € dom f}.

12

An interesting result (due to Carboni, Kelly and Wood [15]) is that map’ is in
fact the only monotonic functor on relations that extends map in this way. The
result is not specific to map: every functor on functions has at most one extension to
a monotonic functor on relations; see [20] for a discussion of conditions under which
the extension exists. In conjunction with another result about functors (concerning
the existence of initial algebras), de Moor [20] cites the unique extension result as
justification for the slogan “The generalisation of programming with total functions

to programming with relations is free of surprises.”

13

Chapter 3

Prelude

In this chapter we introduce some standard material that is used in the remainder
of the thesis. Section 3.1 introduces our notation for proofs. Section 3.2 reviews
some concepts from lattice theory and Galois theory. Section 3.3 gives the basic
properties of the operators of relational calculus. And finally, section 3.4 introduces

the relational language Ruby in which all our derivations are made.

3.1 Proofs

We adopt the style for calculations and proofs as developed by Dijkstra, Fei-
jen, van Gasteren, and others [24, 66]. The reader should have little problem in
following our calculations with no prior knowledge of this style. Let us prove,
by way of an example, that functional relations are closed under composition:
fm.RAMm.S = fn.(R;S), where fn.R = Ry ANz Rz = y=z. Our proof in
fact uses the equivalent point-free definition fn.R = R™! ; R C id.

fn(R ; S)
{ defn }

(R;8) " :R;S Cid

{ law for converse }

ST R'Y,R;S Cid

14

= { assumption: fn.R }

Stiid; S C id

{ law for identity }

S~1.S Cid

{ defn }
.S

Note that associativity of composition is used implicitly at a number of places to
avoid parenthesising repeated compositions. Note also that monotonicity of “;”
is used implicitly in the < step. Such simple properties are used so frequently in

calculations that they are rarely mentioned in the hints between steps.

One might have expected the proof above to proceed in the reverse direction.
Experience has shown however [66] that in proving a proposition A = B, it is
often much simpler to begin with the consequent B and work backwards to the
assumption A; if there is more than one assumption (as is the case above) it is
usually convenient not to work backwards to their conjunction, but to use one or

more of the assumptions as hints during the proof.

As in the example proof above, we sometimes underline parts of a formulae.
Such underlining has no formal meaning; rather it is used to draw the eye to those

parts of the formulae that are being changed in moving to the next step.

3.2 Lattices

In this section we review some concepts from lattice theory [30]. A more detailed
introduction that may be of interest to calculational programmers can be found as

a prelude to van der Woude’s notes on predicate transformers [64].

Recall that a partially-ordered set (poset) is a pair (A,C), where C is a re-

flexive, anti-symmetric and transitive relation on the set A. For the remainder of

15

this section (A, C) is assumed to be a poset. Sometimes in this thesis we find it

preferable to use the dual ordering J, defined by a I b = b LC a.

Definition 1: An upper bound of a set X C A is an a € A for which
Vre X.zCa.
Element a € A is the least upper bound (lub) of X C A if

VreX. 2Cy) = aly.

If it exists, we denote the unique lub by LAX. Turning things around,
an element a € A is the greatest lower bound (glb) of X C A if

VeeX. yCzx) = yLCa.

If it exists, we denote the unique glb by MAX.

Definition 2: A lattice is a poset for which lubs and glbs exist for all
finite subsets of elements. Equivalently, a lattice is a poset for which
there exist least and greatest elements 1L and TT, and binary lub and
glb operators LI and M. The properties required of these elements and

operators are captured in the following four axioms:

1l E a,

aCTT,
aCc ANbCc = albd C ¢,
cCa ANcCb = ¢ C allb.

One can show from these axioms that the operators LI and M are idem-
potent, commutative and associative. Moreover, 1L and TT are respec-

tivity the units for L and M, and the zeros for M and L.

16

We consider now some extra properties that a lattice might have:

Definition 3: A lattice is complete if lubs and glbs exist of all subsets
of elements, not just finite subsets. A lattice is distributive if for all

finite sets X C A the following two equations hold:
alld (MX) =nN{alz]|ze X},
a (LX) =U{aNz|zeX}.
Equivalently, a lattice is distributive if
ald®nNe = (aUb N (alc),

afl(bUec = (aNbd) U (an c).

A complete lattice is completely distributive if the distribution laws hold
for all sets X C A, not just finite subsets. Elements a and b of a
lattice are complements if a Wb = TT and aMb = 1L. A lattice is

complemented if every element a has a unique complement —a.
All the notions introduced above are combined in our final definition:

Definition 4: A powerset lattice (plat) is a complete boolean algebra,
i.e. a complete, completely distributive, complemented lattice. The pow-
erset P(A) = {X | X C A} of any set A forms a powerset lattice under

set inclusion C, hence the terminology.

3.2.1 Monotonicity and junctivity

Let A and B be complete lattices, f : A — B, X C A, and a,b € A. In the
following definitions, we abbreviate {fx | x € X'} by f*X.

Definition 5:

17

f is monotonic = aC b = faC fb,

fis disjunctive = finite. X = f(UX) = U(f*X),
f is conjunctive = finite. X = f(MX) = NO(f*X),
f is universally disjunctive = f(LUX) = U (f*X),

f is wniversally conjunctive = f(MNX) = M(f*X).

There are a number of other useful formulations of monotonicity:

Lemma 6:

monotonic.f = fa T f(alUb).
monotonic.f = f(arb) C fa.
LX) C F(UR),
f(mx) C n(fx).

)
)

c) monotonic.f
)

monotonic. f

3.2.2 Galois connections

In this section we review some concepts from Galois theory [30], and make some
comments about how Galois connections are used in relational programming. Galois
connections have many other interesting applications in Computing Science; see for
example [50]. More recently, Galois connections play a key role in Hughes and

Launchbury’s work on reversing program analyses [32].
Definition 7: A Galois connection between complete lattices A and B
is a pair of functions f : B — A and g : A — B, satisfying
fbCa = b LC ga

for all elements a € A and b € B.

We say that function f is left adjoint to function g, and conversely, that g is right
adjoint to f. That A and B form lattices is not strictly necessary to define the

18

notion of a Galois connection; that A and B be pre-ordered sets is sufficient. All
our applications however involve complete lattices, an assumption that allows our
introduction to Galois connections to be simplified. (To avoid confusion between
left and right adjoints, just remember that the left adjoint f : B — A appears to
the left of an inclusion C in definition 7; it might also be helpful to use a left—facing

arrow <— and think of the left adjoint f as having type A < B.)

A Galois connection is a simple instance of the general categorical notion of an
adjunction, hence the reference to functions f and g as adjoints. Studying the simple
notion of a Galois connection is an excellent precursor to studying adjunctions.
Briefly, an adjunction between categories C and D is a pair of functors F': D — C
and G : C — D, such that for all objects B € D and A € C, the arrows of type
FB — A in C are in one-to—one correspondence with arrows of type B — GA
in D, in a way that is independent of the choice of particular objects A and B.
More formally, we require a ‘natural isomorphism of hom-functors.” Fokkinga [26]

introduces and proves many properties of adjunctions in a calculational style.

What is expressed in stating that f and g are adjoint functions?

Lemma 8:

fobCa = bLC ga

f and g are monotonic A fog C id A id C go f.

We see now that a Galois connection is precisely a pair of monotonic functions
that are approxzimate inverses, in the sense that the application f (ga) always gives
a result that approximates a, while the application g (fb) always gives a result
approximated by b. (Recall that functions f and g are true inverses precisely when

f(ga) =aand g(fb) =b for all elements a € A and b € B.)

The adjoint functions satisfy powerful junctivity properties:

Lemma 9:

19

f and g are adjoint functions

f is universally disjunctive A ¢ is universally conjunctive.
In a complemented lattice the adjoints approximately distribute over —:
Lemma 10:

f and g are adjoint functions

f(7b) E 2(fb) A ~(ga) E g(Ta).
Adjoint functions uniquely determine one another:
Lemma 11:

f and g are adjoint functions

fo=n{a|blga} N ga=0{b|fba}.

Lemma 9 tells us that adjoints are universally junctive; that a function be uni-

versally junctive is in fact the precise condition for existence of an adjoint:

Lemma 12:

f has a right adjoint = f is universally disjunctive;

g has a left adjoint = g is universally conjunctive.

This thesis is about the use of relational languages in deriving programs. We

identify three applications of Galois connections in this context:

Remembering properties. The algebra of relations comprises a great
many laws. Many such laws however are just a consequence of op-

erators in the calculus being adjoint to one another. Uncovering and

20

remembering such adjoint operators proves to be an excellent way to
remember many of the properties of such operators. For example, the
law R~' C S = R C S~ from relational calculus is precisely the state-
ment that the converse operator is self adjoint. Immediate now from

our knowledge of adjoint functions are the following properties:

« (R =R,
o It =11,
o TT1 =TT,

e (RUS) = RFTuU ST,
e (RNS)™t = R 'nNnSY
o« ~(R7) = (=R

In axiomatic approaches to relational calculus, where manipulation of
relational formulae is conducted without ever appealing to the set—
theoretic definitions of the operators, Galois connections are clear cases

for being chosen as axioms in themselves.

Simplifying calculation. Equivalences are known to be a powerful tool

in helping to make calculations clear and concise. Galois equivalences
fbCa = b LC ga

are particularly useful, allowing us to switch between isolation of a vari-
able on the left or right side of an inclusion. For example, here is a
proof of one part of lemma 9, namely that a function f satisfying such

a Galois equivalence must be universally disjunctive:

FUX = U X

{ adjoints are monotonic (6c¢) }
FUX C U X

{ Galois: f,g }

21

Uux C g(Ufx)

{ Galois: L, A }
VeeX. (z T g(UfX))
{ Galois: f,g}

VreX. (fzr T UfX)

{ Galois: LI, A }

Uf*X C UfX

{ reflexivity }

true

Backhouse’s short note [3] gives another good example. (The hint Ga-
lois: L, /A above refers to the fact that Ll arises as a left adjoint. For
example, the equivalence allb T ¢ = a C ¢ A b C c expresses that
the binary lub operator U is left adjoint to the doubling operator A
defined by Az = (x,z). Dually, M is right adjoint to A.)

Suggesting operators. A function has an adjoint precisely when it is uni-
versally junctive. It may be the case that the universal junctivity of some
function is well-known, but its adjoint function is not. An important
example is relational composition, an operation that is universally dis-
junctive in both arguments. The two corresponding right adjoint func-
tions are termed ‘factoring’ operators by Backhouse [1]. These opera-
tors have many properties that can be useful in calculation; section 3.3.1
gives more details. Moreover, factors have computational meaning, cor-
responding to the notion of weakest pre— and post—specifications [31].
Related to factors are ‘monotype factors’ [4], used in simplifying proofs
involving demonic composition of relations; again these unfamiliar op-

erators arose as adjoints to universally junctive functions.

22

3.3 Relational algebra

In this section we review the basic properties of the operators of relational calculus,
by defining the notion of a relational algebra. The definition we present is due to

Backhouse [1], but is equivalent to Tarski’s original formulation [62].

Definition 13: A relational algebra is a 5—tuple
<‘A7 g’ ;) Zd’ 71)
for which all the following hold:

(a) (A, C) is a (non empty) power—set lattice.
(b) (A, ;,id) is a monoid:

R;(5:T) = (R; 9T,
id; R = R = R ; id
(¢) (R;) and (; R) are universally disjunctive: VX C A,
R;UX =U{R; S|Sex},
UX ;R =U{S; R|SeAX}
(d) ~!is self adjoint:
R'CS = RcCS™.
(e) ~!isa contravariant homomorphism on the monoid (A, ;, id):
(R;8)™ =5 R,
id' = id.
(f) The middle—exchange rule:
X:;R;YCS = X!';,=§;Y!C R
(g) Tarksi’s rule:
TT:R;TT=T" = R+#LL.

23

Of course, the space P(U xU) of relations over a non—empty universe U (together
with the standard set—theoretic definitions for the four operators) is an example of
a relational algebra. The axiom system is not however complete for these models.
Complete axiomatisation of relational calculus with a finite number of axioms is not
possible; see section 2.158 of [28]. Note also that axioms 13a—13c are the properties
required of a quantale [55]; see section 2.0.2. There is also a close correspondence

between a relational algebra and the categorical notion of an allegory [28].

A relational algebra comprises three parts: the plat structure, the monoid struc-
ture, and the converse structure. Each part is linked to each of the others by a single
axiom: 13c links the plat and monoid structures, 13d links the plat and converse
structures, and 13e links the monoid and converse structures. It is interesting to

note that, as shown below, id~! = id is in fact derivable from other axioms:

id !

= { identity }

= { converse }
(id™1 ; ad)~t 1

= { distribution }

(id™' ; id==H)!

= { converse }
(id™' 5 ad)™?
= { identity }

id=171

= { converse }

d
Axiom 13f (van der Woude’s middle-exchange rule [1]) links all three layers at

24

once; in the presence of the other axioms it is equivalent to the standard Schroder
equivalences, but has proved better suited to the demands of calculation. Axioms
13e and 13c are in fact derivable from the the middle-exchange rule [25]. Axiom 13g
(Tarski’s rule) precludes one—point models of a relational algebra (that is, ensures
TT # 11), and the trivial assignment (7!, ; 4d) := (AR.R,N, TT). In this thesis we
never have need to apply the middle-exchange rule or Tarski’s rule.

A large number of derived properties of relational algebras are useful when

manipulating relational formulae. For example, axiom 13c gives the following;:

Lemma 14:

e 11 is a zero for composition: 1L ; R=R; 1l = 11,
e composition is monotonic in both arguments,

o TT;TT = TT.

3.3.1 Factors

The composition operator for relations is universally disjunctive in both arguments.
Universal disjunctivity is precisely the condition for a function having a right ad-
joint; see lemma 12. Backhouse [1] writes (R/-) for the right adjoint to (R ;), and
(-\R) for the right adjoint to (- ; R), and calls terms of the form R/S left factors

and terms of the form S\ R right factors. Here are the defining Galois connections:

Definition 15:

RS T
S:RCT

N
Il

nn
N

C R/T,
S C T\R.

That adjoint functions are approximate inverses (lemma 8) is expressed in the case
of factors by the following cancellation properties; it is these rules that motivate

the use of the division-like symbols / and \:

25

Lemma 16:

R;(R/S) € S C R/(R;9),
(S\R); R C S C (S;R)\R.

Factors have proved very useful in simplifying the manipulation of relational
formulae [1]. (Backhouse has observed that many of the proofs in Schmidt and
Strohlein’s text on relational algebra [56] can be considerably simplified by using
factors.) As an example of how factors are used, let ' be a monotonic function from
relations to relations that distributes over composition. Monotonicity guarantees

existence of a least fixpoint uF' for F'. Let us now prove that pF is transitive:

transitive. u F’

{ lemma 50 }

pl s pF C opF

{ lemma 15 }

pF C pF/pF

= { fixpoint induction }
F(pF/pF) C pF/pF

= { factors }

FuF/FulF C pF/upkF

{ Ful = pl' }

true

(Tarski [63] gives more details about fixpoints of functions between lattices, and
presents the ‘fixpoint induction’ rule used above: ' C R < FR C R.) The hint
‘factors’ above refers here to the law F(R/S) C FR/FS, proved as follows:

F(R/S) C FR/FS

26

{ lemma 15 }

FR;F(R/S) C FS

{ distribution }
F(R;R/S) C FS
= { monotonicity }

R;R/S C S

{ lemma 16 }

true

Backhouse [4] uses a special variant of factors, so—called ‘monotype factors’, to
simplify proofs involving demonic composition of relations. In section 6.1.3 we use

factors to define and prove properties of domain operators < and >.

3.4 Ruby

In this section we introduce Ruby, the relational calculus developed by Jones and

Sheeran for describing and designing circuits [58, 37, 41].

Proofs of the algebraic laws that we give in this section can be found in some of
the earlier Ruby articles. The difference between Ruby programs that are specifica-
tions and those that are implementations is the subject of chapter 4. In chapter 7

we derive a number of circuits using Ruby.

A relation on a universe U is a set of pairs of elements of /. In Ruby the universe
is a fixed set U containing at least the booleans and integers, and closed under finite
tupling. If R is a relation, we write R : A <+ B to mean that R is a relation between

subsets A and B of the universe, i.e. that R C A x B.

Given a function f : A — B, the relation f" : A <> B (called the graph of f) is
defined by f" = {(a, fa) | a € A}. A useful trick is to make a unary function from

a binary function by fixing one of its arguments; for example, (*2) is the doubling

27

function, and (1/) is the reciprocating function. Formally, if & : A x B — C then
(a®) : B— Cand (¢b) : A — C (for a € Aand b € B) are defined by (a®) b = a®b
and (®b) a = a @ b. Functional relations like (%2)" and (+1)" are much used in
Ruby. In fact, the ()" operator is always left implicit in Ruby programs. That is,

no distinction is made between a function and a functional relation.

The basis for Ruby is Tarski’s calculus of relations, as described in the first
paragraph of chapter 2 and axiomatised in section 3.3, to which a number of ex-
tensions are made. The most important extension is the par (parallel composition)

operator, which forms the product of two relations:

Definition 17: (a,b) [R,S] (¢,d) = aRcAbSd.

The [R, S] notation is used rather than R x S for historical reasons. (Note that
[R, S] is different from the standard cartesian product R x S, defined by (a,b) R x
S (¢,d) = a RbAc S d.) Par generalises in the obvious way to n-arguments

[R1, Ra, ..., Ry,]; for example, [R, S, T] relates triples to triples.

The converse operator distributes through par, and par is functorial:

Lemma 18:

[R,S] = [R7, 571,
(R,S]; [T,U] = [R; T,S ; Ul.

Two common uses of par merit special abbreviations:

Definition 19:

fst R = [R,id),
snd R = [id, R).

The identity relation id is the simplest example of a restructuring or wiring

relation in Ruby; the other common wiring relations are defined as follows:

28

Definition 20:

(a,b) swap (c¢,d) = a=d N b=c,
(a,b) 1 ¢ = a=c,
(a,b) 1y c = b=c,

((a,b),¢) Ish (d,(e,f)) = a=d Nb=e AN c=f,
(a,(b,c)) rsh ((d,e), f) = a=d N b=e N c=f.

Note that rsh = Ish~'. The most commonly used properties of the wiring relations
are given below, and are called shunting laws. We use the term shunting for any
transformation of the form R ; S =S5 ; T. (Readers familiar with category theory

will recognise that the shunting rules express naturality of the wiring primitives.)

Lemma 21:

(R, S] ; swap = swap ; [S, R],

fst R ; m = m ; R,

snd R ; mg = m ; R,

f is functional = f; fork = fork ; [f, f],
[R.SI.T] : tsh = Ish : [R.[S,T),
[R,[S,T]] ; rsh = rsh; [[R,S],T].

As well as denoting binary relations, Ruby terms have a pictorial interpretation
using boxes and wires. Primitive terms are pictured as boxes labelled with the
name of the primitive, and the appropriate number of wires on their left and right

sides. For example, the addition relation + is pictured as follows:

{*

In such pictures, the convention is that domain values flow on the left-hand wires
of a primitive, and range values on the right-hand wires. Corresponding to reading

tuples of values from left to right, we read busses of wires from bottom to top.

29

The wiring primitives of Ruby are pictured just as wires. For example,

777

,,,

Partial identity relations A C id correspond to wires that are constrained in the

values that they may carry, constraints being pictured as blobs:

Terms built using operators of Ruby are pictured in terms of pictures of their
arguments. A term R ; S is pictured by placing a picture of R to the left of a

picture of S, and joining the intermediate wires together:

A term R™! is pictured by bending wires in a picture of R:

J Rj
=

When R is a wiring relation, this bending of wires is equivalent to flipping a picture

of the primitive about its vertical axis. For example,

,,,

30

Laws such as (R; S)' = S'; R and [R,S]' = [R™!,S7!] allow any Ruby
term to be rewritten such that the converse operator is only applied to primitive
relations. In practice when picturing terms we assume that such rewriting of con-
verses has been done. Moreover, we treat the converse of a primitive relation as

itself a primitive relation; for example, +~1 would be pictured as follows:

4"'71

A term [R, S] is pictured by placing a picture of R below a picture of S:

45*

4R*

If desired, the difference between [[R,S],T] and [R,[S,T]] and [R,S,T] can be
made explicit in pictures by spacing some components further apart; alternatively
one might space all three components equally, but ‘crimp’ wires closer together, or

put vertical strokes through wires that are part of the same tuple.

By way of example, consider the Ruby program R = m ! ; snd fork ; rsh ;
fst + ; fork™'. This program is pictured as follows (the dashed boxes are included

to help in understanding the translation from program to picture):

ffffffffffffffffff

———
|
|
|
1l Ll___1_
bp——t—t—— - —— 1 —
|
|
|
|
|
|
|
b——— e ——— 1

,,,,,,,,,,,,,,,,,,

A simpler picture expresses just the connectivity:

—

+

31

It is clear from this picture that @ R b = b = a + b, which assuming that a and b

range over the integers, tells us that a Rb = a = 0.

Suppose that R is a relation defined by (a, (b,c¢)) Rd = P(a,b,c,d), where P
is some predicate. With what we have said about pictures up to now, the relation
R would be drawn as a box with three wires coming from the left side, and one
wire coming from the right side. In Ruby one is in fact allowed to draw wires on all
four sides of a box, with the convention that the left and top sides correspond to
the domain of the relation, and the bottom and right sides correspond to the range.

For example, here are three ways to draw the domain wires for the relation R:

R — R R

Here is a way that is not acceptable:

This last picture implies that R was defined in the form ((a,b),¢) Rd = P(a,b,c,d),
which is not the case; the place at which the domain wires are split between the
left and top sides is significant in a picture, giving some type information about
the corresponding relation. Of course, a similar restriction applies to splitting the

range wires between the bottom and right sides of a picture.

Given two relations R and S on pairs of values, they can be composed R ; S as
any other relations; viewing them as 4-sided components, it is natural to think also

of placing one beside the other, or one below the other:

32

The beside operator is defined as follows:

Definition 22:

(a,(b,0)) R+ S ((de).f) = o (a.b) R(d,a) A (2,0) S (e,).
The below operator can be defined as the dual to beside:
Definition 23: R$S = (R!'« 57

(It is interesting to note that rsh = [id, id] <> [id, id] and Ish = [id, id]] [id, id).)

In fact, even the beside operator need not be taken as primitive:
Lemma 24: R+ S = rsh; fst R ; Ish ; snd R ; rsh.

(A similar result for below can be obtained using definition 23 and properties of

converse.) The operators below and beside satisfy an ‘abides’ law:
Lemma 25: (R+ S) (T +<U) = (RIT)«+ (STU).

Ruby has a number of so—called generic combining forms that are defined recur-
sively on an argument that ranges over the natural numbers. The simplest generic

construction is the n—fold composition R" of a relation R:

Definition 26:

RO
Rn+1

1
.
Y

R" ; R.

33

For example, R* = R ; R ; R ; R. One can prove by induction that R ; R™ = R**™
and (R")™' = (R™")". No confusion results from abbreviating (R~)" by R™".

To make similar recursive definitions for the other generic constructions, we first
define some generic wiring primitives. In the following definitions, g gives the arity
of a tuple, and H is the concatenation operator for tuples. Tuples are indexed by

subscripting, with index 0 giving the left—-most component.

Definition 27:

(x,ys) apl, zs = fys=n A zs = (x)+Huys,
(«’Es,y) apr,, 28 = flrs=n N zs= xs—H—(y),

(xs,ys) zip, zs = fes=fys=tzs=n A Vi<n.zs; = (rs;,ysi).
Here are some examples:

(17 (27374)) apl3 (1727374)7
((17273)74) (Ip’/’S (1727374)7

((1,2,3),(4,5,6)) zip; ((1,4),(2,5),(3,6)).
The n—fold product of R is defined as follows:

Definition 28:

map, I
ma’pn—i-l R

[,

apl,”" ; [R,map, R] ; apl

n*

> 1b

(Note that the [in the map, R definition is the O-width par.) For example,
map, R = [R, R, R, R]. The map,, operator distributes through composition (map,,

is functorial), and commutes with the converse operator:

Lemma 29:

map,, R ; map, S = map, (R ; S5),
(map,, R)™' = map, (R™).

34

Using map one can give shunting laws for the generic wiring primitives:

Lemma 30:

[R7 ma’pn R}) apln = apln) mapn—l—l R?
[mapn R7 R}) Gan = aprn) mapn—i—l R7

Similar to map is the triangle construction:

Definition 31:

tl"ig R
trin+1 R

|:|7

apl,”" ; [R", tri, R] ; apl

n*

b Ib

(Note that what we have defined above as tri is normally written as irt in Ruby.)

For example, triy R = [R3, R?, R', R°], or in pictures:

— R
— R R
—~ R R R

Triangle has similar properties to map:
Lemma 32:

R;S=S;R = tri, R;tri, S = tri, (R; 9),
(tri, R)™" = tri, (R7).

The generic version of <> is the row construction:
Definition 33:

35

row; R
TOW, 40 R

snd apl,™' ; R ; fst apl,

snd apl, ;"' ; (R <> row,q R) ; fst apl,, ;.

1

(Choosing n = 1 as the base—case for row,, R avoids some technical problems with

types [38].) For example, here is a picture of row, R:

Just as J is dual to <+, so col is dual to row:
Definition 34: col, R = (row, R) .

For example, here is a picture of coly R:

|

|

|
|

«:o—:o{m—:o*

Relational versions of the familiar reduce (or fold) operators from functional

programming [10] can be defined in Ruby by using row and col:

Definition 35:

rdl, R = row, (R ; fork) ; m,
rdr, R = col, (R ; fork) ; m.

Here are pictures of rdl, R and rdry R:

36

|
=
|
=
|
=
|
=
|
IS H®

For example, if @ is a function from pairs to values, then

(a,(b,c,dye)) (ldy @) 2 = = = (((e®b) D) d)De,

((a,b,c,d),e) (rdry®") 2 = 2 = a® (0B (c® (dDe))).

Laws for row, col, rdl and rdr are given in section 7.1.

Many circuits operate with streams of values rather than single values. Ruby
can be used to design such circuits [59, 40]. A stream is modelled in Ruby as a
function from integers to values. Given a relation R, the corresponding relation
R on streams is defined by a R b = Vt € Z. a(t) R b(t). In practice the (:)
operator is always left implicit in Ruby programs. Note that new definitions for
the operators of Ruby are not needed when working with streams; the standard

definitions suffice. A single new primitive is introduced, a unit—delay primitive D:
Definition 36: a Db = Vte Z. a(t—1) = b(t).

D has a number of useful properties [59], but in this thesis we don’t manipulate
programs involving delays. In chapter 5 we present an interpreter for Ruby pro-
grams; within the interpreter time is infinite only in the positive direction, and we

use a delay primitive D, that is parameterised with a starting value s:

Definition 37: a Dy b = b(0)=s A VteN.b(t+1) = a(t).

37

Chapter 4

Causal Relations and Networks

The Ruby approach to circuit design is to derive implementations from specifica-
tions. Ruby has been used to derive many different kinds of circuits, but the notion
of a Ruby program being an implementation has never been made precise, although
the basic ideas can be found in [39]. In this chapter we define what it means for a
program to be an implementation, using the notion of a causal relation and that of

the network of relations denoted by a Ruby program.

Section 4.1 introduces the idea of a causal relation. Section 4.2 gives a categorical
definition of causality, and some closure properties of causal relations. Section 4.3

introduces networks. And finally, section 4.4 defines ‘implementation’.

4.1 Causal relations

Given a function f : A — B, the corresponding functional relation " : A < B
is defined by a f" b = b= fa. (In Ruby one always uses the same symbol for a
function and its interpretation as a relation, but for our purposes here we prefer
to make the difference explicit.) For example, (z,y) +" z = z=2z+y. In
this example, one can think of the x and y components as being inputs to the
relation, and the z component being the output. This is not the only way to
assign inputs and outputs to the +" relation however; either of x and y can also

be viewed as the output component, since we have (z,y) +" z = z =2z —y and

38

(r,y) 4" z = y = z — x. In this sense, the +" relation is functional in three

different ways; +" is an example of what we term a causal relation.

Definition 38: A relation is causal [33] if one can partition the com-
ponents of each tuple in the relation into two classes, such that the first
class (the output components) are functionally determined by the second
class (the input components). Moreover, we require that the partition

and function be the same for all tuples in the relation.

Causal relations are more general than functional relations in that the input compo-
nents are not restricted to the domain of a causal relation, nor output components
to the range. An example of a relation that is causal but not functional is (—f—’")*l.

An example of a relation that is not causal is {(F, F), (T, F), (T, T)}.

Since there may be more than one way to pick input and output components
for a causal relation, it is useful then to think of the set of directions for a causal
relation. Whereas types tell us what kind of data a program expects, directions tell
us which components of a causal relation can be inputs and which can be outputs.
We write R? for the set of directions for a relation R; relations that are not causal

have R? = (). For example, the +" relation has three directions:
(+)" = {((in, in), out), ((in, out), in), ((out, in), in)}.
We give below some closure properties for causal relations:

e If R is functional then R is causal.
e If A and B are sets, then the product A x B is causal.
e Ris causal iff R~ is causal. In fact, (R~1)¢ = (R%) .

e R is causal and S is causal iff [R, S] is causal. In fact, [R, S]? = [R?, S9].

Some of these properties are proved in section 4.2.3. Unfortunately, causal relations

I and and are causal

relations, but their composition or™* ; and = {(F, F), (T, F),(T,T)} is not.

are not closed under composition. For example, both or~

39

If a composition R ; S is in fact causal, one might imagine that the ways in
which it is causal are related to the ways in which the components R and S are

causal, but this is not in general the case. Consider the following definition,
(R; S)" = {(a,¢) | 3Fb.a R*b A b S%c},

where the — operator gives the complement of a direction, replacing ins by outs
and vice-versa. This definition demands that outputs from R coincide with inputs
to S, and conversely, that inputs to R coincide with outputs from S. We say that
R ; S is well-directed if (R ; S)*® # (). To see that (R ; S)¢ # (R ; S)*4, take
T = and™ ' ; and. This program is equivalent to the identity relation {(F, F), (T, T)}
on booleans, and hence T¢ = {(in, out), (out,in)}, but T%¢ =, since there is a
‘clash of inputs’ between the two primitives. To see that not even the weaker
(R; S)* C (R ; S)?holds, take T = 7, ; snd fork ; rsh ; fst and ; fork™*. This
program denotes the non—causal relation {(F, F), (T, F'), (T,T)}, and hence T¢ = (),

but from and® = {((in, in), out)} and the following connectivity diagram for T,

—

and

we conclude that T%¢ = {(in, out)}. (At which composition one breaks T" to ap-
ply the wd definition is irrelevant, because R = S = R¢ = S¢; directions are a

property of the denotation of a program, rather than of the program itself.)

4.2 Causality categorically

In section 4.2.3 we give a categorical definition for the notion of a relation being
causal, and prove some of the closure properties from section 4.1. We choose to
work not within the category REL of relations, but within a category rel(C) whose
arrows are subobjects of a binary product of objects in a suitable category C; this
is a standard categorical approach to relations [16, 6, 20]. Section 4.2.1 reviews the

notion of a subobject. Section 4.2.2 defines the category rel(C).

40

4.2.1 Subobjects

An arrow f : A — B is said to factor through an arrow g : C' — B if there exists

an h : A — C for which the following diagram commutes, that is, f = g o h.

A
h

f C
g

B

We write f =~ g if each of f and g factors through the other. One can verify
that ~ is an equivalence relation on arrows with a common target; we write [f] for
the equivalence class of f under ~. If f and g are monic arrows (recall that f is
monic if fog= foh = g=h) then the factorising arrows implied by f ~ g are
unique, and are inverse isomorphisms. A subobject of an object A is defined to be

an equivalence class under ~ of monic arrows with target A.

How does this definition link with our intuition about sub-structures? Let us
apply the definition in SET, the category of sets and functions. In SET the monic
arrows are precisely the injective functions, so a subobject is an equivalence class of
injections. Every subobject of A contains precisely one inclusion of a subset A into
A itself, and that subset is the image of every element of that subobject; moreover,
the subsets of A form a complete set of class representatives for the subobjects of

A: each subobject in SET determines and is determined by a unique subset.

4.2.2 The category rel(C)

Let C be a category with binary products and pullbacks. The category rel(C) of

relations over C is defined as follows [16]:

41

e The objects of rel(C) are those of C.

e If (f,g) : A— BxC'is a monic arrow in C, then the subobject [(f,g)] is an

arrow B — C in rel(C).

o If [(f,9)] : A — B and [(h,i)] : B — C are arrows in rel(C), then the
composition [(f, g)] ; [(h,7)] : A — C is the equivalence class of the monic
part of an epi-monic factorisation of (f o j,i o k), where (j, k) is a pullback of

(g,h). The following diagram is helpful when reading this definition.

N
VARV ARN

e The identity on A in rel(C) is the subobject [(ida,id4)].

(The—rather technical—definition for composition is included above only for com-
pleteness; we don’t have need to apply it in our proofs.) One can verify that rel(C)
so defined does indeed form a category, and moreover, that rel(SET) is isomorphic
to REL. (A similar construction is used by de Moor [20] to present and prove prop-
erties of a relational programming language derived from a functional programming

language.) We make a few other definitions in rel(C):

o If [(f,9)] : A — B, then the converse relation [(f,g)]™ : B — Ais [{g, f)].

o If [(f,9)] : A — B and [(h,7)] : C — D, then the product relation [{f,g)] x
[(h,7)] : Ax C — B x D is given by [(f X h,g X i)].

e The arrow [(m4,7g)] : A — B is the complete relation between A and B.

42

4.2.3 Causality

Given an arrow f : A — B in C, the functional relation f” : A — B in rel(C) is
given by f7 = [(id4, f)]. This motivates the following definition: a relation [(f, g)] :
A — B in rel(C) is functional if there exists an arrow h : A — B in C for which
(ida, h)y € [{f, g)], or equivalently, (ida,h) =~ (f,g). Note that (ida, h) is monic for

all h, so comparison with (f, g) under = is acceptable.

Causal relations generalise functional relations in that inputs are not restricted

to the domain of the relation, nor outputs to the range:

Definition 39: A relation [(f,g)] : A — B in rel(C) is causal if there
exists an arrow h : [— O in C and an isomorphism a: I x O — A x B
in C, for which « o (idy, h) € [(f, g)], or equivalently « o (id;, h) =~ (f, g).
The pair (h, «) is called a functional interpretation of [{f, g)].

Note that comparison with (f, g) under = is acceptable in this case because monics
are closed under composition. One might like to add extra conditions to the causal-
ity definition to ensure that the isomorphism a be in some sense ‘purely structural’
(for example, requiring that « be a natural isomorphism or be constructed in a

certain way) but such conditions are not needed to prove results 40 to 43 below.

In definition 39 one can think of the isomorphism o' : A x B — I x O as being
used to rearrange the components of the relation such that all the input components
are in the domain and all the output components are in the range. An (informal)

example is helpful; here are three functional interpretations for +":

o' ((,9),2) = ((x,9), 2), h(z,y) =z +y;

a! ((z,9),2) = ((z,2),9), h(z,2) =2z —x;

b + [+ -

43

In the remainder of this section we prove some of the closure properties given

in section 4.1 We abbreviate “is a functional interpretation of” by €.
Lemma 40: Functional relations are causal.
Proof: For a functional relation [(id4, f)] : A — B, take a = idaxp and h = f.

(idAxB,h) S [(ZdA,h>]
{ def € }

idAxB o <ZdA,h> ~ <ZdA,h>

{ products }

<id,4, h> ~ <idA, h>

{ = is reflexive }

true

Lemma 41: Complete relations are causal.

Proof: For a complete relation [(r4,7g5)] : A — B, take a =7 : (A X B) x 1 —
Ax Band h=!AXx B):Ax B — 1, where 1 is any terminal object in C, and !X
denotes the unique arrow X — 1 in C. (Complete relations can be viewed as causal

relations for which both the domain and range components are inputs.)

(m, /(A X B)) € [(ma, 75)]
{def €}

71 o (idaxp, (A X B)) =~ (ma,7p)

{ projections }

idaxp ~ (Ta, TB)

{ products }

true

44

Lemma 42: Causal relations are closed under converse.

Proof: Let (o, h) € [(f,g)]. Then ((me,m) o a,h) € [(f, g)] "

({2, m) e, h) € [(f.)]
{ def }

(e, m) e a,h) € [(g, f)]
{def e}

(my,m) o ao (id, h) ~ (g, f)
{ shunting }

(my,m) o ao (id, h) ~ (my,m) e (f g)

= { Liebniz }

ao (id,h) =~ (f,g)
{def e}

(. h) € [, 9)]

Lemma 43: Causal relations are closed under products.

Proof: Let (a,h) € [(f,g)] and (B,k) € [(i,5)]. Then (y c axp o v,h X k) €
[(f:)] x [(,)], where v = (my X 7y, 7 X m3).

(v o axfB oy hxk) € [(f,g)] x [{i,])]
{ def }

(v oaxf oy, hxk) € [(fxi,gxj)]
{ def € }

Yo axf oo (idhxk) =~ (fxigxj)

{ shunting }

45

Yo axfoyo (idhxk) = ve (f g)x{i])
= { Liebniz }
axf oy e (id hxk) = (f g)x(i,])
{ shunting }
axf o (id,h)yx(id, k) =~ (f,g) x (i,7)
{ bifunctors }
(ao (id, h)) x (B (id, k)) ~ (f,g) x (i,])
= { products }
ao(id,h) = (f,g) N Be(id k) = (ij)
{ def € }
(a,h) e [(f,] N (B.k) €[d)]

4.3 Networks

Ruby programs denote binary relations. Ruby programs also have a pictorial inter-
pretation, although the process by which one makes a picture is mostly informal. In
this section we introduce the related but formal notion of the network of relations
denoted by a Ruby program. The difference between pictures and networks is that
the layout of the nodes and wires has some significance in a picture, whereas in a

network only the connectivity between nodes is important.

Definition 44: Let V be a set of wire names. A wire is either an element
of V, or a finite tuple of wires. A node is a triple (D, P, R) where D, R
are wires (the domain and range wires for the node) and P is a binary
relation. A network is a triple (IV, D, R) where N is a set of nodes and

D, R are wires (the domain and range wires for the network).

For example, the Ruby program (and ; not) denotes the network
({{{a,b), and, c), (¢, not,d)}, (a,b),d).

46

This network corresponds to the following picture:

and not

That the and and not relations are connected to one another is made explicit in the

network by the repeated appearance of the wire c.

Here are some other examples of programs and their networks:

fork ; and — ({{(a,a), and,b)}, a,b)

and —— b

9

[not, not™'] — ({{a, not,b), (c, not,d)}, (a,d), (b, c))

not™!

not

fork ; fork — (0, a, ((a,a),{a,a)))

Ignoring naming of wires, a Ruby program denotes a unique network. Moreover,
such a network contains sufficient information to calculate the relation denoted by

the original Ruby program. In the remainder of this section we present an LML

47

program which translates a Ruby program to a network; it is this program that

forms the basis of the Ruby interpreter in chapter 5.

We begin by defining types for Ruby programs and networks:

type prog = PRIM prim + SWAP + FORK +
SEQ prog prog + PAR prog prog + INV prog
type prim = AND + NOT
type network == (List node # wire # wire)
type node == (wire # prim # wire)

type wire = NAME Int + TUPLE (List wire)

(In reality of course, the prog and prim types have many more variants, but the

few given above suffice here.) Our task now is to define a function
translate : (prog # Int) -> (network # Int)

that converts a program to a network. The integer argument is assumed to be a
fresh wire name, as are all integers larger than this argument; an integer is returned
by translate because some wire names may be consumed during translation. We

ignore here the possibility that the translation process might fail.

We begin by showing how to translate the program PRIM AND:

translate (PRIM AND,x) =
TUPLE [NAME x; NAME (x+1)]

let dom

and rng = NAME (x+2)

in (([(dom,AND,rng)],dom,rng) ,x+3)

Wiring primitives translate to networks that don’t have any nodes. For example,

SWAP is translated as follows:

48

translate (SWAP,x) =
(([1,TUPLE [NAME x;NAME (x+1)],
TUPLE [NAME (x+1);NAME x]),x+2)

A program INV p is translated by first translating program p, then exchanging

the resulting domain and range wires:

translate (INV p,x)

let ((ns,d,r),y) = translate (p,x) in ((ns,r,d),y)

A program PAR p qis translated by translating p and q independently, combin-

ing the resulting sets of nodes, and then tupling the domain and range wires:

translate (PAR p q,x) =
let rec ((ns1,dl,rl),y) = translate (p,x)
and ((ns2,d2,r2),z) = translate (q,y)
in ((ns1@ns2,TUPLE[d1;d2],TUPLE[r1;r2]),2)

Translating SEQ p q is more complicated, since the range wire from the trans-
lation of p must be joined to the domain wire of the translation of q. This joining
is handled by unifying the wires, that is, finding a most general substitution for the
component wires names under which both wires are identical. (The algorithm that
performs unification is well known [53], being used to implement polymorphic type
inference in languages such as Miranda and Lazy ML.) Since these wire names might
occur at other places in the network, the resulting substitution must be applied to

the domain and range wires of each node in the translation of SEQ p q:

translate (SEQ p q,x) =
let rec ((ns1l,dl,rl),y) = translate (p,x)
and ((ns2,d2,r2),z) = translate (q,y)
and s = unify (r1,d2)
and f (d,prm,r) = (apply s d, prm, apply s r)
in ((map f (nsl @ ns2), apply s di, apply s r2),z)

49

Here are some example translations:

translate (SEQ (PRIM AND) (PRIM NOT),1) =
(C[(TUPLE [NAME 1;NAME 2] ,AND,NAME 4);
(NAME 4,NOT,NAME 5)1,
TUPLE [NAME 1;NAME 2],NAME 5),6)

translate (SEQ FORK (PRIM AND),1) =
(([(TUPLE [NAME 3;NAME 3],AND,NAME 4)],NAME 3,NAME 4),5)

translate (PAR (PRIM NOT) (INV (PRIM NOT)),1) =
(([(NAME 1,NOT,NAME 2); (NAME 3,NOT,NAME 4)],
TUPLE [NAME 1;NAME 4],TUPLE [NAME 2;NAME 3]),5)

translate (SEQ FORK FORK,1) =
(([],NAME 1,TUPLE [TUPLE [NAME 1;NAME 1];
TUPLE [NAME 1;NAME 1]1),3)

4.4 Implementations

In this section we define what it means for a Ruby program to be an implementation,

by defining what it means for a network to be executable.

Informally, a network is executable if, given a value for some of the external
wires (the inputs), the value of each remaining wire in the network (in particular,
the external outputs) can be computed as functions of the values of wires. Such
executable networks are like functional data-flow networks [44] in that the values
of wires are computed as functions of the values of other wires, but more general
in that we don’t restrict input wires to the left-side of our nodes, nor output wires
to the right-side, and thus for some networks there may be several possible choices
of input and output wires. The extra generality is motivated by the intention that

executable networks represent circuits. A typical circuit has data flowing in many

50

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A
A

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.1: A 2-slow systolic correlator

different directions: data-flow is functional, but data is not restricted to flowing from
left to right across the circuit board. An example is a ‘2-slow systolic correlator’
[59]. Data in this circuit flows both from left-to-right and from right-to-left, as

shown in figure 4.4. (The triangles in this figure represent delay elements.)

Definition 45: A Ruby program is an implementation if it denotes a
network that is executable. A network is ezecutable if every occurrence
of a wire name in the network can be labelled in or out such that the

following three constraints are satisfied:
e The labelling of the domain and range wires for each primitive
relation R in the network corresponds to a direction from R
e Each wire name in the network is labelled out precisely once.

e There are no cyclic dependencies in the network. That is, the value
of an input wire to a primitive must not depend upon the value of

an output wire from the same primitive.

(For the domain and range wires of each node in a network, a labelling z : in means

that the node uses the value of wire x, and = : out means that the node sets the

51

value of wire x. For the domain and range wires of the network as a whole, x : out
means that the outside world must set the value of wire z, and z : in means that
it can read the value of wire z.) Executable networks are like functional data-flow
networks, except that the nodes are causal relations rather than functions. If a
program is an implementation then it necessarily denotes a causal relation. Since
a causal relation can be functional in more than one way, there may be more than

one way in which the network for an implementation is executable.

Definition 46: Let R and S be Ruby programs. We say that R is
implementable (able to be implemented) if it denotes a causal relation.
We say that R implements S if the programs R and S denote the same

relation, and R is an implementation.

We illustrate definitions 45 and 46 with some examples. We begin with three
programs R1, R2, and R3 that denote the identity relation idg = {(F, F),(T,T)}
on the booleans. The relation idp is causal, with (idg)? = {(in, out), (out, in)}, and
is hence implementable. Program R1 = and ' ; and can be viewed as a specification
for the relation idg. Given that and® = {((in, in), out)} there is only one candidate

for a properly labelled network for R1,

({{(b:in,c:in), and,a : out), ((b: in,c:in), and,d : out)},a : in,d : in)

C

a d

~— and ! and ——

but it is not acceptable, because wires b and ¢ are never labelled out. The program

R2 = fork ; and is an implementation of R1, because in the labelled network

{{{a:in,a:in), and,b: out)},a : out,b : in)

and —*

52

each wire is labelled out precisely once. Note however that the network for R2
is only executable from domain to range, while the relation idg denoted by R2 is

functional also from range to domain.

The program R3 = not ; not is also an implementation of R1. Given that

not® = {(in, out), (out, in)}, there are four possible labelled networks for R3:

({{a : in,not, b : out), (b : in, not,c: oul)},a : out,c: in)

a b c

— not not ——

({{a : out, not,b : in), (b : out, not,c: in)},a : in, c: out)

a b c

~— not not +~——

({(a : in,not, b : out), (b : out, not,c: in)},a : out,c : out)

a b C

— not — not «———

{{{a : out,not,b : in), (b : in, not,c : out)},a : in,c : in)

a b c

~— not not ——

Only the first and second of these networks are acceptable; in the third network wire
b is labelled out more than once, and in the fourth network wire b is never labelled
out. Since R3 is executable in both ways that the specification R1 is functional, we

say that R3 is a full implementation of R1.

We turn now to an example of a program that denotes a cyclic network:
R = m ' ; snd fork ; rsh; fst + ; fork .
We showed in section 3.4 that R has the following connectivity:

93

—

|

There are two possible labelled networks for R:
({({a:in,b:in),+,b: out)},a: out,b : in),

{{{a: out,b:in),+,b:in)}, a:in,b: out).

The second is acceptable, and tells us that program R is executable from range to
domain. The first satisfies the requirement that each wire be labelled out precisely
once, but not the requirement that there be no cyclic dependencies: the output
of the + primitive is connected to one of its own inputs. If we are working with
a version of Ruby in which relations are between streams of values rather than
just single values, such a cyclic dependency can be removed by placing a delay D,

somewhere in the feedback path. For example, the program
R = m~'; snd fork ; rsh; [+,D,7Y ; fork™!

is executable from domain to range, because the input to + at time ¢ depends upon
its output at time ¢ — 1 rather than ¢. Note that R’ is not executable from range

to domain, because delays are only functional from domain to range.

In section 7.3 we introduce the term representation changer for a Ruby program
R specified by the requirement that R = f ; ¢~! for functional relations f and g.
In practice, many such specifications will already be implementations according to
definition 45, but not executable in the direction that they are intended to be used.
For example, let f = [b,0] ; + and g = [b ; *2,b] ; +, where b = {(0,0), (1,1)} is
the identity relation on {0,1}. Both f and g are functional relations; f gives the
sum of two bits, and g converts a 2-bit binary number to the corresponding natural

number. Consider now the program HA = f ; g~ '

+ =+

o4

The program HA is a specification for a 2-bit adder (a half-adder) that gives the
binary carry and sum of a pair of bits. In fact HA is already an implementation,
with any three of the external wires in the network for HA being inputs, and the
remaining wire being the output. The program H A is not however an implementa-
tion in the direction in which we want to use it, namely from domain to range. It

is in this sense that HA is a specification of a half-adder.

We conclude this section with two final examples:

e m ! ; 4+ is a full implementation of the cartesian product Z x Z on the

integers. The direction set for both programs is {(in, in)}.

e ' ;snd {(a,a)} ; + and (+a) are full implementations of one another. The

direction set for both programs is {(in, out), (out, in)}.

95

Chapter 5

The Ruby Interpreter

In chapter 4 we defined what it means for a Ruby program to be an implementation.
The definition is general, but not completely formal. In this chapter we give a formal
definition for a natural sub-class of the implementations, and present an interpreter
for such Ruby programs. Interpreters for functional versions of Ruby have been
made in the past; see for example [57, 45]. Our interpreter is the first that does not

require that the Ruby program be in fact a functional program.

Section 5.1 defines the class of networks that the interpreter executes. Section 5.2
introduces the interpreter by means of a number of worked examples. Section 5.3
gives some reference material about the interpreter. And finally, section 5.4 suggests

some ways in which the interpreter could be extended.

5.1 Executable networks

We say that a wire name x occurs in a node (D, P, R) if x occurs in either of the
wires D and R. A wire name occurs in a network (N, D, R) if it occurs in any of
the nodes N, or in either of the wires D and R. If (N, D, R) is a network and z
is a wire name that occurs in this network, then z is called external if it occurs in
D or R, and internal otherwise. Finally, the dependents for a node (D, P, R) in a
network is the set of wire names given by the union of the names in D and the

dependents for all nodes (D', P', R) in the network for which the wire names in R’

56

and those in D are not disjoint. There is one special case: the dependents of a node
(D, P, R) for which P is a delay primitive is the empty-set (). We can now define

the class of networks that the Ruby interpreter is able to execute:

Definition 47: A network is executable if:

e For every node (D, P, R) the relation P is functional;

e For each internal (external) wire name z there is precisely one (at
most one) node (D, P, R) for which = occurs in the range wire R,

and moreover, x must occur only once in this R;

e For each node (D, P, R) the dependents for this node and the wire

names in R are disjoint sets.

That is, an executable network is a network of functions for which each wire name
is an output wire name for precisely one function (or at most one function if the
wire name is external), and for which there are no cyclic dependencies between the

input and output wire names to any function in the network.

Figures 5.1 and 5.2 give examples of executable and non-executable networks.

5.2 Worked examples

In this section we illustrate the features of the Ruby interpreter by working through
a number of example programs. The Ruby interpreter is written in the functional
language Lazy ML (LML), and is used under the interactive LML system. Both
the Ruby interpreter and the LML compiler are available by anonymous ftp from
Chalmers University (internet address ftp.cs.chalmers.se or 129.16.225.66) in
directories pub/misc/ruby and pub/haskell/chalmers respectively.

To begin with, we load the interactive LML system:

grahamy 1lmli

o7

Term Network Executable

— not not ——

not ; not yes

{{{a, not, by, (b, not, c)},a,c)

~— not™! not ! ———

not™t ; not™! yes

{({(b, not, a), (¢, not,b) },a, c)

; 1 — not not ! p— no
not ; no o ,
(b is driven twice)
{{{a, not, by, (c, not,b) },a, c)
a b C
- . ~—not ! not —— no
not™' ; no ' .
(b is undriven)
({(b, not, a), (b, not, c)}, a, c)
b
fst (not™1) ; fork™' ; not PR not—1 not . yes
({(b, not, ay, (b, not, c) }, {a, b), c)
b not - d
[not™!, not| yes
a = not™! c

({(c, not, a), b, not,d}, (a,b), (c, dy)

Figure 5.1: Examples of executable and non-executable Ruby terms

58

Term Network Executable
b
F——— not
no
= snd not ; fork™ —
m 3 snd ot ; for a (b is undriven)
({(b, not, a)},a, a)
b
4 not ——
ork ; snd not ; m es
Jork ; snd not ; V!
({{a,not,b)},a,a)
not
a a
fork : snd not ; fork™* _ Ho
(cyclic dependency)
({{a,not, a)}, a, a)
not
a b
ork ; |Dr~ ", not| ; fork™ es
fork 5 [Dp~, not] ; fork™ y
Dyt
({{a, not,b), (b, Dr,a)}, a,b)

Figure 5.2: More examples of executable and non-executable Ruby terms

59

Welcome to interactive LML version 0.999.4 SPARC 1993 Mar 16!
Loading prelude... 348 values, 41 types found.
Type "help;" to get help.

Now we load the Ruby interpreter:

> source '"rubysim";

| Copyright 1993 Graham Hutton |

| graham@cs.chalmers.se I

(In the above, > is the LML prompt, and *;’ is the command terminator.)

Ruby programs are compiled using the rc function, which translates a program
to a network. The function rc takes an argument of type prog, which is the LML
type of Ruby programs. What the Ruby programmer need know about the prog
type is explained in section 5.3. (The main differences from standard Ruby notation
is that composition is written as .., converse is written as inv, and product is

written as !!.) As a first example, let us compile the program not ; not:

> rc (NOT .. NOT);

Name Domain Range
NOT wl w2
NOT w2 w3

60

Primitives - 2

Delays - 0
Longest path - 2
Parallelism - 0%
Directions - in ~ out

Wiring - w1l 7 w3

Inputs - wl

In this example, the network has two nodes: (w1, not, w2) and (w2, not, w3). Below
the network, Wiring gives the domain and range wires for the network as a whole,
Inputs tells which of these wire names are inputs (all other external wire names are
outputs), and Directions is derived from Wiring by replacing each wire name with
in or out as appropriate. Primitives and Delays are the number of non-delay and
delay primitives in the network. Longest path is the length of the longest path
through the network that does not include a delay primitive. Parallelism gives
an absolute measure of the available concurrency in the network, being the ratio
of the total number of primitives in the network (both delay and non-delay) to the
length of the longest path, scaled to a percentage.

The most recently compiled Ruby program is stored in a file ruby-prog, and
is executed using the rsim function. This function takes a string as its argument,
containing a value for each of the input wires as named in the Wiring part below
the network. You can supply more than one set of input values, with successive

sets of input values being separated by a semi-colon. For example,
> rsim "F;T";

0O- F~™F
1- T~T

61

verifies that not ; not denotes the identity relation on booleans. As shown in this
example, for each set of input values supplied, the rsim function gives the Wiring
part for the network, with wire names replaced by the values obtained by executing
the network with these input values. So the output 0 - F ~ F above says that
supplying wire wl with value F resulted in wire w2 having value F. The number 0

indicates that this is the result for the first set of input values.

Here are some other examples from figures 5.1 and 5.2:

> rc (NOT .. inv NOT);

ERROR: multiple output to single wire

> rc (inv NOT .. NOT);

ERROR: undriven internal input

> rc (first (inv NOT) .. inv fork .. NOT);

Name Domain Range
NOT wl w2
NOT wl w3
Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100Y%

Directions - <out,in> ~ out

62

Wiring - <w2,wl> 7 w3

Inputs - wl

> rc (fork .. second NOT .. inv fork);

ERROR: unbroken loop in {NOT}

> rc (fork .. (inv (bdel false) !! NOT) .. inv fork);

Name Domain Range
NOT wl w2
D_F w2 wl
Primitives - 1

Delays -1

Longest path - 2

Parallelism - 0%

Directions - out © out

Wiring - wl 7 w2

Inputs - none

LML can be used as a meta-language to define new primitives and combining
forms in terms of those pre-defined by the interpreter. For example, a program

sort2 that sorts a pair of numbers can be defined and compiled as follows:

63

> let sort2 = fork .. (MIN !! MAX);

sort2: prog

> rc sort2;

Name Domain Range
MIN <wl,w2> w3
MAX <wl,w2> wé
Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100%

Directions - <in,in> ~ <out,out>
Wiring - <wl,w2> 7 <w3,w4>

Inputs - wl w2
For example,

> rsim "4 7";

0- 4,7 " 4,7

> rsim "7 4";

0- (7,4 - (4,7)

64

As well as supplying numbers as inputs to sort2, we can supply symbolic values,
which are just strings. Using symbolic values allows us to see how the outputs from

the program are constructed in terms of the inputs:

> rsim "a b";

0 - (a,b) © (a min b,a max b)

Let us aim now to define a program that sorts n numbers, rather than just 2.
We begin by using sort2 to define a generic primitive minim that takes an n-tuple
(n > 1) of numbers, and returns a pair comprising the minimum number and an

(n — 1)-tuple of the remaining numbers:

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

For example,

> rc (minim 4);

Name Domain Range
MIN <wl,w2> w3
MAX <wl,w2> wa
MIN <wb,w3> w6
MAX <wb,w3> w7
MIN <w8,w6> w9
MAX <w8,w6> wlO

Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> = <out,<out,out,out>>
Wiring - <w8,wb,wl,w2> 7 <w9,<wl0,w7,wd>>

Inputs - w8 wb wl w2

Notice that the primitives in the network above are divided into blocks, separated
by dashed lines. Each block contains all the primitives whose output depends only
upon external inputs, and outputs of primitives in earlier blocks. (Operationally
this means that blocks must be executed sequentially, from the first to the last. All
the primitives within a block can however be executed in parallel, since they are
independent of one another.) Note also that the Longest path is just the number
of blocks in the network for the program. A picture of the network above is helpful

in understanding the definition for minim (the boxes represent sort2):

w2
wl w4
w3
wH w7
w6
w8 w10
w9

66

Executing the network with symbolic values confirms that the first component of

the result is the minimum of the 4 input values:

> rsim "a b ¢ 4d";

0 - (a,b,c,d) ~ (a min (b min (c min d)),
(a max (b min (c min d)),
b max (c min d),

¢ max d))

Note that the name sort2 does not appear in the network for minim 4, but
rather its definition has been unfolded at each instance. We can prevent such
unfolding and treat sort2 as a new primitive by using the function NAME of type

String -> prog -> prog. For example, if we make the definitions

> let sort2 = NAME "sort2" (fork .. (MIN !! MAX));

sort2: prog

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

then the compilation produces the following result: (we have to define minim again

because the existing version refers to the old binding for sort2)

> rc (minim 4)

Name Domain Range

"sort2" <wl,w2> <w3,wd>

"sort2" <wb,w3> <wb,w7>

"sort2" <w8,w6> <w9,wl10>

Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> = <out,<out,out,out>>
Wiring - <w8,wb,wl,w2> 7~ <w9,<wl0,w7,wd>>

Inputs - w8 wb wl w2

Using the NAME function can reduce compilation time, particularly when named
programs are used as arguments to generic combining forms. A named program
is compiled once and its network instantiated at each instance, rather than the

definition being unfolded at each instance and hence compiled many times.

Using minim we can define a sorting program. An n-tuple (n > 0) of numbers
can be sorted by first selecting the minimum number, and then recursively sorting
the remaining (n — 1)-tuple of numbers. A 1-tuple of numbers requires no sorting,

and forms the base-case for the recursive definition:

> let rec mysort 1 = par [rid]

| mysort n = minim n .. second (mysort (n-1)) .. apl (n-1);

mysort: Int->prog

Let us compile a sorter for 4 numbers:

68

> rc (mysort 4);

Name Domain Range
"sort2" <wl,w2> <w3,wsd>
"sort2" <wb,w3> <wb,w7>
"sort2" <w8,w6> <w9,wl10>
"sort2" <w7,wd> <wll,wl2>
"sort2" <wlO,wll> <wl3,wiléd>
"sort2" <wléd,wl2> <wl5,wl6>
Primitives - 12

Delays - 0

Longest path - 5

Parallelism - 12}

Directions - <in,in,in,in> ~ <out,out,out,out>

Wiring - <w8,wb,wl,w2> 7 <w9,wl3,wlb,wl6>

Inputs - w8 wb wl w2

Here is a picture of this network:

69

w?2

w4
wl
w3
wl?2
wH
w7
w6 wll
w8
w10 wl4d

w9 wl3 wlb wl6

For example,

> rsim "4 2 3 1";

0 - (4,2,3,1) ~ (1,2,3,4)

> rsim "a 3 1 2";

0 - (a,3,1,2) ~ (amin 1,
(a max 1) min 2,
((a max 1) max 2) min 3,

((a max 1) max 2) max 3)

Note from the last example that symbolic values are not simplified. We can see
however that the output 4-tuple in this example is equal to (a min 1, (a max 1)
min 2, (a max 2) min 3, a max 3), which makes clear how the symbolic value

‘a’ is routed to one of the 4 components in the output tuple.

To finish off, we take a closer look at wiring primitives. Networks produced by
the interpreter have two kinds of wires. Monomorphic wires start with the letter

w and are restricted to carrying boolean, integer, and symbolic values; polymorphic

70

wires start with p and can also carry tuples of such values. The wiring primitives
of Ruby (id, fork, m,...) have networks with polymorphic wires, and can be used

to defined other programs with polymorphic wires. For example,

> let swap = fork .. (p2 !! pl);

swap : prog

> rc swap;

Wiring - <pl,p2> 7 <p2,pl>

Inputs - pl p2

Note that the polymorphic primitive fork is being used here to duplicate a pair of
values. Since the wires in the network produced above are polymorphic, they are

not restricted to carrying just basic values. For example, we can swap pairs:

> rsim "(a,b) (c,d)";

0 - ((a,b),(c,d)) ~ ((c,d),(a,b))

New wiring primitives (like swap) need not be defined in terms of the existing
wiring primitives, but can also be defined directly using the function wiring of type
(expr # expr) -> prog. Values of type expr are built using two functions: wire
of type Int -> expr and list of type List expr -> expr. An example shows

how these three functions are used to define wiring primitives:

> let swap = wiring (list [wire 1; wire 2], list [wire 2; wire 1]);

swap: prog

71

> rc swap;
Wiring - <pl,p2> 7 <p2,pl>
Inputs - pl p2

5.3 Converting Ruby terms to LML syntax

In this section we explain the LML syntax for Ruby terms as used by the Ruby in-
terpreter. Because of syntactic constraints imposed by LML, some Ruby primitives

and combining forms have different names from normal in LML syntax:

Ruby LML

rs r .. s

[r, s] r!ls

rt inv r

r" repeat n r
1d rid

T pl

o p2

fst r first r
snd r second r
map,, 7 | rmap n r
2ip,, rzip n
r<>s | r $beside s
rls r $below s

Two programs are placed in parallel using !!. For other than two programs use the
function par, which takes a list of programs as its argument; for example, [r, s, t]
in Ruby becomes par [r; s;t] in LML. Note that all infix Ruby combining forms
have the same precedence when written in LML notation, and associate to the right.

For example, r !'! s .. t would be interpreted asr !! (s .. t).

Delays are made using one of three functions (bdel, idel, or sdel), depending
on whether the starting value is boolean, integer, or symbolic. Constant relations
are made using bcon, icon, or scon. For example, the delay Dy is written as idel

5 in LML and the constant relation {(7,7)} is written as bcon true.

72

A number of logical and arithmetic functions are built-in to the interpreter:

AND (a,b) < aANb

R (a,b) & aVb
NOT a & —a
LT (m,n) & m<n
GT (m,n) & m>n
EQ (m,n) & m=n
x if b= true
IF (b, <x,y>>—{ y if b= false
if b= false
BTOI b { if b = true

ITOB

{ false ifn=20

true ifn=1

MUX n (i,zs) = xs; {0<i<n}
ADD (m,n) =m+n
SUB (m,n) =m —n
MULT (m,n) =m*n
DIV (m,n) = max {i | nxi < m}
MOD (m,n) =m —n* (m div n)
EXP (m,n) = m"

LOG (m,n) = max {i | i" < m}
MAX (m,n) = max {m,n}
MIN (m,n) = min{m,n}

GCD (m,n) = max {i | mmodi = nmodi = 0}

FACn=1%x2%...xn

The wiring primitives of Ruby are not built-in to the interpreter, but are defined

as ordinary LML definitions using the wiring function:

73

rid = wiring (wire 1,wire 1)

pl wir

wir

p2
fork = w

rsh = wi

1sh = wi

swap = w

rev.nan =

apl n =

apr n =

distl n

distr n

flatr n

pair n =

halve n

ing (list [wire 1;wire 2],wire 1)
ing (list [wire 1;wire 2],wire 2)
iring (wire 1,list [wire 1;wire 1])

ring (list [wire 1;list [wire 2;wire 3]],
list [list [wire 1;wire 2] ;wire 3])

ring (list [list [wire 1;wire 2];wire 3],
list [wire 1;list [wire 2;wire 3]]1)

iring (list [wire 1;wire 2],list [wire 2;wire 1])

let vs = map wire (1 $to n)
in wiring (list vs,list (reverse vs))

let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)], list vs)

let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs], list vs)

= let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)],
list [list [hd vs;x] ;; x <- tl1 vs])

= let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs],
list [list [x;last vs] ;; x <- head n vs])

= let f e es = LIST [e;es]
and vs = map wire (1 $to n)
in wiring (foldrl f vs, LIST vs)

let rec vs = map wire (1 $to (2*n))

and pairup []1 = []

|l pairup (x.y.ys) = list [x;y] . pairup ys
in wiring (list vs, list (pairup vs))

= let vs = map wire (1 $to (2*n))
in wiring (list vs, list [list (head n vs); list (tail n vs)])

74

rzipn =1

et rec vs = map wire (1 $to (2*n))

and (v1,v2) = (head n vs, tail n vs)
and zipped = [list [x;y] ;; (x,y) <= vl $zip v2]
in wiring (list [list vi1;list v2], list zipped)

Of the combining forms of Ruby only composition, converse, and product are

built-in to the interpreter. All the other combining forms, including all generic

combining forms, are defined just as ordinary LML definitions:

first r =

second r

repeat n r

rmap n r

r $beside

r $below s

row n r

col nr =

grid (m,n)

rdl nr

rdr n r

tri nr

irt nr =

r !! rid
rid !'! r
= foldr (..) rid (rept n r)

par (rept n r)

s =rsh .. first r .. 1sh .. second s ..

= inv (inv r $beside inv s)
second (inv (flatr n))

. foldrl ($beside) (rept n 1)
. first (flatr n)
inv (row n (inv r))

r =rowmnm (col nr)
row n (r .. inv p2) .. p2
col n (r ..inv p1) .. pi

par [repeat x r ;; x <= 0 $to (n-1)]

revn .. trinr .. revn

5.4 Extending the interpreter

rsh

In this section we suggest some ways to improve the Ruby interpreter.

1)

5.4.1 Simplifying symbolic expressions

Symbolic simulation is useful in seeing how result values are built up inside a pro-
gram. For example, applying a sorting program built using max and min (in fact,

Batcher’s bitonic sorter [60]) to (5,1,3,a) might give the following result:

((1 min (a max 3)) min (5 min (a min 3)),
(1 min (a max 3)) max (5 min (a min 3)),
(1 max (a max 3)) min (5 max (a min 3)),

(1 max (a max 3)) max (5 max (a min 3)))
It is only after manually simplifying this result to
(1 min a, 1 max (a min 3), (a max 3) min 5, a max 5)

that it becomes clear how ‘a’ can be routed to any of the four output positions.

Having the interpreter itself make such simplifications would be very useful.

5.4.2 Causal primitives

Ruby wiring primitives are treated properly as causal relations within the inter-
preter, being able to be used in any way in which they are functional. The arith-
metic and logical primitives however are restricted to being used from domain to
range as functional relations. For example, the NOT primitive cannot be used from
range to domain even though it is functional in this way. It would be interesting
to implement all primitive relations properly as causal relations. Such an extension
would make the interpreter more flexible, but gives no extra power: using just the
functional primitives one can bend wires around to get components that are func-
tional in other ways than from domain to range. For example, the ((out,in), in)

instance of + can be expressed by fst (—)_1 . Ish ; snd fork™ ; .

76

5.4.3 A relational interpreter

The interpreter at present works only with Ruby programs that are implementa-
tions. It would be useful to be able to simulate arbitrary Ruby programs. If external
wires are constrained to carrying only a small number of values (as is typical of many
Ruby programs) it might be possible that such information could be used to reduce

the otherwise (potentially) huge search space during a relational simulation.

5.4.4 Type inference

The type checking done by the interpreter at present is very basic; all that is checked
is that wires are connected together in an acceptable way. One could implement an
ML-style type inference system for Ruby, the only complication being that Ruby

programs can contain size variables. For example, consider programs

apl, : (a,a") ¢ "t

n

halve,, : B*™ <+ (™, B™).

In the above typings, a and [are type variables, while o™ is the type of an n-tuple of
elements of type a. Deducing the type (v, v**) «» (y*1, ") for the composition
apl, ; halve,, means, in addition to the normal work of type inference, having to solve
the size equation n + 1 = 2m. At first glance one might think that simple rules of
arithmetic could be applied, giving solutions n = 2m — 1 and m = (n+1)/2. There
is a problem however: size variables range over the natural numbers. Putting m = 0
in the first solution gives n = — 1, which is not an acceptable size; putting n = 0 in
the second solution gives m = 1/2, which is again not an acceptable size. In fact,
the most general solution to n+1 = 2m is given by n = 2t +1 and m = t+ 1, where

t is a fresh size variable.

Equations whose variables range over the natural numbers are called Diophan-
tine equations. It is known to be undecidable whether or not an arbitrary Diophan-
tine equation has a solution. (Note that such problems do not arise with equations

whose variables range over the integers rather than the naturals.) Provided that we

7

work only with simple equations however, such as those of the form ax+b = cy+d,

algorithms to compute the most general solution do exist.

Polymorphic type inference is a delicate algorithm (having in fact worse than
exponential time complexity in the worst case.) Making types more informative,
for example by adding size information, is very tempting, but one always has to be
careful not to end up with a type inference algorithm that is intractably slow. It
seems likely however that restricting ourselves to linear size expressions will give a
reasonable trade—off between types that are informative and a tractable inference
algorithm. Programs that naturally have types with non—linear sizes, for example
Hnm o (@™ a™) <> o™ can be given valid but less informative types; for
example, replace n+m above by a fresh size variable p. Alternatively, such programs

could be restricted to being used at instances in which their sizes are in fact linear,

as is the case for fork ; +,, : o™ < o®".

In a Ruby program, some size arguments to generic primitives and combining
forms might be redundant, being able to be deduced by examining the context in
which the generic appears in the program. For example, the most general way to
fill in the missing sizes in the program apl ; map R is as apl, ; map, ; R. So-
called unsized generic combining forms can be defined in terms of normal generic
combining forms. For example, map R can be defined by U {map, R | n € N'}.

Alternatively, one can give a direct recursive definition; for example,

() (mapR) ()
(z.xs) (map R) (y.ys)

true
r Ry N zs (map R) ys

One can admit unsized generics in program by (prior to type inference) replacing

each instance by a sized generic with a fresh size variable.

Here are some examples of programs before and after such a type inference:
[R,S] ; map T — [R,S] ; map, T,
fork ; [map, , R,map S| +~ fork; [map, , R, map, S],
apl ; map R — apl, ; map, | R,

apl ; halve = aply, 1 5 halve,q.

78

One might ask why a type of sized lists is not provided in any of the standard
functional languages? The reason is that sizes of tuples in Ruby programs are fixed
at compile-time (Ruby programs denote static networks), whereas sizes of lists in
functional programs can depend upon run—time values. For example, the length
of the list produced by the functional program filter p depends not only upon the

length of the argument list, but upon the elements of the argument list.

79

Chapter 6

Pers and Difunctionals

In this chapter we introduce the idea of partial equivalence relations (pers) as types
in the relational calculus. Pers are now adopted as types in both the spec calculus
[70, 71] and Ruby [43, 38]. In the spec calculus it was the desire to have ‘types with
laws’” that motivated working with pers; in Ruby the choice of pers as types arose
naturally from experience in deriving programs. Section 6.1 introduces the theory
of pers. Section 6.2 introduces the difunctional relations, which generalise pers
in a natural way. Our interest in pers and difunctionals is in their application in
chapter 7 to deriving programs. For a more theoretical treatment, including proofs

of many of the results that we state, see Voermans forthcoming thesis [70].

6.1 Partial equivalence relations

Recall that a partial equivalence relation (per) on a set S is a symmetric and tran-
sitive relation on §; such a per that is also reflexive on S is an equivalence relation.
Throughout this chapter A, B, C' denote pers, and we omit the ‘on &’ part when

talking of pers. The notion of being a per has a simple point—free formulation:
Definition 48: per. A = A=A"1 A A;ACA.
The first term in this definition expresses symmetry, the second transitivity:

Lemma 49: symmetric R = R = R™%

80

Lemma 50: transitive. R = R; RC R.
For example, the transitivity result is proved as follows:

R;R C R

{ def C }

r(R;R)z = 2Rz

{ def; }

Jy. xRy NyRz) = 2Rz

{ predicate calculus }

xRy NyRz = xRz
Two other formulations for per.A prove useful:
Lemma 51: per. A = A=A"1 AN A; A=A
Lemma 52: per. A = A=A; A
Here is a proof of the non-immediate part of lemma 51:
A A
D) { transitive.A }
A A A
= { symmetric.A }
A: A A
D) { triple rule; see lemma 84 }

A

For some (fixed) per A and an element a € dom A, the equivalence class |a] of
a under A is defined by [a] = {b | a A b}. We write S* for the full relation SxS.
Using these two definitions, here are three well-known properties of pers: (Proofs

of point—free versions of these properties can be found in [35].)

81

Lemma 53: For any per A,

(a) Equivalence classes are either identical or disjoint:

(b) A is completely determined by its equivalence classes:
A=U{[a)*|a € dom A}.
(c) Decomposition in terms of disjoint full relations is unique:

Let X be a set of disjoint non—empty sets. Then,
A=U{S*|Secx} = X ={[d]]|ac dom A}.

In summary, “pers can be written in a unique way as the union of disjoint non—
empty full relations, each such relation representing an equivalence class of the per.”
For example, the per {(a,a), (a,b), (b,a), (b,b), (c,c)} can be written in terms of full

relations as {a, b}*> U {c}?; here is a picture:

a a
b——0
c c

We observe that pers are closed under converse, intersection, and par, but

not under union or composition. To see that pers are not closed under U, take
A = {a,b}*> and B = {b,c}? then A U B = {a,b,c}* — {(a,c),(c,a)} is not a

“_»

per, where means set difference. For composition, take A = {a,b}* U {c}?

and B = {a}?* U {b,c}?* then A; B = {a,b,c}* — {(c,a)} is not a per.

82

6.1.1 Orderings

In this section we introduce three orderings on pers.

We begin by defining operators = and - that are useful in defining other con-
structions involving pers. If a relation S can be composed on the right of R without

affecting R we say that R right—-guarantees S, written R = S
Definition 54: RS = R:;S=R.
Here are some properties of - [42]:
Lemma 55: RS = (T;R)FS.
Lemma 56: R+ (S;T) = (R;S)FH(T;5S).
Lemma 57: R+ (S;T) A (T;U)FV = (R;U)RV.
The left—guarantees operator - is dual to
Definition 58: SH4R = S;R=R.
Lemma 59: S+4R = R 'F S L
We write - as <« when both arguments are pers:
Definition 60: A< B = AF B.
Pers are partially ordered by <; in fact we have the following result:
Lemma 61: Pers form a complete lattice under <.

The least element in this complete lattice of pers is 1L, the greatest element is id.
See Voermans [69] or van der Woude [65] for details of the \/ and A operators for

<. For example, here is the lattice of pers on the universe {a, b}:

83

{a}? U {b}*

RN

{a}* {a,0}* {b}?

ANV

0

The per lattice is in general neither complemented nor distributive. Recall that
a lattice is complemented if every element A has a unique element B satisfying
AUB=TT and AN B = 1L. Complements exist in the per lattice, but are not
unique; for example, both {a,b}? and {b}? in the example lattice above satisfy
the properties expected of a complement to {a}?. The per lattice is distributive if
AV (BAC)=(AVB) N(AVC). Taking A = {a}?, B ={a,b}?, and C = {b}* in
the lattice above shows that this equation does not hold: {a}? # {a}? U {b}*.

In [35] it is shown that A < B expresses that equivalence classes in A are the
union of equivalence classes in B, i.e. that A is formed by discarding, copying, and

combining classes from B. We read < then as “is a per on”. For example,
{a,b.c}? U{d,e}* < {a,0}*U{c}* U{d,e}* U{f}*;

that is, the equivalence class {a,b,c} in A is formed by combining the equivalence
classes {a, b} and {c} from B, while the equivalence class {d, e} is copied unchanged

from B to A, and {f} in B is discarded when moving from B to A.

Two other orderings on pers are defined using <:
Definition 62: A< B = A< B N ACB.

Definition 63: A<|B = A< B AN ADB.

Pers form a meet semi—lattice under <, and a join semi-lattice under <i|. Writing

A < B says that A is formed from B by copying and discarding equivalence classes,

84

but no classes are combined; read < as “is a sub—per of” [35]. Writing A <| B says
that A is formed from B by copying or combining equivalence classes, but no classes

are discarded; read <| as “is an equivalence relation on” [35]. For example,
{a,b}* U{c}? < {a,b}*U{c}?*U{d,e}?

{a,b}* U {c}?® < {a}U{b} U {c}.

6.1.2 Pers as types

In relational calculus it is common to write R C A x B in the form of a typing
judgement R € A < B. Beginning with the observation that R € A + B is
equivalent to idq 4 R A R F idg, where idy denotes the identity relation on a
set X', Backhouse [1] explores the use of identity relations as types in relational

calculus. In this section we introduce the idea of using pers as types.

For a relation R C A x B, it may be the case that many elements in .4 have
the same image under R, or conversely, that many elements in B have the same
inverse image under R. It is the desire that such information be able to be encoded
in types that motivates working with partial equivalence relations as types rather

than with identity relations as types. We begin with the following definition:
Definition 64: A left domain of R is a per A for which A 4 R.

The condition A 4 R expresses that equivalent elements under A have the same
image under R, and that A is big enough in that dom A O dom R [35]. A relation
can have many left domains; in section 6.1.3 we define an operator < that gives the

smallest such domain with respect to the <1 ordering on pers.

Of course, there is also the dual notion of a right domain:

Definition 65: A right domain of R is a left domain of R™!, or equiv-
alently, a right domain of R is a per B for which R B.

We write R € A <+ B when A is a left domain of R and B is a right domain:

85

Definition 66: Re A~ B = A4dR N R-B.
The two parts of this definition can be combined in a single equality:
Lemma 67: Re A«~+ B = A;R;B=R.
One can now give type inference rules for Ruby. Here are some examples:

Lemma 68:

ReAB AN SeB«C = R;S e A«C,

RecA— B = R'eB& A,

ReA<~B AN SeC<«+ D = [R,S] € [AC] <+ [B,D],

Re A<+ B = map, R € map, A < map, B,

R € [A,B]«< [C,A] = row, R € [Aymap, B| < [map, C, 4],
R € [ABl]+ A = rdl, R € [Amap, B] + A.

These rules are consequences of familiar properties of the combining forms. For

example, the proof of the rule for map relies on a distributivity property:

map, R € map, A < map, B

{ lemma 67 }

map, A ; map, R ; map, B = map,, R

{ distribution (29) }

map,, (A ; R; B) = map, R

= { Leibniz }
A:R:B =R

= { lemma 67 }
Re A« B

86

6.1.3 Domain operators

In this section we introduce operators < and > that give the best left and right types
for a relation. The reader is referred to [69, 65, 71] for proofs of the results that we

give in this section. We begin with the following definition:
Definition 69: a Rb = Vi. (a Rz = bR x).

Elements a and b are related by Rif they have the same image under R. As usual,

for calculation we prefer a point—free formulation. Using that
a(R/S)b = Ve. (bSz = aRx),

we see that R can be expressed using factors:
Lemma 70: R = (R/R) N (R/R)™".

One can verify now that R is a left domain of R, and moreover, that it is the largest

left domain of R under the inclusion ordering C on relations. Not surprisingly, R
is also the <t—smallest equivalence relation (on the implicit universe) that is a left
domain of R. (We note in passing that Ris a special case of Freyd and Scedrov’s

symmetric division operator; see section 2.35 in [28].)

The definition for R does not require that image sets are non—empty. Discarding
from R the equivalence class comprising elements with empty image sets (that is,

elements outwith dom R) gives a relation that we write as R<:
Definition 71: a R<b = a,b€ dom R A a Rb.

Again we can make a point—free version:
Lemma 72: R< = (R; R NR.

One can verify now that R< is the <—smallest left domain of R:

87

Lemma 73: R< 4 R.

Lemma 74: AR = R<<A.

Reflecting its unique status, we refer to R< as the left domain of R.

Here are some properties of the < operator:
Lemma 75: (A; R)< < A.

Lemma 76: (R; S)< < R-<.

Lemma 77: (R; S)< < (R; S<)<.

Lemma 78: A4 R = R<<A.

Lemma 79: per. R = R<=R.

Lemma 80: [R, S]< = [R<,S<].

Of course, there is also a domain operator > that gives the <i—smallest right

domain of a relation. The > operator is defined as the dual to <:
Definition 81: R> = (R 1)<

In chapter 7 we find that the preconditions to ‘induction’ laws that are applied
when deriving programs using Ruby often work out to be assertions of the form A -
R. In the past, such assertions have been verified by informal arguments or by using
predicate calculus, rather than by applying algebraic laws from Ruby. In chapter 7
we verify such assertions without stepping outside Ruby, by first expressing them
in the equivalent form R< <1 A using lemma 78, which can then be verified using

the algebraic properties given above for the < operator.

88

6.2 Difunctional relations

In this section we introduce the difunctional relations, a class of relations that gen-
eralise pers in a natural way. Difunctionals were first studied by Riguet in the late
1940’s [54]. They have also been called ‘regular’ relations and ‘pseudo-invertible’
relations [36], and ‘abstractions’ [61]. Section 6.2.1 shows that the domain operators
have a simple formulation for difunctional relations, and gives conditions (involving
types) under which difunctionals are closed under composition. Sections 6.2.2 to

6.2.4 present different ways to think about difunctionals.

The notion of a relation being difunctional is defined as follows:
Definition 82: difun.R = a Rb AN cRb N cRd = aRd.
In calculation we always use a point—free formulation:
Lemma 83: difun.R = R;R';R C R.
Proof

R:R°':RCR

[defC}

a(R;R';R)d = aRd

{ def; }

db,cla Rb AN bR‘'c AN cRd) = aRd

{ predicate calculus }
aRbANODR''c ANcRd = aRd
{def 71}

aRbANcRbANcRd = aRd

Every relation satisfies the reverse inclusion, which we call the triple rule [35]:

89

Lemma 84: R; R°';R DO R

Proof
R:R 'R
D { lemma 72 }
R<; R

= { domains }

R
The two previous results are combined in a single equality:
Lemma 85: difun.R = R;R‘';R = R.
There are larger but equivalent formulations. For example,
Lemma 86: difun.R = R;R';R;R‘';R = R.
Proof “=~

R:R':R;R 'R

= { difun.R }
R;R 'R
= { difun.R }
R
Proof “<”
R:R':R
C { triple rule (84) }

R:R':R;R 'R

= { assumption }

90

In general, for all naturals n > 0:
Lemma 87: difun.R = R;(R';R)" = R.

For a € dom R, the image of a under R is defined by a.R={b | a R b}.
The inverse image of b € rng R under R is defined by R.b =0b.(R™!). We saw
in section 6.1 that pers can be written in terms of disjoint full relations S x S.
Difunctionals generalise pers in a natural way, being able to be expressed in terms

of disjoint complete relations S x T, where sets S and T may differ:
Lemma 88: For any difunctional relation R,

(a) Image sets are either identical or disjoint:
aR=d.R V aRNdR=1
Rb=RYV VvV RbN RV =10.

(b) Image sets are in one-to—one correspondence:

{a.R|a € dom R} = {R.b|b€ rng R}.
(¢) R is completely determined by its image sets:

R=U{Rbxa.R|aRb}.

(d) Decomposition in terms of disjoint products is unique. Let X',)

be indexed sets of disjoint non—empty sets, with | X'|=|) |= n. Then,

X={Rb|bemgR} N Y={a.R|aec domR}.

For example, the difunctional relation

{(a,), (a,d), (b,c), (b,d), (e, f), (e, 9), (e, 1)}

can be written in terms of disjoint products as
{a, b} x{c,d} U {e}x{f,g,h}

91

a c
b——d

/f
e g

Note that pers and functional relations are difunctional. Moreover, just as for
pers, difunctionals are closed under converse, intersection, and par, but not under
union or composition [35]. To see that difunctionals are not closed under compo-
sition, take R = {(a,x), (a,y), (b, 2)} and S = {(z,¢), (y,d), (z,d)}; then R and S
are both difunctional (R is the converse of a functional relation, S is a functional
relation), but their composition R ;S = {(a,c), (a,d), (b,d)} is not difunctional,

being in fact the simplest non—difunctional relation:

a x c
Yy
b z

d

In section 6.2.1 we give a necessary and sufficient condition (involving types) for

the composition of two difunctionals being difunctional.

6.2.1 Domains

The domain operators have a simple formulation for difunctionals:
Lemma 89: difun.R = R< = R;R .

Lemma 90: difun.R = R> = R™';R.

Proof 89

R< = R; R

= { lemma 72 }
R< 2 R; R~

= { lemma 72 }

(R;R™) N (R/R) N (R/R)" 2 R;R™

{ glbs }
(R:R' 2D R;RYA(R/RDR:RY A ((R/IR™' 2 R;:R™Y)

{ calculus }

R/R D R; R~}

{ factors }

R'2 R';R;R"

{ def }

difun.R

These results are used to prove that difunctionals are closed under composition
precisely when the composition of the smallest intermediate domains is transitive:

(Sheeran [61] gives an alternative proof using the operators — and)
Lemma 91: difun.R N difun.S =
difun.(R ; S) = transitive.(R>; S<).
Proof “=7

(R>; 5<) 5 (B> 5%)
= { difun.R N difun.S }
RY'YR:S;S',R'Y,R;S5;S5!

93

= { converse }

RV, R;S;(R;S) " ;R;S;5!

C { difun.(R ; S) }
R1'.R:;S;8!

- { difun.R N difun.S }
(B> S<)

Proof “«”

difun.(R ; S)

{ def }
R:S;S':R'R:;S C R;S

{ difun.R N difun.S }
R;5<;R-;5 € R;S

{ domains }

R;R>;S5<;R>;5<;8 C R;R>;5<;5

= { monotonicity }

R>:S5<;R>;S5< C R>;S<

{ def }

transitive.(R> ; S<)

In practice, one of two sufficient conditions can often be used to show that the

composition of two difunctionals is difunctional:
Lemma 92: difun.R N difun.S =
difun.(R;S) < (R><S< V S<<R>).

Proof

94

difun.(R ; S)

{ lemma 91 }

transitive.(R> ; S<)

{ def }
R>; S<; R>; S< C R>; S<

{R-<2S<V S<<R-}

true

6.2.2 Difunctional = Factorisable

It is well known that every relation R can be expressed in the form f~! ; g, for f
and g some functional relations. For example, take f = idg ; m; and g = idg ; 7o,
where idg is the identity relation on the set of pairs comprising R. One can verify

now that f and g are functional relations, and that R = f~! ; g¢.

Turning things around, we find that the composition of a functional relation and

the converse of a functional relation is always difunctional:

Lemma 93: fn.f A fng = difun.(f ;g7 ").

Proof
(Fso D) (Fi9) (Fig™
_ { converse }
fig gt fig!
< {fnf A fng}
fiadsid; g™

= { identity }

fig?

95

Moreover, every difunctional can be factorised in this way:
Lemma 94: difun.R = 3f,g. (fn.f AN fng AN R=f;g7").

See [36] for a proof. Combining the two results above: “Precisely the difunctional
relations can be expressed as the composition of a functional relation and the con-
verse of a functional relation.” All the programs that we derive in chapter 7 are

difunctional programs specified as such a composition.

6.2.3 Difunctional = Invertible

An inverse of a function f : A — B is a function g : B — A satisfying g o f = id 4

and f o g = idg. We can make such a definition in relational calculus:

Definition 95: An inverse of a relation R € A < B is a relation

S e B+ Aforwhich R;S=Aand S; R=B.

Not every relation R € A <+ B is invertible, but those that are have R~! as a

unique inverse: (See lemma D22 in [1] for the proof.)

Lemma 96: S € B+ Aisaninverseof RE A+ B = S=R"!
Which relations can be inverted? Precisely the difunctionals:

Lemma 97: R € A + B is invertible = difun.R.

Lemma 98: difun.R = R € R< < R> is invertible.

Definition 95 assumes that A and B are pers. Is it possible to separate the in-
vertibility result from a specific choice of types? Perhaps one can define an inverse
of a relation R as an S satisfying R; S; R=Rand S ; R; S =57 Using this def-
inition however, R™! is no longer the unique inverse of R. Take R = {(a,a), (a,b)}

and S = {(a,a)},then R;S; R=Rand S;R;S =S, but S# R

96

6.2.4 Difunctional = Per—functional

The notion of a functional relation depends upon our choice of types. In this section
we give a brief argument that when pers are types, difunctionals relations are the

functional relations. A more formal argument is given in [35].

In the standard approach to relational calculus, equivalent to working with
partial identity relations (pirs) A C id as types, a relation R is functional if
R~'; R Cid. Working with pirs, the right domain of a relation R is defined by
R>= (R™'; R)nid [1]. We observe now that functionality can be expressed in

terms of the domain operator: R is functional = R™!; R = R>.

Working with pers, the right domain of R is given by R>= (R™'; R) N R

Taking the lead from the observation for pirs, we make the following definition:
Definition 99: R is per-functional = R™'; R = R>.

Applying lemma 90, we conclude that the per—functional relations are precisely the
difunctional relations: (It is interesting to note that, because difun.R = difun.R™1,

the converse of a per—functional relation is also per—functionall)

Lemma 100: R is per—functional = R is difunctional.

6.3 Counting pers and difunctionals

We end this chapter with a bit of fun. The space of relations on a universe A is
given by the powerset P(A x A). If A has n elements, then the space of relations
has 2™*" elements. In this section we define Miranda functions that compute how
many of these relations are equivalence relations, pers, and difunctional relations.

Writing such programs helps in becoming familiar with the three notions.

We begin by defining a function eqvs: (The function rep used below takes a

number n and a value x, and gives a list of n copies of x.)

97

[0]

concat [i+1 : rep i i | 1 <- eqvs n]

eqvs O

equs (n+1)

The length of the list eqvs n is the number of equivalence relations on a set with n
elements. Each element of eqvs n is the number of classes in one such equivalence
relation; for example, eqvs 3 = [3,2,2,2,1] tells us that there are 5 equivalence
relations on a set with 3 elements, one having 3 classes, three having 2 classes, and
one having 1 class. Let us explain how eqvs works: if an equivalence relation has
1 classes then adding a new point to the universe gives ¢ equivalence relations with
i classes (one for each class the new point can be placed in) and one equivalence

relation with 7 + 1 classes (in which the new point forms a completely new class).

The pers function is defined just as for eqvs, except that we have an extra

relation with 4 classes, in which the new point is not added to any class:

pers 0 = [0]

pers (n+1) = concat [i+l : rep (i+1) i | i <- pers n]

Now for difuns. If a difunctional comprises ¢ products, then adding a new point
to the universe gives 37 + 1 difunctionals with ¢ products: one for adding the new
point to none of the products, and one each for adding the new point to the left
side, right side, and both sides of each product. In addition, we get one difunctional

with ¢+ 1 products, in which the new point gives rise to a completely new product.

difuns 0 = [0]

difuns (n+1) = concat [i+1 : rep ((3*i)+1) i | i <- difuns n]

Here are the number of eqvs, pers and difuns on sets with 0...9 points:

[#(eqvs n) | n <= [0..9]]
= [1,1,2,5,15,52,203,877,4140,21147]

[#(pers n) | n <= [0..9]]

98

= [1,2,5,15,562,203,877,4140,21147,115975]

[#(difuns n) | n <- [0..9]]
= [1,2,7,35,214,1523,12349,112052,1120849, 12219767]

Note that the pers list is the eqvs list with the first element removed: pers n =
eqvs (n+1). This is explained by noting that a per A can be seen as an equivalence

relation with an extra equivalence class comprising points outside dom A.

99

Chapter 7

Calculating Programs

In this chapter we put everything we have developed into practice. We use Ruby
to derive some programs specified as the composition of a functional relation and
the converse of a functional relation, and run the resulting implementations on the
Ruby interpreter. Preconditions of the ‘induction’ laws used within the derivations

are verified using algebraic properties of the domain operators < and >.

7.1 More Ruby laws

Laws for some primitive relations and combining forms were given in section 3.4. In
this section we give some laws about arithmetic primitives and generic combining
forms. Proofs of these laws can be found in the earlier Ruby articles. Thinking in
terms of pictures is very helpful in understanding the laws for the generic combining

forms; see for example the pictures that follow lemma 113.

The first four laws are about the primitives + and *. The first two are dummy—
free versions of the standard associativity and distributivity rules; the second two

are relational properties that are much used when deriving programs:

Lemma 101: (associativity)

fst + ; + = Ish ; snd + ; +.

100

Lemma 102: (distribution)

+ 5 %n = [xn,*n]| ; +.

Lemma 103: fst xn ; + ; *n~! = snd *n=' ; +.

Lemma 104: + ; + ' = snd +71 ; rsh ; fst +.

The next two laws express that the argument to map can be pushed inside left
reductions and columns. (Of course, similar laws hold for right reductions and
rows, but we don’t have need for them in this thesis.) These laws are used in the
left—to—right direction, to bring together the argument of a map and the argument

of a left reduction (or column) so that they can be manipulated together:

Lemma 105: (map through left-reduce)

snd (map,, R) ; rdl, S = rdl, (snd R ; 5).

Lemma 106: (map through column)

fst (map,, R);col, S;snd (map, T) = col, (fst R ; S ; snd T).

The next two laws express that a transformation of a certain form (essentially
a ‘shunting transformation’) can be rippled through a left reduction or a column of

components: (Again, similar laws hold for right reductions and rows.)

Lemma 107: (left-reduce induction)

fstR;S = T ;R

fst R ;rdl, S = rdl, T ; R.

Lemma 108: (column induction)

101

sndR;S = T ;fstR
snd R ; col, S = col, T ; fst R.

Column induction is commonly used to push a type constraint on the domain of a
column through to the argument program. Column induction gives the ‘rippling’
law below by taking R = A (where A is a per) and T' = snd A ; S ; fst A: (Note
that we have used col, (R ; fst A) F fst A, which follows from the type inference

rule for column, to eliminate the trailing fst A from the column rippling rule.)

Lemma 109: (column rippling)

snd A; S F fst A

snd A ; col, S = col, (snd A ; S ; fst A).

The precondition above asserts that fst A is a right domain of snd A ; S. For simple
programs, one can verify such a precondition by applying shunting-like laws. See
for example the use of column rippling in the derivation of the binary addition
program in section 7.4. When deriving more complicated programs however, such
as the base—conversion program in section 7.6, we take a different approach: the
precondition is first expressed in the form (snd A ; S)> < fst A using lemma 78,

which is then verified using the algebraic properties of the > operator.

The term Horner’s rule usually refers to
an. 2" + .. a0.2% + a2t +ag.r’ = (((ap.x +...)x + ax)z + ay)x + ag,

which shows how to evaluate polynomials more efficiently. Bird and Meertens have
used a variant of Horner’s rule to great effect in deriving functional programs [8, 48].

The two laws below are variants of Horner’s rule that are used in Ruby:

Lemma 110: (Horner’s rule for left-reduce)

102

[RaR]aS:‘S’?R

tripe; R;oapl, ™ s rdl, S = apl,”' ; rdl, (st R ; S).

n

Lemma 111: (Horner’s rule for column)
fst R;S; [T,7T) = sndT ; S
fst (tri, R) ; col, S ; [T, tri, T] = col, (S ; fst T').

Our final two laws combine a reduction and the converse of a reduction to give

a column; the application of one of these rules is a key step in all our derivations:

Lemma 112: (sliding reductions)

R;S ' =sndSt;rsh;fstR

rdr, R ; (xdl, S)™" = col, (R ; S7Y).
Lemma 113: (zipping reductions)

fst R ;S ;T ' = Ish;sndW ; rsh; fst S
fst (rdl, R) ; S ; (xdl, T)7"

Ish ; snd (col, W) ; rsh ; fst S.

Here is a picture of the precondition to lemma 113:

,,,,,,,,,,,,,,,,,,,,,

103

here is a picture of an instance of the consequent:

i S i W
| ; T
B = W
LR | | |
o \) _ L
_ 7" o
LR | | |
o [| |
| ’1‘ —1\ : :
LR | g L
] L i i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

7.2 Representing numbers

All the programs that we derive in this chapter work with numbers. In this section

we give some basic definitions involving numbers, and some laws.
Definition 114: sum,,; = apr, ' ; rdr, +.
Definition 115: lad, z = tri, (xx) ; sum,,.

The program sum,, relates an n—tuple (n > 0) of numbers to their sum; lad, =
relates an n—tuple of numbers to their weighted sum, where the ith component of
the tuple (reading from right to left and starting from 0) is given weight z’. For
example, (1,2,3,4) sumy 10 and (a,b, ¢, d) lads2 8a + 4b+ 2¢ + d.

Here are some useful properties: (the first three are consequences of the asso-

ciativity of addition, the last that x distributes over +.)
Lemma 116: sum,; = apl, ' ; rdl, +.

Lemma 117: fst sum,, ; + = rdr, +.

104

Lemma 118: snd sum,, ; + = rdl, +.

Lemma 119: [lad, z,lad, z] ; + = zip, ; map, + ; lad, z.

An n—digit number in base z will be represented as an n—tuple of integers in the
range 0 to x — 1. The leftmost value in the tuple is assumed to be most significant.
For example, the tuple (2,0, 2, 1,0) is the representation of the decimal number 183
as a H-digit number in base 3; that is, 2.3* +0.3% 4+ 2.32 + 1.3' +0.3° = 183. The
same number represented as an 8—-digit number in base 2 is (1,0,1,1,0,1,1,1). The
program eval, x converts an n—digit number in base = to a natural number: (For

n > 0, |n| abbreviates the identity relation [0,... ,n — 1].)
Definition 120: eval,z = map, |z| ; lad, .

The following picture is helpful in reading this definition: (e represents |z |)

+ o o
*X

\
*T *T

\ \
*x *T *T

Here are some properties of eval, x:

Lemma 121: eval, x is a bijection.

Lemma 122: (eval, z)> = |z"|.

Lemma 123: (eval, z)< = map, |z|.

105

Since multiplication distributes over addition (lemma 102), Horner’s rule for left—

reduce (lemma 110) can be applied to eliminate many of the multiplications:
Lemma 124: eval,z = map, |z|; apl, ;' ; rdl,_; (fst xz ; +).
An alternative formulation with a hidden 0 is sometimes useful:
Lemma 125: eval,x = map, |z|; m~' ; fst [0] ; rdl, (fst xz ; +).
We write b for the type of binary digits:
Definition 126: b = [0, 1].
The program bin,, converts an n—bit binary number to a natural number:
Definition 127: bin, = ewval,?2.

A carry-save number is like a binary number in that digits have weight 2¢, but
different in that acceptable digits are {0, 1,2}, and that a digit is represented as a
pair of bits whose sum is that digit. For example, ((1,0),(1,1),(0,1)) is a carry—
save representation of 9, because (1+0).22+ (1 +1).2' +(0+1).2° =9. A number
can have many carry—save representations; e.g. ((1,1),(0,0),(1,0)) also represents

9. The program csv, converts an n-wide carry-save number to a natural number:
Definition 128: csv, = map, ([b,0] ; +) ; lad, 2.

Here are some properties of csv,:
Lemma 129: csv,, is functional.

Lemma 130: csv,> = |27 —1]|.

Lemma 131: csv,< <| map,, [b,D].

106

Results 130 and 131 together express that every carry—save number represents one
natural number and a natural number can have many carry—save representations.

(Recall that A <1| B says that per A is ‘an equivalence relation on’ per B.)

Binary and carry—save numbers are related by the following laws:
Lemma 132: [bin,, bin,] ; + = zip,, ; csu,.
Lemma 133: [bin,, csv,] ; + = zip, ; map,, ([b,[b,0] ; +] ; +) ; lad, 2.
We prove lemma 132 below; lemma 133 follows by a similar argument:

[bing,, bin,] ; +

= { def 127 }

[map,, b ; lad,, 2, map,, b ; lad, 2] ; +

= { par }
[map,, b, map,, b] ; [lad, 2,1ad, 2] ; +

= { ladders (119) }

[map,, b, map,, b] ; zip, ; map, + ; lad, 2

= { shunting (30) }

zip, ; map,, [b,b] ; map, + ; lad, 2

= { def 128 }

2ip, 5 CSUp

7.3 Representation changers

We use the term representation changer for a program that converts an abstract
value from one concrete representation to another. A simple example of a represen-
tation changer is a base-conversion function conv that converts an n—digit number

in base z to an m—digit number in base y. In this case, abstract values are natural

107

numbers, and concrete values are numbers in base x and base y. Representation
changers have a natural specification as a composition R ; S~!, where R is a relation
that converts from one concrete type to the abstract type, and S converts from the
other concrete type to the abstract type. For example, the function conv can be

specified by the requirement that conv = eval, x ; (evaly,, y)fl.

In many cases the components R and S of a representation changer R ; S~!
will be functional relations. In section 6.2.2 we observed that precisely the difunc-
tional relations can be expressed as the composition of a functional relation and
the converse of a functional relation. In making the following definitions, Jones
and Sheeran [43, 42| generalise a little, allowing the components to be difunctional

relations, but still requiring that the composition be difunctional:

Definition 134: A representation changer is a difunctional program
specified as a composition R ; S~!, where R and S are also difunctional

relations. We refer to R and S as representation relations.

Definition 135: The concrete domain of a representation relation R is

the per R< = R ; R7!, and the abstract domain is the per R> = R™! ; R.

For a representation relation R, read a Rb as “concrete value a represents ab-
stract value b.” That a representation relation need not be functional means that a
concrete value can represent more than one abstract value; e.g. one might imagine
a representation relation sign with concrete domain [—1,0, 1] and abstract domain
int, in which —1 represents the negative integers, 0 represents 0, and 1 represents
the positive integers. That a representation relation need not be the converse of a
functional relation means that an abstract value can have more than one concrete

representation; e.g. under + both (1, 1) and (2,0) represent 2.

Commonly for representation changers it is easy to define R and S, but not
obvious how to implement R ; S7!. Refinement of a program specified in this way

proceeds by sliding parts of R and S through one another (using laws 112 and 113

108

for example), aiming towards a new program with components that are represen-
tation changers with smaller abstract types. In this sense, ‘thinking about types’
guides our calculations. The process is repeated until the remaining representation

changers can be implemented directly using standard primitives.

A representation changer that is much used in Ruby is a half-adder, which gives
the binary carry and sum of a pair of bits. A half-adder is a representation changer
which converts a natural number n € {0, 1,2} represented as a pair of bits (z,y)

with z + y = n to a pair of bits (2/,%/) with 22’ + ¢y = n:
Definition 136: HA = [b,b] ; + ; ([b; %2,b] ; +)7".
The half-adder can be implemented as follows:
Lemma 137: HA = [b)b] ; + ; fork ; [div2 ; b,mod 2 ; b].
This result follows quickly from the following:
Lemma 138: >0 = ([xz,|z|]; +)7" = fork ; [div z, mod x].

We conclude with another useful representation changer; a full-adder gives the

binary carry and sum of three bits, arranged here as a single bit and a pair of bits:
Definition 139: FA = [b,[b,b] ; +] ; +; ([b; *2,b] ; +)7".

Here are two properties of FA that are used later on:

Lemma 140: Ish ; FA = [[b,0] ; +,b] : +; ([b; %2,0] ; +)"".
Lemma 141: FA ; fst «2 ; + = [b,[b,0] ; +] ; +.
Proof 140

109

Ish ; iA
- { def 139 }

Ish 5 [b,[b,0] ; +] 5 + 5 ([b; %2,0] ; +)7
= { shunting }

([b,0] ;0] ; Ish ; snd + ; + ; ([b; %2,b] ; +) "

— { associativity (101) }

[0,0] 5 +,0] 5 + 5 ([b; *2,0] ; +)7"
Proof 141

iA fst %2 5 +
= { def 139 }

[0, [6,0] 5 +] 5 4+ 3 715 K27 5 b 2,0 5 +
= { expanding }

[b,[6,0] 5 +] ;5 +; +' 5 [[0,1,2],0] ; +

= { expanding }
[b,[0,0] 5 +] 5 + 5 [0,1,2,3]
= { domains }

[b,[6,0] 5 +] 5 +
As is well known, a full-adder can be implemented using two half-adders:

Lemma 142: FA = HA < HA ; fst +.

7.4 Binary addition

In this section we derive our first program using Ruby. The program takes an n—bit

binary number (n > 0) and a single bit, and gives a carry bit and an n—bit sum [34].

110

Given below is our specification for the addition program: R converts the binary
number to an integer and adds the bit, S~! separates off the carry bit, and converts

the remaining integer back to binary.

Definition 143: add1, = R ; S™', where

R = [bin,,b] ; +,
S = [b; (x2)", bin,] ; +.

Since R is functional and S is bijective, addl, = R ; S~ is functional, and hence
implementable in the sense of definition 45. In fact, addi, is already an implemen-
tation: take any one of the range wires in its network as the output wire, and the
remaining external wires as input wires. The program is not however an imple-
mentation for the direction that we want to use it, namely from domain to range.
Moreover, one might expect that internally the binary addition program should
manipulate only 0’s and 1’s, whereas natural numbers are used with addi, as de-
fined above. We shall calculate an implementation of add1, that is executable from

domain to range and manipulates bits rather than natural numbers.

We begin with some simple rearranging steps:

addl,
= { def 143 }

[bing, b] 5 + 5 ([0 (x2)", bing] 5 +)7'

= { def 127 }

[map,, b ; tri, *2 ; sum,,b] ; +; ([b; (*2)", map,, b ; tri, *2 ; sum,] ; —i—)_l

= { sums (117,118) }

[map,, b ; tri, %2,0] ; rdr, + ; ([b; (*2)",map, b ; tri, *2] ; rdl, +)""

= { converse }

[map,, b ; tri, %2,0] ; rdr, + ; (vdl, +)7" ; [(%2)7™ ; b, tri, *271 ; map,, 0]

111

The right-reduction and converse left-reduction can now be combined using lemma
112, with R, S = +. Under these assignments, the precondition is given by lemma 104,

a property of addition much used in Ruby. We continue:

[map,, b ; tri, %2,0] ; rdr, + ; (vdl, +)7" ; [(%2)™™ ; b, tri, *271 ; map,, 0]

— { sliding reductions (112) }

[map,, b ; tri, *2,b] ; col, (+ ; +71) ; [(*¥2)™" ; b, tri, ¥27' ; map,, V]

Now the triangles can be pushed inside the column using a variant of Horner’s rule,
lemma 111. This law is used here with R = %2, S = (+ ; +7!), and T = 271,

We verify the precondition of the law under these assignments as follows:

fst R ;S ;[T,T) = sndT ; S

{ assignments }

fst 2 ; + 5 + 1 [¥271,%271] = snd %271 4 ; 47!

{ distribution (102) }
fst x2 ; + ;#2701 471 = snd x27 ; + ;471
= { Liebniz }

fst %2 ; + ; 271 = snd *27! ; +

{ lemma 103 }

true
Continuing with the add1,, calculation:

[map,, b ; tri, *2,b] ; col,, (+ ; +71) 5 [(*2)™" ; b, tri, 271 ; map,, b]

= { Horner’s rule (111) }

[map,, b,b] ; col, (+ ; +' ; fst x271) ; [b, map,, 0]

= { map through column (106) }

snd b ; col, (fstb; + ; +71; [x2710]) ; fst b

112

Observe that the component of the column has the form of a representation changer.
Its abstract domain is however still a large type, namely the identity relation
idz on the integers. We make it a small type, in fact [0,1,2,3], by pushing the
type constraint snd b on the domain of the column through to the argument pro-
gram, using column rippling (lemma 109). This law is used here with A = b and

S = fstb; +; +1; [*271,b]. Let us verify the precondition:

sndA; S F fst A
= { assignments }

[B,0] 5+ +715 2700 = [b,0) 5+ 75 27 0,0
We verify this identity as follows:

[6,8] 5 + 5+ 5 (2700
= { addition }

0,0 ; +;[0,1,2] ; +71; %271, 8]

= { converse }
6] 5+ (52,65 + 5 [0,1,2])7"
= { shunting }

[b,b] 5 + 3 ([+2 5 [-1,0,1,2],8] ; +)°

= { shunting }

[b,0] 5+ 5 ([b ;5 #2,0) ; +)7

= { converse }

[0,0] 5+ 5 +71 5 #2705 b, 0]
The precondition can also be verified, as shown below, in the form using >:

(snd A ; S)> < fst A

= { assignments }

113

([b,0] 5 + 5 +71 5 %274 8])> < fstb
We verify this approximation as follows:

([b,0] 5 + 3 +71 5 27, 0])>

< { composition (77) }
(8] s)5 +71 5 [x27,00)
= { addition }

([0,1,2] 5 +71; [«271,0])>

= { duality (81) }
(285 0,1,2)-
= { shunting }

(¥2 ; [-1,0,1,2],0] ; +)<

= { shunting }

([b; *%2,b] 5 4)<

< { composition (75) }
[b, 0]

< { par }
fst b

Continuing with the add1, calculation:

snd b ; col, (fst b ; + 5 +71 5 [x271,0]) ; fst b

= { column rippling (109) }

coly ([0,0] 5 4+ ; +7"; [¥27" 5 b,0]) ; fst b

= { def 136 }

col,, HA ; fst b

114

Under our assumption that n > 0 we have col,, HA I fst b, i.e. the range constraint
fst b can be eliminated. This does not hold if n = 0. The half-adder HA (a simple
representation changer) can be implemented directly by using standard primitives,
as shown in lemma 137. This completes the derivation of the binary addition

program, which is now in the form of an implementation.

In summary, we have made the following transformation:

addl,
= { by definition }

[bing, b] 5 + 5 ([0 5 (42)", bing] ; +)7
= { by calculation }

col,, ([b,0] ; + ; fork ; [div2 ; b,mod 2 ; b))

The addition program that we have derived is a functional program, in that
one could define functional versions of the Ruby combining forms in a language
such as ML, and execute the addition program. What has been gained in deriving
the program within a relational language? Our answer is that while the addition
program is deterministic as a whole, it has a natural specification as a term with

considerable internal non-determinism, which the derivation process eliminates.

The sequence of transformations “converse, sliding reductions, Horner’s rule,
and map through column” as used in the derivation of the binary addition program

is used again in this chapter. We combine the sequence in a single law:

Lemma 144:

fst (map,, R ; lad,x) ; + ; ([(xz)", map, S ; lad, x| ; —i—)_l

col, (fst R 5 + ; ([*z,5] ; +)7).

Omitting the constraints b, the implementation for addi, can be translated
directly into the notation of the Ruby interpreter presented in chapter 5:

115

> let addl n =
let rec con2 = inv pl .. second (icon 2)
and halfadd = ADD .. fork .. ((con2 .. DIV) !! (con2 .. MOD))
in col n halfadd;

Now we compile the program for some size, say n = 2:

> rc (addl 2);

Name Domain Range
ADD <wl,w2> w3

DIV <w3,2> wh

MOD <w3,2> whb

ADD <w6 ,wd> w7

DIV <w7,2> w8

MOD <w7,2> w9
Primitives - 6

Delays - 0

Longest path - 4

Parallelism - 10%

Directions - <<in,in>,in> ~ <out,<out,out>>
Wiring - <<w6,wl>,w2> ~ <w8,<w9,wb>>

Inputs - w6 wl w2
Now we can do some simulation:
> rsim"000; 001; 010; 011; 100; 101; 110; 111"
- (€0,0),0) ~ (0,(0,0))
- (€0,0),1) ~ (0,(0,1))

(€0,1),0) ~ (0,(0,1))
- (0,1, ~ (0,(1,0))

w N =~ O
|

116

- ((1,0),0) ~ (0,(1,0))
((1,0),1) = (0,(1,1))
- ((1,1),0) ~ (0,(1,1))
- (1,1, ~ (1,00,0))

~N O O
|

7.5 Binary addition II

In this section we derive a program that takes two n—bit binary numbers (n > 0)
and a carry—in, and gives a carry—out and an n—bit sum. This program generalises
that of the previous section, being implemented in terms of a column of full-adders
rather than half-adders. Given below is our specification; R converts the binary
numbers to integers and adds them together with the carry-in, S—! separates off

the carry-out, and converts the remaining integer back to binary:

Definition 145: add, = R ; S7!, where
R = [[bin,, bin,] ; +,b] ; +,

S=1[b; (%2)", bin,] ; +.

In deriving an implementation for add,, much of the work in deriving an implemen-

tation for addl, in the previous section can be reused:

add,,
= { def 145 }

[[biny,, bin,] 5 +,b] 5 + ;5 ([b; (x2)™, bin,] ; +)71

— { lemma 132 }
[zip,, 5 csvn, 0] 3 + 5 ([b 5 (¥2)", biny] ; +)71
_ { defs 128,127 }

[zip,, ; map,, ([b,0] ; +) ; lad, 2,8] ; + ; ([b; (¥2)", map,, b ; lad, 2] ; —1—)_1

= { as for add1, (144) }

[2ip,,, b] 5 col,, (fst ([b,0] 5 +) 5 + 3 +71; [¥271,0]) ; fst b

117

= { column rippling (109) }

fst zip,, ; col, ([[b,b] ; +,b] ; + ; +71; 271 5 b,b]) ; fst b

= { lemma 140 }

fst zip,, ; col,, (Ish ; FA) ; fst b

The full-adder FA can be implemented in terms of the half-adder, as shown in
lemma 142. This completes the derivation of the binary addition program, which

is now in the form of an implementation. A picture is given below:

|
FA —

|
FA —
|
FA (—
|
FA —
|

Note that column rippling is used in the derivation above with A = b and S =
fst ([b,0] ; +) ; + ; +71; [*271,b]. Verifying the precondition in this case differs

little from that for add1i,, but is included for completeness:

snd A ;S F fst A
= { assignments }

[,8] 5 4,8 5 + 5 4715 k2708 = [[b,0] 3 +,0] s + 5 +71 5 270 5 D0
We verify this identity as follows:

[[b,8] 5 4,0 ; +; +1; %271 8]

= { addition }

[[6,8] 5 +,0] 5 +;[0,1,2,3] 5 +7* 5 %271, 0]

118

= { converse }
[B:8] 5+, s+ 5 (52,8 5 + 5 [0,1,2,3])
= { shunting }

[b,0] 3 +.b] 3 + 5 ([+2 5 [-1,0,1,2,3,],0] 5 +)7"

= { shunting }

[b,0] 3 +.0] 5 + 5 ([[0,1] 5 *2,8] ; +)7"

= { converse }

[0,0] 5 +,0] 5 + 5 +71 5 #2715 b, 0]
The precondition can also be verified, as shown below, in the form using >:

(snd A; S)> < fst A
= { assignments }

([[6,0] 5 +] 5 + 5 +71 5 [#2750)> < fsth
We verify this approximation as follows:

([[D,8] 5 +] 5 4+ 5 +71 5 [+274,0))>

< { composition (77) }
(([[o, 8] 5 +] 5 +)> 5 +71 5 [#27,0])>

= { addition }

([[071’273]] i [*271,[)])>

= { duality (81) }
(¢2,8] 5 + 5 [0,1,2,3])<
= { shunting }

([+2 5 [-1,0,1,2,3],8] 5 +)<

= { shunting }

119

([b; *2,b] ; +)<

< { composition (75) }
[b, 0]

< { par }
fst b

7.6 Base conversion

In this section we derive a Ruby program that converts an n—digit number repre-
sented in base x to an m—digit number in base y, for n,m,z,y > 0. The circuit
comes from pages 162-165 of the book “Digital systems, with algorithm implemen-

tation” [18]. Here is our specification for the conversion program:
Definition 146: convnamy = eval,x ; (eval,y) "
The derivation of an implementation proceeds as follows:

convnxmy
= { def 146 }

eval, © ; (evaly, y) ™

= { lemma 125 }

map, |z| ; ! ; fst [0] ; rdl, (fst %z ; +) ; (eval,y) ™"

= { shunting }

7t 5 [[0], map,, |z]|] ; rdl, (fst xz ; +) ; (eval, y)_1

= { map through left—reduce (105) }

m b fst [0] 5 rdl, [+, 2] 5 +) 5 (evalny) ™"

Now we use the induction rule for left-reduce (lemma 107), with R = (eval, y) ",
S = fst evaly, y ; [*x, |z]] ; + ; (evalpy)™', and T = [xx,|z|] ; +. We verify the

precondition of the law under these assignments as follows:

120

fst R; S=T; R

{ assignments }

fst ((evalmy)f1 evaly,y) ;5 [xx,|z|] 5 + (evalmy)f1

= [xx,|z|] ; + ; (eval,y)”’

{ lemma 122 }

fst [y | 5 2, 2] 5 + 5 (evalny) ™ = [k, |2|] 5 + 5 (evalny) ™

{ guarantees }

fst |y™| 4 [kz,|z]] 5 + ;5 (eval,y)™

{ best domains (78) }

(kz, 2] 5 + 5 (evabny) D)< < fst |y
We verify this approximation as follows:

([, |2] 5 + 3 (eval,y)™H)<

- { composition (77) }
(e, 2] 5 + 5 (evabny) ™ <)<
- { lemma 122 }
(e, [2] 5 + 5 [y™ D)<
- { shunting }

(*l‘) [[—$+1,... 7ym_1]]7‘x’]) +)<

= { shunting }

([0, ..., y™ =1 divx] ; *z,|z|] ; +)<

< { composition (75) }
[[0,...,y™ —1 div z],|z|]
< { par }

fst [0,...,y" — 1 div 2]

121

< { arithmetic }

fst |y™|
We continue now with the conv calculation:

m s fst [0] 5 rdl, (s, 2] 5 +) 5 (evalny) ™"

= { left-reduce induction (107) }
m s fst [0] ; fst (eval, y) ™ rdl, ([eval,y ; x, |2z]] 5 + ; (eval,y) ™)

= {fst R ; my = fst R< ; mo, lemma 123) }

!5 fst (map,, [0]) ; vdl, ([evalny 5 *a,|2|] ; + 5 (evalny) ")

It remains now to implement the underlined term, which we call C'I. Here is a

picture of C1, in which o represents |y| and e represents |z |:

— 00— o
— O —o—
— % —

— o o—
—o— o—

Looking at this picture, the pattern of external wiring suggests that we should aim
to express C1 as a column. We begin by unfolding the definition of CI: (For the

remainder of the calculation, a+ abbreviates fst xa ; +)
C1

= { def }

levalyy ; *x,|z|] 3 + ; (eval,y)™

= { lemma 124 }
[map,, [y] 5 aply,_y " 5 vdlyy y+ 5o, 2] ;

_ —1
+ 5 (map,, |y| 5 apl,_, " ; rdly_q y+)

122

= { converse }

[map,, |y| ; apl,_, " ; rdlyq y+ ; *z,|z]] ;

+ 5 (vdlyy y+)~" ;5 apl,_, ; map,, |y

The two left-reductions can now be combined to give a column using lemma 113.
This law is used here with R = y+, S = x+ and T' = y+. One might expect to
have to invent a W that satisfied the precondition fst R ; S ; T~! = Ish; snd W ;
rsh ; fst S to lemma 113, but we can in fact obtain such a W by calculation:
fst R ;S ;T!
= { assignments }

fst (fst *y ; + ; *x) ; + ; +1; fst xy ™1

= { distribution (102) }
fst ([xy ; *x,*z] ; i) ;s +71 s fst w7t

= { associativity (101) }

fst [xy ; *x,*xx] ; Ish ; snd + ; + ; +71 0 fst xy !

= { shunting }
Ish ; [y ; *x,fst *xx] ; snd + ; + ; +71; fst xy~!
= { addition (104) }

Ish ; [xy ; xx,fst xx 5 + ; +71 5 rsh; fst (+ 5 =y~ 1)

= { shunting }

Ish ; snd (fst xx ; + ; +71) 5 rsh; fst (fst (xy ; *x) ; + 5 *xy~ 1)

= { multiplication }
Ish ; snd (fst xx ; + ; +71) 5 rsh; fst (fst (xx 5 *xy) ; + 5 xy~ 1)

= { shunting (103) }

Ish ; snd (fst xx 5 + 5 +71) 5 rsh; fst ([xz, xy~ 1] ; +)

= { shunting }

123

Ish ; snd (fst xx ; + ; +71; fst xy™1) ; rsh ; fst (fst xx ; +)

= {W:==...}
Ish ; snd W ; rsh ; fst S

We continue now with the C7 calculation; by first applying a number of shunting

laws we are able to push the maps through the column:

[map,, |y ; aplmfl_1 s rdl, 1yt kx| 2]

+ 5 (vdly,y y+) 7 5 apl,_, ; map,, |y

— { zipping reductions (113) }

[map,, |y| ; apl,_; ", |x|] ; lsh ; snd (col,—y (v+ ; y+71)) ;

rsh ; fst x+ ; apl,_, ; map,, |y|

m

= { shunting }

(aply ™ 3 [yl mapy,_ [yll.|2[] ; Ish 5 snd (ol (w+ 5 y+~1)) ;

rsh i [x+ ; |y|,map,,_; |y|] 5 apl,_,

= { shunting }
fst (apl, ") ; Ish ; [y, map,,_y [y],[z]] ; coly—1 (z+ ; y+ D] ;
rshs [z+ 5 [y|, map,,_y |yl] 5 apl,

= { shunting }
fst (apl,, ') ; Ish ; snd ([map,, ; |y|,|2]] ; colp_y (z+ ; y+~ 1)) ;
rsh; [fst |y[; + 5 [y[,map,, , |y[] ; apl,

= { shunting }

fst (aplmfl_l) ; Ish) snd ([mapmfl |y|7 |ZE|] ; cOlyy—1 (ZL"" ; y'i‘il) ;

snd (map,,_y [y])) 5 rsh 5 fst (st [y | 5 o+ 5 [y]) 5 aply,_y
= { map through column (106) }

fst (apl, ') ; Ish ; snd (snd |2]| ; col,_1 (fst |y| ; z+ ; y+' ; snd |y])) ;

124

rsh ; fst (fst |y | 5 z+ 5 |y|) 5 apl,_4

Observe that the component of the column has the form of a representation changer;
its abstract domain is however still a large type, namely the identity relation idz on
the integers. We make it a small type, in fact |zy|, by pushing the type constraint
(snd) on the domain of the column through to the argument program, using
column rippling (lemma 109). This law is used here with A = |z|and S = fst |y]|;

1

x+ ; y+ ' ; snd |y|. Let us verify the precondition:

(snd A ; S)> < fst A
= { assignments }

(lyl, =] ; z+; y+' 5 snd |y])> < fst |z]

We verify this approximation as follows:

1

Iyl] ; @+ ; y+~' 5 snd [y])>

< { composition (77) }

1

(vl [=]] 5 x+)>; y+~' ; snd |y])>

= { domains }

(|yz| ; y+1

= { def }

; snd |y])>

(lyz|; +71 5 Doy~ yll)>

= { shunting }

sy + Ly = 1] 5wy |y l])>

= { shunting }

G ETa N FA N

< { composition (75) }
=], [yl]

125

< { par }

fst |z |
We continue again with the C'7 calculation:

fst (apl,, ') ; Ish ; snd (snd |2]| ; col,_y (fst |y| ; o+ ; y+* ; snd |y])) ;

rsh s fst (fst |y[5 2+ 5 |y]) 5 apl,_y
= { column rippling (109) }

fist (aply, ") 5 Ish 3 snd (coluor ([Jy, [2] 5 @+ 5 y+70 5 (el lyl]) 5 fst |2]) ;

rsh 5 fst (fst |y| 5 o+ 5 |y]) 5 apl,
= { shunting }

fst (aply, ") 5 Ish 3 snd (colyy ([[y, |2] s 2+ 5 =1 5 (2] lyl])

rsho; fst ([ly], =] 5 z+ 5 |y]) 5 apl,_,

We call the underlined terms C2 and C3 respectively. The conv program now has

a grid-like layout, as shown below:

o— €2 — €2 + C2 ——
| | | i
o—{ 02 H 2 H 2 ——
| | |
o— C2 —/ 2 [/ 02 ——
| | | i
o—{ 03 H 03 H 3 ——

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The program (3 is already in the form of an implementation. An implementation
for C2is obtained simply by applying lemma 138. This completes the derivation of

the base conversion program, which is now in the form of an implementation.

In summary, we have made the following transformation:

126

convn xrmy
= { by definition }

eval, © ; (evaly, y) ™'
= { by calculation }

w1 fst (map,, [0]) ; rdl, C1

where

C1 = fst (apl, ,~") ; Ish ; snd (col,,_; C2) ; rsh ; fst C3 ; apl,_,

C2 = [yl ; *a,|x|] 5 +; fork ; [divy ; |x],mod y ; |y]]
C3 = llyl s #z, |zl ; + 5 [y

To get a feel for the layout of the conv implementation, mentally slot into the grid

above the pictures given below for the implementations C2 and C3.

,,,,,,,,,,,,,,,

Omitting the constraints |x| and |y|, the base conversion program above can
be translated directly into notation of the Ruby interpreter presented in chapter 5:

let convnxmy =
let rec celll

first (inv (apl (m-1))) .. 1lsh
. second (col (m-1) cell2)
. rsh .. first cell3 .. apl (m-1)

and cell2 = first (n2 x .. MULT) .. ADD
. fork .. ((n2y .. DIV) !! (n2 y .. MOD))
and celld = first (n2 x .. MULT) .. ADD
and n2 a = inv pl .. second (icon a)
in inv p2 .. first (rmap m (icon 0)) .. rdl n celll;

127

Suppose now that we want to convert an 8-digit binary number to a 5—digit
ternary number. First we compile the conversion program at this particular in-
stance: rc (conv 8 2 5 3). Now we can do some simulation. For example, rsim
"0 000010 1"produces the output (0,0,0,1,2). The input in this example
is the binary representation of the number 5, the output is the ternary represen-
tation of 5. What if the n—digit base—x input number is not representible as an
m~—digit base—y number? Omitting the constraints |x| and |y| from the base con-
version program (as in the interpreter version), every output digit « except the most

significant digit is guaranteed to be within the expected range 0 < x < y.

128

Chapter 8

Summary and Future Work

This thesis is concerned with deriving programs using the relational language Ruby.
Our contribution to Ruby divides into two parts. Firstly, we defined what it means
for a Ruby program to be an implementation, and built an interpreter for such
programs. Secondly, we showed that the operators < and > that give the best left
and right types for a relation can be used to verify the precondition of induction
laws applied during a derivation. In this chapter we summarise our achievements

in more detail, and suggest some directions for future work.

8.1 Summary

In [39] Jones and Sheeran talked briefly about the difference between an implemen-
tation and a specification in Ruby. In chapter 4 we made this idea precise, via the
notion of a causal relation, and the network denoted by a Ruby program. Causal
relations generalise functional relations; a relation is causal if it is functional in
some structural way, but not necessarily from domain to range. We presented a
categorical definition for causality (based upon the representation of relations as
subobjects of a binary product), and showed that causal relations are closed under
converse and par, but not under composition. We introduced the idea of a set R? of
directions for a relational program R. Directions tell us which parts of a program

can be inputs, and which can be outputs. The d operator behaves well for converse

129

and par, but not for composition. We defined a causal Ruby program as being an
implementation if one can label each wire in the network denoted by the program
with a direction in or out, such that a few simple conditions are satisfied. The idea
is that such a labelled network is like a data-flow network (and can be executed in a
similar way), except that the primitives are causal relations rather than functions.
Since a causal relation can be functional in more than one way, there may be more

than one way in which a network can be so labelled.

The definition of ‘implementation’ in chapter 4 is general, but not completely
formal. In chapter 5 we gave a formal definition for a natural sub-class of the
implementations, and presented an interpreter for such Ruby programs. The inter-
preter is based upon two key ideas. The first is the translation of a Ruby program
to the corresponding network of primitive relations. Executing such a network is
a simple process; trying to execute the original Ruby program directly would be
complicated by the possibility that data can flow both leftwards and rightwards
over composition. The other key idea in the interpreter is the use of Lazy ML as
a meta-language for building Ruby programs. This avoids the need for a parser,
and means that the full power of Lazy ML is available for defining new combining
forms. Of the combining forms of Ruby, only composition, converse, and product
are built-in to the interpreter. All the other combining forms, including all generic

combining forms, are defined in terms of these three operators.

Fundamental to the use of type information in deriving programs is the idea of
having types as special kinds of programs. In chapter 6 we introduced the idea of
partial equivalence relations (pers) as types in Ruby. Types are used in two different
ways in Ruby: as constraints within programs (for example, if b = {(0,0),(1,1)}
then composing the type [b,b] on the left of + ‘constrains’ it to working only with
bits); and as abstractions of programs (for example, if A is a left or right domain of
R, then A encodes something about the internal structure of R, and is in this sense
an ‘abstraction’ of R.) The smallest left and right domains under the ordering <1 on
pers are given by domain operators < and >. Pers can be viewed as those relations

that can be expressed as the union of disjoint full relations. Generalising from full

130

relations & X S to products S x T gives rise to the notion of a difunctional relation.
Equivalently, the difunctionals are the ‘invertible’ relations, the ‘per—functional’
relations, or the relations that can be expressed as the composition of a functional
relation and the converse of a functional relation. All the programs that we derive

in chapter 7 are difunctional programs specified as such a composition.

In chapter 7 we introduced the term representation changer for a program that
converts an abstract value from one concrete representation to another concrete
representation. A great many algorithms are examples of representation changers.
It is natural to specify such programs as a composition f ; ¢~', where f is a
functional relation that converts from the first concrete type to the abstract type,
and ¢ is a functional relation that converts from the second concrete type to the
abstract type. Being a little more general, we defined a representation changer as
a difunctional program that can be specified in the form R ; S~!, where R and S
are difunctional relations. The composition of two such difunctionals is not always
difunctional; in chapter 6 we gave a necessary and sufficient condition (involving
types) for closure under composition, and some sufficient conditions that one might

use in practice to check that the composition of two difunctionals is difunctional.

In chapter 7 we use Ruby to derive implementations for a number of represen-
tation changers. Refinement of the specification R ; S~! proceeds by sliding parts
of R and S through one another, aiming towards a new program with components
that are representation changers with smaller abstract types. In this sense, think-
ing about types guides our derivations. The process is repeated until the remaining
representation changers can be implemented directly using a few standard primi-
tives. It is encouraging to find that the same patterns of transformations are used
again and again when implementing representation changers. The preconditions
to ‘induction’ laws that are applied during derivation of such programs typically
work out to be assertions of the form A ; R = R. In the past, such assertions have
been verified by informal arguments or by using predicate calculus, rather than by
applying algebraic laws from Ruby. In chapter 7 we verify such assertions without

stepping outside Ruby, by first expressing them in the equivalent form R< < A,

131

which can then be verified using algebraic properties of the < operator.

On a less technical note, in this thesis I decided to underline the parts of a
formula to which laws are being applied in moving from one step to the next in a
calculation. This has proved to be of great benefit, guiding the eye to the parts
being changed, and helping in pattern matching against the laws, particularly when
the formula properly matches the law only after some simple re-arranging. As a

byproduct, many of the hints between steps become simpler too.

8.2 Future work

When deriving Ruby programs, computer—based tools could be useful. An example
of such a tool is our interpreter for implementations. Other tools that one could
imagine include a system for checking that the steps in a derivation are valid, or
a system for helping the designer during the derivation process, pattern matching
against laws, applying transformations, and keeping track of assumptions and pre-
conditions to be verified. Such tools are practical only when derivations are fully
formal; our use of the domain operators to avoid stepping outside Ruby to verify

assertions about types is an important advance in this respect.

Difunctional relations and causal relations both generalise the notion of a func-
tional relation: difunctionals can be expressed as the composition of a functional
relation and the converse of a functional relation; causal relations must be func-
tional in some structural way, but are not restricted to having inputs in the domain
and outputs in the range. Perhaps the two classes of relations can be combined in
some useful way? A promising approach might be to define a relation as being di-
causal if it is difunctional in some structural way, rather than just being functional
in some structural way. Extending the Ruby interpreter to work with dicausal re-
lations would allow execution of many programs before they were in the form of an
implementation. By carefully exploiting the regular way in which difunctional rela-
tions are non-deterministic (difunctionals can be expressed as the union of disjoint

products of sets), such an interpreter could still be efficient.

132

While many program derivations have been made using Ruby, no refinement
ordering on Ruby terms has ever been defined. The idea behind such an ordering
is to have a measure on terms that is decreased as a specification is transformed
to an executable term. There is a standard refinement ordering < on relational
terms [31], defined by R < S iff R C S and dom(R) = dom(S). This ordering
expresses that we can eliminate non-determinism, but must preserve the domain
of the original term. Although it has never been made precise it is clear that the
notion of refinement in Ruby is different, being more concerned with the denotation
of a term as a network of relations rather than just as a single relation. We hope
that the notion of refinement for Petri nets introduced by Brown and Gurr [11] can

be adapted to define a notion of refinement for Ruby terms.

Relations of type A <> B are in one-to-one correspondence with functions of
type A — PB. Why then not just stay within a functional language, for example
Squiggol, and admit sets as a type? Our answer is that the algebra of relations
is much cleaner than the algebra of set—valued functions; compare our relational
calculations with the functional calculations in [19]. Generalising from functions
to relations brings many advantages. Are there yet more general calculi with even
more advantages? In [20] de Moor observes that functions PA — PB (predicate
transformers [23]) generalise relations in the same way that relations generalise
functions. There is a wealth of work in the use of predicate transformers in deriving

programs. It would be interesting to compare with the use of binary relations.

There is much categorical literature about binary relations. Indeed, relations are
a central topic of Freyd and Scedrov’s recent book [28]. T am hopeful that categorical
results will suggest new developments in calculational programming; just recently
in fact, Bird and de Moor [20, 9] have developed a calculational paradigm based in a
category of relations. Conversely, experience with the use of relations in calculating
programs can lead to new developments in the categorical treatment of relations;

de Moor’s thesis [20] contains a number of new categorical results.

133

Bibliography

[1] Chritiene Aarts, Roland Backhouse, Paul Hoogendijk, Ed Voermans, and Jaap
van der Woude. A relational theory of datatypes. Available on the World-

Wide-Web from http://www.win.tue.nl/win/cs/wp/papers/papers.html,
1992.

2] R.J.R. Back. Correctness preserving program refinements: Proof theory and

applications. Tract 131, Mathematisch Centrum, Amsterdam, 1980.

[3] Roland Backhouse. Sums and differentials. The Squiggolist, 2(2), November
1991.

[4] Roland Backhouse. Demonic operators and monotype factors. Eindhoven Uni-

versity of Technology, February 1992.

[5] John Backus. Can programming be liberated from the Von Neumann style?

A functional style and its algebra of programs. CACM, 9, August 1978.

[6] Michael Barr. Relational algebras. In Reports of the Midwest Category Seminar
1V, volume 137 of Lecture Notes in Mathematics. Springer-Verlag, 1970.

[7] Rudolf Berghammer. Relational specification of data types and programs.

Report 9109, Universitat der Bundeswehr Munchen, September 1991.

[8] Richard Bird. Constructive Functional Programming. In Proc. Marktoberdorf
International Summer School on Constructive Methods in Computer Science.

Springer-Verlag, 1989.

134

[9]

[13]

[14]

[15]

18]

[19]

Richard Bird and Oege de Moor. From dynamic programming to greedy algo-
rithms. In Proc. STOP Summer School on Constructive Algorithmics, Ame-

land, The Netherlands, September 1992.

Richard Bird and Philip Wadler. An Introduction to Functional Programming.
Prentice Hall, 1988.

Carolyn Brown and Doug Gurr. A categorical linear framework for Petri nets.

In Proceedings of the IEEE Symposium on Logic in Computer Science, 1990.

Carolyn Brown and Doug Gurr. Relations and non-commutative linear logic.

Technical Report DAIMI PB — 372, Aarhus University, November 1991.

Carolyn Brown and Doug Gurr. A representation theorem for quantales. Jour-

nal of Pure and Applied Algebra, 1991. To appear.

Rod Burstall and John Darlington. A transformational system for developing

recursive programs. Journal of the ACM, 24:44-67, 1977.

A. Carboni, G. M. Kelly, and R. J. Wood. A 2-categorical approach to geo-
metric morphisms, 1. Cahiers de Topologie et Geometrie Differentielle Cate-

goriques, 32(1):47-95, 1991.

Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategories of spans

and relations. Journal of Pure and Applied Algebra, 33:259-267, 1984.

D. M. Cattrall. The Design and Implementation of a Relational Programming
System. PhD thesis, University of York, 1992.

M. Davio, J.-P. Deschamps, and A. Thayse. Digital Systems, with Algorithm
Implementation. John Wiley & Sons, 1983.

Oege de Moor. Indeterminacy in optimization problems. In Proc. Summer
School on Constructive Algorithmics, Ameland, The Netherlands, September
1989.

135

[20]

[21]

22]

23]

[24]

[25]

[26]

Oege de Moor. Categories, Relations and Dynamic Programming. PhD thesis,

Oxford University, April 1992. Available as Research Report PRG-98.

J. Desharnais. Abstract Relational Semantics. PhD thesis, McGill University,
Montreal, 1989.

Edsger W. Dijkstra. A relational summary. Report EWD1047, University of
Texas at Austin, November 1990.

Edsger W. Dijkstra and Caroll Scholten. Predicate Calculus and Program Se-
mantics. Springer-Verlag, 1990.

E.W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison-Wesley,
1988.

Wim Feijen and Netty van Gasteren. An introduction into the relational cal-

culus. Report AvG91/WF140, Eindhoven University of Technology, 1991.

Maarten Fokkinga. A gentle introduction to category theory: The calculational
approach. In Proc. STOP Summer School on Constructive Algorithmics, Ame-

land, The Netherlands, September 1992.

Maarten Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, March 1992.

Peter Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1990.

Jeremy Gibbons. Algebras for Tree Algorithms. PhD thesis, Oxford University,
September 1991.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott.
A Compendium of Continuous Lattices. Springer-Verlag, 1980.

C.A.R. Hoare and Jifeng He. The weakest prespecification. Information Pro-
cessing Letters, 24:127-132, 1987.

136

32]

[33]

[34]

[38]

[39]

[40]

John Hughes and John Launchbury. Reversing abstract interpretations. In

Proc. European Symposium on Programming, Rennes, 1992.

Graham Hutton. Functional Programming with Relations. In Proceedings
of the 1990 Glasgow Workshop on Functional Programming, Springer-Verlag
Series of Workshops in Computing, Ullapool, Scotland, 1991.

Graham Hutton. A Relational Derivation of a Functional Program. In Lecture
Notes of the STOP Summer School on Constructive Algorithmics, Ameland,
The Netherlands, September 1992.

Graham Hutton and Ed Voermans. A Calculational Theory of Pers as Types.
Research Report 1992/R1, University of Glasgow, January 1992.

A. Jaoua, A. Mili, N. Boudriga, and J. L. Durieux. Regularity of relations: A
measure of uniformity. Theoretical Computer Science, 79:323-339, 1991.

Geraint Jones. Designing circuits by calculation. Technical Report PRG-TR-
10-90, Oxford University, 1990.

Geraint Jones. A certain loss of identity. Technical Report PRG-TR-14-92,
Oxford University, 1992.

Geraint Jones and Mary Sheeran. Relations + higher-order functions = hard-
ware descriptions. In Proc. IEEE Comp Euro 87: VLSI and Computers, May
1987.

Geraint Jones and Mary Sheeran. Timeless truths about sequential circuits. In
Tewksbury et al., editors, Concurrent Computations: Algorithms, Architectures

and Technology, New York, 1988. Plenum Press.

Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Staunstrup, editor,
Formal Methods for VLSI Design. Elsevier Science Publications, Amsterdam,
1990.

137

[42]

[43]

[44]

[45]

[46]

[47]

[51]

Geraint Jones and Mary Sheeran. Relations and refinement in circuit design.
In Morgan, editor, Proc. BCS FACS Workshop on Refinement, Workshops in
Computing. Springer-Verlag, 1991.

Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement
in Ruby. In Proc. Second International Conference on Mathematics of Program
Construction, Lecture Notes in Computer Science. Springer-Verlag, 1992. To

appear.

G. Kahn. The Semantics of a Simple Language for Parallel Processing. Num-
ber 74 in Information Processing Letters. North-Holland, 1977.

Wayne Luk, Geraint Jones, and Mary Sheeran. Computer-based tools for
regular array design. In McCanny, McWhirter, and Schwartzlander, editors,

Systolic Array Processors. Prentice Hall, 1989.

Bruce MacLennan. Relational programming. Technical Report NPS52-83-012,
Naval postgraduate School, Monterey, CA 93943, September 1983.

Grant Malcolm. Algebraic Data Types and Program Transformation. PhD
thesis, Groningen University, 1990.

Lambert Meertens. Algorithmics: Towards Programming as a Mathematical
Activity. In Proc. CWI Symposium, Centre for Mathematics and Computer

Science, Amsterdam, November 1983.
Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen, 1992.

A.C. Melton, D.A. Schmidt, and G.E. Strecker. Galois connections and com-
puter science applications. In Pitt, Poigné, and Rydeheard, editors, Category
Theory and Computer Science, number 283 in LNCS. Springer-Verlag, 1987.

Carroll Morgan. The specification statement. ACM TOPLAS, 10:403-419,
July 1988.

138

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[61]

Joe Morris. A theoretical basis for stepwise refinement and the programming

calculus. Science of Computer Programming, 9:287-306, 1987.

Simon Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.

J. Riguet. Relations binaires, fermetures, correspondances de galois. Bulletin

de la Societé mathématique de France, 76, 1948.

K. Rosenthall. Quantales and their Applications, volume 234 of Pitman Re-
search Notes in Math. Longman, 1990.

G. Schmidt and T. Strohlein. Relations and Graphs. Springer-Verlag, 1992.

Mary Sheeran. uFP — an Algebraic VLSI Design Language. PhD thesis, Uni-
versity of Oxford, 1983. Available as Research Report PRG-39.

Mary Sheeran. Describing and reasoning about circuits using relations. In
Tucker et al., editors, Proc. Workshop in Theoretical Aspects of VLSI, Leeds,
1986.

Mary Sheeran. Retiming and slowdown in Ruby. In Milne, editor, The Fusion
of Hardware Design and Verification. North-Holland, 1988.

Mary Sheeran. Describing butterfly networks in Ruby. In Proc. Glasgow Work-
shop on Functional Programming, Workshops in Computing, Fraserburgh,

Scotland, 1989. Springer-Verlag.

Mary Sheeran. A note on abstraction in Ruby. In Proc. Glasgow Workshop on
Functional Programming, Workshops in Computing, Portree, Scotland, 1991.
Springer-Verlag.

Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73—
89, September 1941.

Alfred Tarski. A lattice-theoretic fixed point theorem and its applications.
Pacific Journal of Mathematics, pages 285-309, 1955.

139

[64]

[65]

[66]

[68]

[69]

[70]

[71]

Jaap van der Woude. Preliminaries on lattice theory. Report JCSP16, CWI,
Amsterdam, November 1988.

Jaap van der Woude. Pers per se. CWI, Amsterdam, November 1991.

A.J.M. van Gasteren. On the Shape of Mathematical Arguments. Number 445
in LNCS. Springer-Verlag, Berlin, 1990.

Paulo Veloso and Armando Haeberer. A finitely relational algebra for clas-
sical first-order logic. Departamento de Informatica, Pontificia Universidade

Catoélica do Rio de Janeiro, 1991.

Paulo Veloso and Armando Haeberer. Partial relations for program derivation.
In Proc. IFIP WG-2.1 Working Conference on Constructing Programs from
Specifications, Pacific Grove, USA, May 1991.

Ed Voermans. The equivalence domain. In Proc. EURICS Workshop on Calcu-
lational Theories of Program Structure, Ameland, The Netherlands, September
1991.

Ed Voermans. A Relational Theory of Datatypes. PhD thesis, Eindhoven
University of Technology, 1993. In preparation.

Ed Voermans and Jaap van der Woude. A relational theory of datatypes: The

per version. Eindhoven University of Technology, January 1991.

140

