
Mathematics of Recursive Program Construction

Henk Doornbos� Roland Backhouseyz

July 24, 2001

Abstract

A discipline for the design of recursive programs is presented. The core concept

of the discipline is a new induction principle. The principle is based on a property of

relations, called reductivity, that generalises the property of admitting induction to

one relative to a given datatype. The principle is used to characterise a broad class

of recursive equations that have a unique solution and is also related to standard

techniques for proving termination of programs. Methods based on the structure of

the given datatype for constructing reductive relations are discussed.

1 Introduction

The central issue of computing science is the development of practical programming

methodologies. Characteristic of a programming methodology is that it involves a dis-

cipline designed to maximise con�dence in the reliability of the end product. The

discipline constrains the construction methods to those that are demonstrably simple

and easy to use, whilst still allowing suÆcient
exibility that the creative process of

program construction is not impeded. For example, an insight that played an important

role in the development of a methodology for sequential programs is that it is possible

to restrict, without loss of generality, the attention to the class of while programs only.

It is not necessary to consider and, indeed, it is not desirable to consider arbitrary goto

programs.

In the same spirit, in the methodology for functional programs, arbitrary recursion

(which has been called the goto of functional programming) has been replaced by struc-

tural recursion. However, the problem is that this is a real restriction: not all programs

can be expressed using this type of recursion.
�EverMind, Westerkade 15/4, 9718 AS Groningen, The Netherlands
ySchool of Computer Science and Information Technology, University of Nottingham, Nottingham NG8

1BB, England
zMost of the work reported in this paper was done when the authors were members of the Department

of Mathematics and Computing Science, Eindhoven University of Technology, The Netherlands.

1

In this paper we present a methodology that is an integration and extension of the

two methodologies. The class of programs that can be developed using the integrated

methodology is suÆciently restricted that it is possible to develop a practical design

discipline, but suÆciently unrestricted that it is still general enough to express all algo-

rithms in an uncluttered and natural style. In particular, we do not restrict our attention

to structural recursion. On the other hand, arbitrary recursion is too general because

allowing it would make it hard to design a methodology, in the same way as it is hard

to design a methodology for the construction of programs with goto statements.

The programs in the class on which our methodology is based are called hylomor-

phisms. The fact that many recursively de�ned functional programs are hylomorphisms

was identi�ed by Fokkinga, Meijer and Paterson [22]. Unlike [22], however, the cur-

rent paper is not restricted to the functional programming paradigm. Indeed, a central

contribution of the current paper is to combine ideas from sequential programming and

functional programming using relation algebra as the vehicle. From sequential program-

ming we borrow the use of weakest preconditions and well-founded relations, and from

functional programming we borrow the use of datatypes and (initial) algebras. These are

combined in the notion of an \ F -reductive relation", which is basically the generalisation

of the notion of well-founded to well-founded-in-the-context-of-datatype- F .

The methodology we propose has a very solid foundation in category theory and

allegory theory. (Allegory theory extends category theory in the sense that if category

theory is viewed as the theory of functions between sets then allegory theory is the the-

ory of relations on sets.) To gain a full understanding the reader needs to have a good

grasp of how the categorical notions of \functor", \natural transformation" and \initial

algebra" relate to type constructors, polymorphic functions and inductive datatypes,

respectively, in functional programming, and how the allegorical notion of \division"

relates to weakest preconditions in sequential programming. These are not diÆcult con-

cepts but we appreciate that our intended audience |the practising programmer rather

than the theoretician| will rarely have knowledge of all these topics. To increase the ac-

cessibility of the paper we have therefore included short summaries of the relevant theory,

but interspersed through the text. For more background in line with the presentation

here see [6, 5].

We begin by explaining the basics of relation algebra. Relation algebra is a point-

free formulation of the algebra of binary relations which is distinct from the more usual

pointwise formulations in the predicate calculus. This is followed in section 3 by a dis-

cussion of how the paradigm of loop construction via invariant properties is expressed in

relation algebra. The domain and division operators are the main theoretical tools intro-

duced in these two sections. (The two types of \factor" of a relation are better known in

computing science under the names weakest precondition and weakest prespeci�cation.)

Subsequently we focus on the construction of recursive programs. Via several well-

2

known examples, beginning with programs de�ned by structural recursion and continu-

ing on through programs de�ned by primitive recursion to more complicated recursion

schemes, we argue the case for developing a discipline of recursive programming restricted

to the class of so-called \hylo" programs. In other words, we provide empirical evidence

for the claim that the class of hylo programs is suÆciently general to be both practical

and useful. Section 6.3, on the other hand, provides theoretical support for the usefulness

of hylo programs. In this section we present the \hylo theorem". This theorem states

that a hylo program can be viewed as a two-step process. The �rst step creates a data

structure (for example a tree or a list) which is then broken down in the second step.

This intermediate structure is sometimes called a \virtual" data structure because the

usual implementation of a hylo program does not explicitly build up the data structure.

Just like the stream of values in a Unix pipe, the construction and destruction of the

intermediate data structure occur simultaneously. This use of virtual data structures is

the basis of the programming paradigm proposed in section 6.4.

Central to the design of loops in sequential programming is making progress to the

termination condition. Making progress is achieved by ensuring that the loop body is

a well-founded relation on its input and output values. Making progress is, of course,

also central to the design of recursive programs. In section 7 we propose the notion of

\ F -reductivity" as the appropriate generalisation of well-foundedness in the context of

a programming design methodology based on the construction of hylo programs. The

study of F -reductivity is the primary innovative contribution of this paper. We provide

both theoretical and empirical support for the importance of this notion and, in section

8, we present a calculus of F -reductivity which is applied to establish termination of a

large collection of recursive programs.

Many of the results we present are \generic" in a type constuctor F . That is, the

results are valid independently of the value chosen for F (be it List , Maybe or whatever).

To provide further support for the importance of a generic, relational theory of datatypes,

section 10 considers a quite di�erent application of the reductivity calculus developed in

section 8. The application concerns the properties of the \occurs-properly-in" relation

in a generic uni�cation algorithm. Here we show how the relation is de�ned generically

and how it is then proved to be well-founded. The remarkable aspect of the proof, apart

from its simplicity, is that it does not involve any appeal to the properties of natural

numbers whatsoever. The core of the proof is the theorem that the converse of an initial

F -algebra is F -reductive.

3

2 Relation algebra

For us, a (non-deterministic) program is an input-output relation. The convention we

use when de�ning relations is that the input is on the right and the output on the

left. The convention is thus that used in functional programming and not that used in

sequential programming. For example, the relation < on numbers is a program that

maps a number into one smaller than itself. The function succ is the relation between

natural numbers such that mhsuccin equivales m=n+1 . It is thus the program that

maps a natural number into its successor.

A relation is a set of ordered pairs. In discussions of the theory of imperative program-

ming the \state space" from which the elements of each pair are drawn often remains

anonymous. This re
ects the fact that type structure is often not a signi�cant parameter

in the construction of imperative programs, in contrast to functional programs where it

is pervasive. Our goal here is to combine the functional and imperative programming

paradigms. For this reason, we adopt a typed algebra of relations (formally an \allegory"

[13]). A relation is thus a triple consisting of a pair of types I and J , say, and a subset

of the cartesian product I�J . We write R :: I J (read R has type I from J), the

left-pointing arrow indicating that we view J as the set of all possible inputs and I as

the set of possible outputs. I is called the target and J the source of the relation R ,

and I J (read I from J) is called its type.

We write xhRiy if the pair (x; y) is an element of relation R . We use a raised in�x dot

to denote relational composition. Thus R �S denotes the composition of relations R and

S (the relation de�ned by xhR �Siz equivales 9(y:: xhRiy^yhSiz)). The composition

R �S is only de�ned when the source of R equals the target of S . Moreover, the target

of R �S is the target of R , and the source of R �S is the source of S . Thus, R �S :: I K

if R :: I J and S :: J K: The converse of relation R is denoted by R[. Thus, xhR[iy

equivales yhRix . The type rule is that R[:: I J equivales R :: J I .

Relations of the same type are ordered by set inclusion denoted in the conventional

way by the in�x � operator. We assume that the relations of a given type I J form

a complete lattice under this ordering. The smallest relation of type I J is the empty

relation, denoted here by ??I J , and the largest relation of type I J is the universal

relation, which we denote by >>I J . (We use this notation for the empty and universal

relations because the conventional notation > for the universal relation is easily confused

with T , a sans serif letter T, particularly in hand-written documents.) The union and

intersection of two relations R and S of the same type are denoted by R[S and R\S ,

respectively.

In previous publications on this topic [9, 10] we have assumed an untyped framework.

The use of a typed framework makes some proofs easier. This is because the type

restrictions sometimes strengthen the premises of a lemma or theorem. It can also be

4

disadvantageous | mainly because the type restrictions are implicit and it is diÆcult

to see when and where they are really necessary. One nuisance is that each use of the

empty and/or universal relation should be properly typed whereas in most cases the type

information is not relevant (although in a few cases it is!). In line with other authors we

shall therefore often omit the type information, leaving the reader to infer which type is

intended. This applies also to natural transformations | see section 4.1.

For each set I there is an identity relation on I which we denote by idI . Thus

idI :: I I . Relations of type I I contained in the identity relation of that type will be

called core
exives . (The terminology partial identity relation and monotype is also

used.) By convention, we use R , S , T to denote arbitrary relations and A , B and C

to denote core
exives. A core
exive A thus has the property that if xhAiy then x=y .

Clearly, the core
exives of type I I are in one to one correspondence with the subsets

of I ; we shall exploit this correspondence by identifying subsets of a set I with the

core
exives of type I I . Speci�cally, by an abuse of notation, we write x2A for xhAix

(on condition that A is a core
exive). We also identify core
exives with predicates,

particularly when discussing induction principles (which are traditionally formulated in

terms of predicates rather than sets). So we shall say \ x has property A " meaning

formally that xhAix . Continuing this abuse of notation, we use �A to denote the

core
exive having the same type as A and containing just those elements not in A .

Thus, xh�Aiy equivales the conjunction of x2I (where A has type I I) and x=y

and not xhAix . We also sometimes write I where idI is meant. (This �ts in with the

convention in category theory of giving the same name to that part of a functor which

maps objects to objects and that part which maps arrows to arrows. See section 4.1.) A

�nal, important remark about core
exives is that their composition coincides with their

intersection. That is, for core
exives A and B , A �B=A\B .

We use an in�x dot to denote function application. Thus f:x denotes application

of function f to argument x . Functions are particular sorts of relations; a relation R

is functional if yhRix and zhRix together imply that y= z . If this is the case we

write R:x for the unique y such that yhRix . Note that functionality of relation R is

equivalent to the property R �R[� idI where I is the target of R . We normally use f ,

g and h to denote functional relations.

Dual to the notion of functionality of a relation is the notion of injectivity. A relation

R with source J is injective if R[�R � idJ . Which of the properties R �R[� idI or

R[�R � idJ one calls \functional" and which \injective" is a matter of interpretation.

The choice here �ts in with the convention that input is on the right and output on

the left. More importantly, it �ts with the convention of writing f:x rather than say xf

(that is the function to the left of its argument). A sensible consequence is that type

arrows point from right to left.

5

3 Imperative Programming

The discipline of imperative programming is embodied in so-called \Hoare logic" which

is a body of inference rules, one for each statement type in the language. In this section

we formulate the methodology of sequential program construction in terms of relation

algebra, focusing on the design of loop structures. Two sets of operators are introduced,

the domain operators and the division operators. The domain operators subsume the role

of assertions in Hoare logic, and the division operators subsume weakest preconditions

and prespeci�cations.

Given a (non-trivial) speci�cation, X , the key to constructing a loop implementing

X is the invention of an invariant, Inv . The invariant is chosen in such a way that it

satis�es three properties. First, the invariant can be \established" by some initialisation

Init . Second, the combination of the invariant and some termination Term satis�es the

speci�cation X . Third, the invariant is \maintained by" some loop body Body whilst

making progress towards termination.

These informal requirements can be made precise in a very concise way in relation

algebra. The three components Inv , Init and Term are all binary relations on the

state space, just like the speci�cation X . They are so-called input-output relations.

\Establishing" the invariant is the requirement that

Init � Inv :

In words, any value w 0 related to input value w by Init is also related by the invariant

relation to w:

That the combination of the termination and invariant satis�es the speci�cation X

is the requirement that

Term �Inv � X :

This is the requirement that for all output values w 0 and input values w ,

8(v: w 0hTermiv ^ vhInviw: w 0hXiw)

(Here we see the convention of placing input values on the right and output values on

the left.)

Finally, that the invariant is maintained by the loop body is expressed by

Body � Inv � Inv

Pointwise this is

8(w 0; v;w: w 0hBodyiv ^ vhInviw: w 0hInviw) :

6

So Body maps values v related by the invariant Inv to w to values w 0 that are also

related by Inv to w .

Together these three properties guarantee that

Term �Body� � Init � X :

That progress is made is the requirement that the relation Body be well-founded. (This

we will return to later.)

As an example, consider the problem of reversing a list. We assume that lists are

built from the empty list, nil , by adding elements to the head of the list via the cons

operation (which we denote by \ : " as in Haskell when used in in�x form). Conversely,

the function head returns the head (i.e. �rst) element of a non-empty list, and tail

returns the remainder of the list. Thus if x is an element and xs is a list, x :xs is the

list obtained by adding x at the head of xs . Moreover, head:(x :xs) is x and tail:(x :xs)

is xs .

A standard iterative technique for reversing a list xs uses an additional list ys to

accumulate the reversed list. The state space of the program is thus List:I� List:I for

some element type I . The speci�cation, invariant, initialisation and termination are

thus binary relations on this set. The speci�cation, X , is simply

ys 0 = reverse:xs :

Here priming is a commonly used convention for abbreviating the de�nition of a relation

between the pair of output values, xs 0 and ys 0 , and the pair of input values, xs and

ys . More formally, X is the relation

fxs 0; ys 0; xs; ys: ys 0 = reverse:xs: ((xs 0;ys 0) ; (xs;ys))g :

The convention is that the de�nition

fxs 0; ys 0; xs; ys: p:(xs 0;ys 0;xs;ys): ((xs 0;ys 0) ; (xs;ys))g

is abbreviated to

p:(xs 0;ys 0;xs;ys) ;

the primes indicating the correspondence between input and output variables.

Initially ys is empty and the program terminates when xs is empty. Thus (using

the convention explained above) the initialisation Init is the relation

xs 0=xs ^ ys 0=nil :

The termination is a subset of the identity relation on the state space. It is the relation

xs 0=xs= nil ^ ys 0=ys :

7

The invariant is the relation

reverse:xs 0 ++ ys 0 = reverse:xs ++ ys

where ++ is the operation that \joins" (or concatenates) two lists together. Since

reverse:nil is nil and nil ++ ys 0 is ys 0 , the composition of the termination relation and

the invariant is thus the relation

ys 0 = reverse:xs ++ ys :

Moreover, since zs ++ nil is zs (for all zs), the composition of this relation with the

initialisation is thus the speci�cation X .

Maintaining the invariant whilst making progress to the termination condition that

xs is nil is based on the identity

reverse:(x :xs) ++ ys = reverse:xs ++ (x :ys) :

This is achieved by the relation Body characterised by

xs 0 = tail:xs ^ ys 0 = (head:xs) :ys

(i.e. by the assignment xs;ys := tail:xs ; (head:xs) :ys). The program to compute the

reverse of a list is thus as follows:

ys := nil ;

while xs 6= nil do xs;ys := tail:xs ; (head:xs) :ys

3.1 The Domain Operators

Our account of invariants is not yet complete. The relationship between the speci�ca-

tion X and Term �Body� � Init is containment not equality. The example of the reverse

procedure shows that it may indeed be a proper superset relation. Not every subset of

the speci�cation will do, however. An additional requirement is that the input-output

relation computed by the program is total on all input values. Formally this is a re-

quirement on the so-called \right domain" of the computed input-output relation. Right

domains are also relevant if we are to relate our account of invariants to the implemen-

tation of loops by a while statement. Recall that Body is the body of the loop, and

Term terminates the computation. The implementation of Term �Body� by a while

statement demands that both of these relations are partial and, more speci�cally, that

their right domains are complementary.

The right domain of a relation R is, informally, the set of input values that are

related by R to at least one output value. Formally, the right domain R> of a relation

R of type I J is a core
exive of type J J satisfying the property that

8(A: A� idJ: R �A=R � R>�A) :

8

Given a core
exive A , A� idJ , the relation R �A can be viewed as the relation R

restricted to inputs in the set A . Thus, in words, the right domain of R is the least

core
exive A that maintains R when R is restricted to inputs in the set A .

In the case of the program to reverse a list presented above, the right domain of Term

is Term itself. (Recall that Term was de�ned to be a subset of the identity relation,

i.e. a core
exive.) It is the core
exive corresponding to the set of pairs of lists of which

the �rst is empty. The right domain of Body is the core
exive corresponding to pairs of

lists of which the �rst is non-empty. This is because the right domain of the head and

tail functions is the core
exive corresponding to the set of non-empty lists. The right

domain of Body and (the right domain of) Term are thus indeed complementary.

Note that the right domain should not be confused with the source of the relation. The

source expresses the set of input values of interest in the context of the application being

considered whereas the right domain is the set of input values over which the relation

is de�ned. In other words, we admit the possibility of partial relations. Formally, a

relation R of type I J is total if R> is idJ , otherwise it is partial. Similarly the target

should not be confused with the left domain of a relation. A relation R of type I J is

surjective if R< is idI .

The right domain operator and its dual left domain operator play a prominent role

in the e�ective use of relation algebra, but this is not the place for us to go into them

in depth. For the most part, their calculational properties are reasonably self-evident

from their pointwise interpretation. We refer to the properties in calculations by the

hint \domain calculus" and refer the reader to other publications for more extensive

discussion. One property that is not so self-evident but �gures greatly in our calculations

is that the right domain operator is a lower adjoint in a Galois connection. Speci�cally,

8(R;A: A� idJ: R�>> �A � R>�A)

where >> denotes the universal relation of type I J . The signi�cance of this property

is its use in combination with the fusion theorem on �xed points [24].

Returning to loops, the requirement is that the right domain of Term is the comple-

ment of the right domain of Body . Letting b denote the right domain of Body and

�b its complement (thus b[�b = id and b\�b = ??) we thus have

Term = Term ��b and Body = Body �b :

As a consequence,

Term �Body� � Init = Term ��b � (Body �b)� � Init :

The statement while b do Body is the implementation of �b � (Body �b)� . If Body �b

is well-founded, �b � (Body �b)� is the unique solution [8] of the equation:

X:: X = �b [X �Body �b :

9

Executing this equation is equivalent to executing the program

X = if b then Body;X :

The well-foundedness of Body guarantees that the execution of the while statement

will always terminate. It also guarantees that the implementation is total, provided that

Term and Body have complementary right domains, and the initialisation Init is total.

The proof illustrates the sort of calculations we make with the domain operators. We

have:

(Term �Body� � Init)> = idI

� f domain calculus g

((Term �Body�)> � Init)> = idI

(f by assumption, Init is total, i.e. Init> = idI g

(Term �Body�)> = idI

� f (Term �Body�)> is the unique solution of the equation

A:: A = Term> [(A �Body)> g

idI = Term> [(idI �Body)>

� f by assumption,

Term and Body have complementary right domains.

In particular, idI = Term> [Body> g

true :

The penultimate step needs further justi�cation. The claim is that the equation

A:: A = Term> [(A �Body)>

has a unique solution provided that Body is well-founded. As mentioned earlier, it is

proved in [8] that the equation

X:: X = R [X �S

has a unique solution if relation S is well-founded. Thus, for all core
exives A ,

A = Term> [(A �Body)>

� f domain calculus.

Speci�cally, (>> �A)> = A and >> �R = >> �R> g

>> �A = >> �Term [>> �A �Body

10

� f Body is well-founded g

>> �A = >> �Term �Body�

� f domain calculus (as above) g

A = (Term �Body�)> :

That is, (Term �Body�)> is the unique solution of the above equation in A .

3.2 Factors | alias Weakest Liberal Preconditions

The body of a loop should maintain the loop invariant. Formally, the requirement is

that Body � Inv � Inv . In general, for relations R of type I J and T of type I K

there is a relation RnT of type J K satisfying the Galois connection, for all relations

S ,

R �S � T � S � RnT :

The operator n is called a division operator (because of the similarity of the above rule

to the rule of division in ordinary arithmetic). The relation RnT is called a residual or

a factor of the relation T . Relation RnT holds between output value w 0 and input

value w if and only if

8(v: vhRiw 0: vhTiw) :

Applying this Galois connection, the requirement on Body is thus equivalent to

Inv � BodynInv ;

the pointwise formulation of which is

8(w 0; w: w 0hInviw: 8(w 00: w 00hBodyiw 0: w 00hInviw)) :

The relation BodynInv corresponds to what is called the weakest prespeci�cation of

Inv with respect to Body in the more usual predicate calculus formulations of the

methodology [14]. The weakest liberal precondition operator will be denoted here by

the symbol \ n ". Formally, if R is a relation of type I J and A is a core
exive of

type I I then RnA is a core
exive of type J J characterised by the property that,

for all core
exives B of type J J ,

(R �B)< � A � B � RnA :(1)

(If we interpret the core
exive A as a predicate p on the type I , then RnA is the

predicate q such that

q:w � 8(w 0:w 0hRiw:p:w) :

11

It is the weakest condition q on input values w that guarantees that all output values

w 0 that are R -related to w satisfy the predicate p .)

The operator n plays a very signi�cant role in what is to follow. For this reason

it is useful to have a full and intimate understanding of its algebraic properties. This,

however, is not the place to develop that understanding and we make do with a summary

of the most frequently used properties.

First note that the function (Rn) , being an upper adjoint, distributes over arbitrary

meets of core
exives. Because meet on core
exives coincides with composition it follows

that Rn distributes over composition: Rn (A �B) = (RnA) � (RnB) . This corresponds to

the fact that the weakest liberal precondition operator associated with a statement R is

universally conjunctive. From (1) we obtain the cancellation property:

(R �RnB)< � B .(2)

Often this property is used in a slightly di�erent form, namely:

R �RnB � B �R .(3)

Both (2) and (3) express that program R produces a result from set B when started in

a state satisfying RnB . If R is a function then RnA can be expressed without recourse

to the left-domain operator. Speci�cally, we have for function f :

fnA = f[�A � f :(4)

A full discussion, including all the properties used here, can be found in [3]. Finally, we

recall that relation R of type I I is well-founded equivales that

�(A 7!RnA) = idI :

(Here and elsewhere, � denotes the least �xed point operator. See [8] for a detailed

discussion of how well-foundedness is expressed in terms of least �xed points.) Much of

this paper is in fact about generalising this property to the situation where types play a

prominent role.

4 Functional Programming

Functional programming is many things to many people. For us, functional programming

is about user-de�ned (recursive) datatypes and polymorphic functions. The theory that

embodies functional programming most adequately is category theory: type constructors

(like List and Maybe) are functors, polymorphic functions (like the
atten function on

lists of lists) are natural transformations and inductively de�ned datatypes are initial

12

algebras. Allegory theory is a relatively minor extension to category theory that enriches

functional programming with relation algebra.

In this section we brie
y review these elements of category and allegory theory. At the

same time we introduce some notation. The section is not meant to be an introduction

to the categorical concepts mentioned above. For a gentle introduction in line with the

presentation here see [5]. For a more extensive introduction see [6]

4.1 Functors, Relators and Natural Transformations

A category consists of a collection of objects and a collection of arrows. Each arrow has

a source object and a target object. We write f :: I �
C

J if arrow f in category C has

target I and source J . (Often f :: I J is written if the category is �xed.) Arrows can

be composed. If the source of arrow f is the target of arrow g then their composition

f �g exists; its target is the target of f and its source is the source of g . That is, if

f :: I J and g :: J K then f �g :: I K . Finally, each object I in the category de�nes

an arrow idI :: I I which is a left and right identity of composition.

The canonical example of a category is Fun , the category with sets as objects and

functions between sets as arrows. Another example of a category is Rel , the category

with sets as objects and binary relations as arrows. The category Fun is a subcategory

of Rel .

Given two categories C and D , a functor with target C and source D comprises

two mappings, a mapping from the objects of D to the objects of C and a mapping

from the arrows of D to the arrows of C . It is customary to give the mappings the same

name. Using this convention, the requirements on a functor F are that if f :: I �
D

J

then F:f :: F:I �
C

F:J . Also, functors are required to preserve identities. That is, for

each object I of category D , F:idI= idF:I . Finally, functors preserve composition. That

is, F:(f �g) = F:f �F:g for all composable arrows f and g .

We shall mainly be dealing with endofunctors. An endofunctor is a functor whose

source and target categories are the same. Occasionally we refer to n -ary functors. An

n -ary functor is a functor with source category Cn , the n -fold product of category C

with itself, and target category C . (Objects of Cn are n -tuples of objects of C , and

arrows of Cn are n -tuples of arrows of C .)

Functors are relevant to functional programming because they correspond to type

constructors. The canonical example is List , which is an endofunctor on the category

Fun . The object part of the functor List is the mapping from types (sets) to types. (For

example List:Nat , lists of natural numbers, is the result of applying List to Nat .) The

arrow part of the functor List is the function known as map to functional programmers.

If f :: I J then map:f :: List:I List:J is the function that applies function f to

each element in a list of J s to create a list of I s of the same length. It is a general

13

fact that parameterised datatypes (of which List is an example) de�ne functors. The

object part of the functor is the mapping from types to types and the arrow part is the

\map" operation that applies a given function to every value stored in an instance of the

datatype.

Two binary functors that we will use extensively are cartesian product and disjoint

sum. The cartesian product of types I and J is the type I�J consisting of pairs, the �rst

component of which has type I and the second component of which has type J . This

is the object part of the binary product functor on Fun . The arrow part is such that

f�g applied to a pair (x; y) is the pair (f:x ; g:y) . The disjoint sum of types I and J

is the type I+J consisting of values of type I and values of type J appropriately tagged

to indicate whether they are in the left or right component of the sum. The arrow part

is such that if f has type I J and g has type K L then applying f+g to an element

of type J+L involves inspecting the tag, then applying f or g to the untagged value

(as dictated by the tag) and �nally reinstating the tag. In this way the value obtained

is of type I+K .

Other functors that are important are the identity functor and the constant func-

tors. The identity functor comprises the identity function on objects and the identity

function on arrows. For each object I there is a constant functor that when applied to

an object yields the object I and when applied to an arrow yields the identity arrow on

I .

It is convenient not to distinguish notationally between the object I and its corre-

sponding constant functor. This is particularly so when discussing functors formed by

sectioning disjoint sum or cartesian product. For example, if 11 denotes the unit type

(the type with exactly one element | both the type and its element are denoted by ()

in Haskell) then the functor 11+ maps the type A to the type 11+A . Also, if f has

type A B the function 11+f has type 11+A 11+B . It is the function that inspects

the tag on a value of type 11+B to see if it belongs to the left component, 11 , or the

right component, B . In the former case the value is left unaltered (complete with tag),

and in the latter case the function f is applied to the untagged value, and then the tag

is replaced. Formally, given endofunctors F and G their sum is the functor F+G which

yields F:X+G:X when applied to an object X and yields F:f+G:f when applied to an

arrow f . In this way, the functor 11+ is the sum of the constant functor 11 and the

identity functor.

As we have said, Rel is a category just like Fun . Also type constructors like List are

endofunctors on Rel , just as they are on Fun . But the categorical notion of functor is

too weak to describe type constructors in the context of a relational theory of datatypes.

The notion of an \allegory" [13] extends the notion of a category in order to better

capture the essential properties of relations, and the notion of a \relator" [2, 3] extends

the notion of a functor in order to better capture the relational properties of datatype

14

constructors.

Formally an allegory is a category such that, for each pair of objects A and B ,

the class of arrows of type A B forms an ordered set. In addition there is a converse

operation on arrows and a meet (intersection) operation on pairs of arrows of the same

type. These are the minimum requirements in order to be able to state the algebraic

properties of the converse operation. For practical purposes more is needed. A locally-

complete, tabulated, unitary, division allegory is an allegory such that, for each pair

of objects A and B , the partial ordering on the set of arrows of type A B is complete

(\locally-complete"), the division operators introduced in section 3.2 are well-de�ned

(\division allegory"), the allegory has a unit (which is a relational extension of the

categorical notion of a unit | \unitary") and, �nally, the allegory is \tabulated". We

won't go into the details of what it means to be \tabulated" but, basically, it means that

every arrow in the allegory can be represented by a pair of arrows in the underlying map

category (i.e. by a pair of functions) and captures the fact that relations are subsets of

the cartesian product of a pair of sets. (Tabularity is vital because it provides the link

between categorical properties and their extensions to relations.)

A suitable extension to the notion of functor is the notion of a \relator". A relator

is a functor whose source and target are both allegories |remember that an allegory is

a category| that is monotonic with respect to the subset ordering on relations of the

same type and commutes with converse. Thus, a relator F is a function to the objects of

an allegory C from the objects of an allegory D together with a mapping to the arrows

(relations) of C from the arrows of D satisfying the following properties:

F:R :: F:I �
C

F:J whenever R :: I �
D

J.(5)

F:R � F:S = F:(R �S) for each R and S of composable type,(6)

F:idA = idF:A for each object A,(7)

F:R � F:S (R � S for each R and S of the same type,(8)

(F:R)[= F:(R[) for each R.(9)

Two examples of relators have already been given. List is a unary relator, and product is

a binary relator. If R is a relation of type I J then List:R relates a list of I s to a list of

J s whenever the two lists have the same length and corresponding elements are related

by R . The relation R�S relates two pairs if the �rst components are related by R and

the second components are related by S . List is an example of an inductively-de�ned

datatype; in [1] it was observed that all inductively-de�ned datatypes are relators.

15

A design requirement which lead to the above de�nition of a relator [1, 2] is that a

relator should extend the notion of a functor but in such a way that it coincides with

the latter notion when restricted to functions. Formally, relation R :: I J is total i�

idJ � R[�R ;

and relation R is single-valued i�

R �R[� idI :

A function is a relation that is both total and single-valued. It is easy to verify that total

relations are closed under composition, as are single-valued relations. Hence, functions

are closed under composition too. In other words, the functions form a sub-category.

For an allegory A , we denote the sub-category of functions by Map(A) . In particular,

Map(Rel) is the category Fun . Now the desired property of relators is that relator

F :: A B is a functor of type Map(A) Map(B) . It is easily shown that our

de�nition of relator guarantees this property.

(Bird and De Moor [6] observe that, under a number of conditions on the allegories

concerned, a functor is monotonic if and only if it commutes with converse. A relator is

thus a monotonic functor. The use of commutativity with converse is so ubiquitous that

we prefer to stick to our original de�nition.)

Polymorphic functions play a major role in functional programming. An insight that

has helped to increase the understanding of the relevance of category theory to functional

programming is that polymorphic functions like the
atten function on lists are so-called

\natural transformations".

Formally, a collection of arrows �A indexed by objects (equivalently, a mapping �

of objects to arrows) is a natural transformation of type F G , for functors F and

G , i� for each object A , �A :: F:A G:A and, for each pair of objects A and B and

each arrow f :: A B ,

F:f � �B = �A � G:f :

For example,
atten is a natural transformation of type List ListÆList since, for each

type A , the function
attenA of type List:A List:(List:A) satis�es the naturality prop-

erty

map:f �
attenB =
attenA � map:(map:f) for each f :: A B.

If we map function f to all values stored in a list of lists and then
atten the resulting list

of lists to a list then this is the same as �rst
attening the list of lists and then applying f

to each stored value. Another example of a natural transformation is the length function

16

on lists. It has type Nat List where Nat is the constant natural number functor and

it is indeed the case that

lengthB = lengthA � map:f for each f :: A B.

(Note that Nat:f , the constant functor Nat applied to f , is the identity function on

numbers and so disappears from the equation.) This says that mapping a function over

a list does not alter its length.

A remarkable theorem due to Reynolds [26] and promulgated by Wadler [28] is that

it is possible to deduce a naturality property from the type of a polymorphic function.

Interestingly, the formulation of Reynolds' theorem involves extending endofunctors on

Fun to endorelators on the allegory Rel . However, many collections of relations are

not natural with equality but with an inclusion. They are sometimes called lax natural

transformations. The collection of lax natural transformations to relator F from G is

denoted by F -G and de�ned by

� :: F -G � (F:R � �J � �I � G:R for each R :: I J) :(10)

A relationship between naturality in the allegorical sense and in the categorical sense

is given by two lemmas [15]. Recall that relators respect functions, i.e. relators are

functors on the sub-category Map . The �rst lemma states that an allegorical natural

transformation is a categorical natural transformation:

(F:f � �J = �I � G:f for each function f :: I J) (� :: F -G :

The second lemma states the converse; the lemma is valid under the assumption that

the source allegory of the relators F and G is tabular:

� :: F -G ((F:f � �J = �I � G:f for each function f :: I J) :

In the case that all elements of the collection � are functions we thus have:

� :: F -G in A � � :: F G in Map(A)

where by \in X " we mean that all quanti�cations in the de�nition of the type of natural

transformation range over the objects and arrows of X . This lemma means that the

notion of \lax" natural transformation is the more appropriate allegorical extension of the

categorical notion of natural transformation rather than being a natural transformation

in the underlying category. Thus we shall not use the quali�er \lax". For us, a natural

transformation is as de�ned by (10).

17

4.2 Structural recursion

The heart of functional programming is the declaration and use of datatypes. This is

facilitated by the special purpose syntax that is used. A de�nition like that of the natural

numbers in Haskell:

datatype Nat = Zero | Succ Nat

introduces two datatype constructors Zero and Succ of types Nat and Nat -> Nat, re-

spectively. It also facilitates the de�nition of functions on natural numbers by pattern

matching as in the de�nition of the function even:

even Zero = True

even (Succ n) = not (even n)

Category theory enables one to gain a proper understanding of such de�nitions and to

lift the level of discussion from particular instances of datatypes to the general case, thus

improving the e�ectiveness of program construction.

Category theory encourages us to focus on function composition rather than function

application and to combine the two equations above into one equation, namely:

even � (zero5succ) = (true5not) � (11+even) :(11)

In this form various important elements are more readily recognised. First, the two

datatype constructors Zero and Succ have been combined into one algebra zero5succ .

Similarly, True and not have been combined into the algebra true5not . The general

mechanism being used here is the disjoint sum type constructor (+) and the case opera-

tor (5). Speci�cally, given types A and B , their disjoint sum A+B comprises elements

of A together with elements of B but tagged to say in which component of the disjoint

sum they belong. Application of the function f5g to a value of type A+B involves

inspecting the tag to see whether the value is in the left component of the sum or in

the right. In the former case the function f is applied (after stripping o� the tag); in

the latter case the function g is applied. Thus for f5g to be correctly typed, f and g

must have the same target type. Then, if f has type A B and g has type A C , the

type of f5g is A B+C .

As explained earlier, the term 11+even is read as the functor 11+ applied to the

function even . It is the function that inspects the tag on a value of type 11+Nat to see

if it belongs to the left component, 11 , or the right component, Nat . In the former case

the value is left unaltered (complete with tag), and in the latter case the function even

is applied to the untagged value, and then the tag is replaced. The functor 11+ is called

the pattern functor of the datatype Nat [5].

18

The �nal aspect of (11) that is crucial is that it uniquely de�nes the function even .

(To be precise, the equation

X:: X � (zero5succ) = (true5not) � (11+X)

has a unique solution.) This is the concept of initiality in category theory. Speci�cally,

zero5succ is an initial (11+)-algebra which means that for all (11+)-algebras f the

equation

X:: X � (zero5succ) = f � (11+X)

has exactly one solution.

In summary, category theory identi�es three vital ingredients in the de�nition (11)

of the function even , namely, the functor 11+ , the initial (11+)-algebra zero5succ and

the (11+)-algebra true5not .

The general form exempli�ed by (11) is

X � in = f �F:X(12)

where F is a functor, in is an initial F -algebra and f is an F -algebra. This general form

embodies the use of structural recursion in modern functional programming languages

like Haskell. The left side embodies pattern matching since, typically, in embodies a

case analysis as exempli�ed by zero5succ . The right side exhibits recursion over the

structure of the datatype, which is represented by the \pattern" functor F .

Here is the formal de�nition of an initial algebra. The de�nition is standard |an

initial object in the category of F -algebras| but we give it nonetheless in order to

introduce some terminology.

De�nition 13 Suppose F is an endofunctor on some category C . An arrow f in C

is an F -algebra if f :: A F:A for some A , the so-called carrier of the algebra. If

f and g are both F -algebras with carriers A and B then arrow ' :: A B is said

to be an F -algebra homomorphism to f from g if ' � f = g � F:' . The category FAlg

has objects all F -algebras and arrows all F -algebra homomorphisms. Composition and

identity arrows are inherited from the base category C . The arrow in :: I F:I is an

initial F -algebra if for each f :: A F:A there exists an arrow ([f]) :: A I such that

for all h :: A I ,

h = ([f]) � h :: f �
FAlg

in :(14)

So, ([f]) is the unique homomorphism to algebra f from algebra in . We call ([f]) the

catamorphism of f .

19

2

The \banana bracket" notation for catamorphisms (as it is a�ectionately known) was

introduced by Malcolm [19, 20]. Malcolm was also the �rst to express the unicity prop-

erty using an equivalence in this way. It is a mathematically trivial device but it helps

enormously in reasoning about catamorphisms. Note that the functor F is also a pa-

rameter of ([f]) but the notation does not make this explicit. This is because the functor

F is usually �xed in the context of the discussion. Where disambiguation is necessary,

the notation ([F ; f]) is sometimes used. The initial algebra is also a parameter that is

not made explicit; this is less of a problem because initial F -algebras are isomorphic and

thus catamorphisms are de�ned \up to isomorphism".

An important property of initial algebras, commonly referred to as Lambek's lemma

[18], is that an initial algebra is both injective and surjective. Thus, for example,

zero5succ is an isomorphism between Nat and 11+Nat . Lambek's lemma has the conse-

quence that, if in is an initial F -algebra,

h � in = f � F:h � h = f �F:h � in[

where in[is the inverse of in . Thus, the characterising property (14) of catamorphisms

is equivalent to, for all h and all F -algebras f ,

h = ([f]) � h = f � F:h � in[:(15)

That is, ([f]) is the unique �xed point of the function mapping h to f � F:h � in[.

In the context of functions on lists the catamorphism ([f]) is known to functional

programmers as a fold operation. Speci�cally, for lists of type I the relevant pattern

functor F is the functor mapping X to 11+(I�X) (where � denotes the cartesian

product functor) and an F -algebra is a function of type A 11+(I�A) for some A .

Thus an F -algebra takes the form c5 (�) for some function c of type A 11 and some

function � of type A I�A . The characterising property of the catamorphisms is thus

h = ([c5 (�)]) � h = c5 (�) � 11+(I�h) � nil[H cons[:

Here nil[H cons[is the inverse of nil5cons . (In general, RHS is the converse conjugate

of R5S . That is, (RHS)[= R[5S[.) It can be read as the pattern matching operator:

look to see whether the argument is an empty list or a non-empty list. In the former

case nil[returns an element of the unit type, tagging it so that the result of the test is

passed on to later stages; in the latter case cons[splits the list into a head and a tail, the

resulting pair also being tagged for later identi�cation. Using the algebraic properties of

case analysis, the characterising property is equivalent to

h = ([c5 (�)]) � h � nil= c ^ h � cons = (�) � I�h

20

the right side of which is a point-free free formulation of the de�nition of a fold with

seed the constant c and binary operator (�). As a concrete example, the function sum

that sums the elements of a list is

([zero5 add])

where add is the addition function. In Haskell this function would be written

fold 0 add :

Although catamorphisms (folds) are best known in the context of functional program-

ming many relations are also catamorphisms. For example, the pre�x relation on lists is

uniquely characterised by the two equations

nilhpre�xinil

and

xshpre�xi(y:ys) � xs= nil _ 9(zs:: xs=y:zs ^ zshpre�xiys) :

Expressed as one, point-free equation this is

pre�x � nil5cons = nil5 ((nil � >>)[cons) � 11+(I�pre�x)(16)

where I denotes the type of the list elements. Here we recognise a relator and two alge-

bras: in this case the relator is (11+(I�)) and the two (11+(I�))-algebras are nil5cons

and nil5 ((nil � >>)[cons) . (Note that the second algebra is not a function.) Equivalently,

this equation is:

pre�x = nil5 ((nil � >>)[cons) � 11+(I�pre�x) � nil[H cons[:(17)

The pre�x relation is also an example of a relational natural transformation. Indeed,

pre�x :: List List in the category Rel . That is, pre�x is a proper natural transfor-

mation.

4.3 Primitive recursion

Structural recursion is useful since many programs that arise in practice have this kind

of recursion. However, just as structural induction is not enough to prove all facts that

can be proved by induction, structural recursion is not enough to de�ne all programs

that can be de�ned by recursion. As an example of a program that is not structurally

recursive, consider the factorial function, the function de�ned by the two equations

fact � zero= one and fact � succ = times � fact4succ ;

21

where one is the constant function returning the number 1 and times is the multiplica-

tion function. These equations can be combined into the single equation

fact = one5 (times � succ�idNat) � id11 +(idNat4fact) � zero[H succ[.(18)

Reading from the right, the factorial function �rst examines its argument to determine

whether it is zero or the successor of another number; in the former case a tagged element

of the unit type is returned, and in the latter case the predecessor of the input value

is returned, suitably tagged. Subsequently, if the input value is n + 1 , the function

idNat4fact constructs a pair consisting of the number n and the result of the factorial

function applied to n: The calculation of (n + 1) � n! is the result of applying the

function times � succ�idNat to the (untagged) pair. On the other hand, if the input value

is zero then one is returned as result.

The presence of the split operator (4) in this de�nition is because of the fact that

the result of the factorial function depends directly on the input in addition to the result

of the recursive call: (n+1)! = (n+1)�n! , the input n appears twice in the right side.

This means that the input n is copied. If one gives a pointwise de�nition this copying

is done by writing n twice. However, in a point-free formulation the copying has to be

coded by a function, in this case by the doubling function idNat 4 idNat .

Instances of the doubling and similar functions occur when a point-wise formula is

rewritten in a point-free form. The location and number of occurrences of the points in

the point-wise formula have to be coded by a function in the point-free formula. Such

relations are called (somewhat derogatively) plumbing . A much more impressive name is

\natural transformation". Natural transformations map structures to structures, moving

the stored data around without doing any computation on it.

To give an example of a relation de�ned by primitive recursion we need look no

further than the suÆx relation on lists. It satis�es

nilhsuÆxinil

and

xshsuÆxi(y:ys) � xs=y:ys _ xshsuÆxiys :

Expressed as a �xed point equation this is:

suÆx = nil5 ((cons � exl)[(exr � exr)) � 11+(I� (List:I4 suÆx)) � nil[H cons[

where I is the type of the list elements. This is a de�nition by primitive recursion.

(Note that, as forewarned, we write I and List:I here instead of the formally correct idI

and idList:I .)

Because of the presence of a plumbing, the form of equation (18) di�ers from the form

of the cata equation (15) and the program is therefore not structurally recursive. The

22

question is whether equation (18) is a de�nition, i.e. is there a unique solution? If not,

we are obliged to de�ne fact by a phrase like: \the factorial function is the least solution

of the equation (18)". Of course it is well-known that this is unnecessary: equation (18)

has a unique solution and characterises the factorial function. Although this fact is a

consequence of the de�nition of initial algebra it is not an immediate consequence and

therefore requires a proof. (We present a proof later.)

When we abstract from the particular functor and initial algebra in factorial program

(18) a general recursion scheme is obtained.

X :: X = R � F:(I�X) � F:(I4I) � in[.(19)

In the case of the factorial function R is one5 (times � succ�id) , F is (11+), I is the (iden-

tity on) natural numbers and in is zero5succ . (Note that, in general, W�X � I4I =W4X

if the source of W and X is I . Hence F:(I�X) � F:(I4I) = F:(I4X) . We have applied this

so-called � - 4 -fusion law in order to make the plumbing |the term F:(I4I) | explicit.)

A de�nition of this form is called primitive recursive.

This generic formulation of primitive recursion was introduced (for functions) by

Meertens [21]. He called such an equation a para equation and a solution to the equation

a paramorphism. Among the results he established three are worthy of note. The �rst

is that paramorphisms are universal in the sense that every function with source the

carrier of an initial algebra can be expressed as a paramorphism. The second is that

every catamorphism can be expressed as a paramorphism, and the third is that a para

equation has a unique solution.

The �rst two of these results suggest that a useful discipline of recursive program con-

struction could be built around paramorphisms. Indeed in intuitionistic type theory (for

example Martin-L�of's theory of types [25]) this is what is done. There paramorphisms

correspond to the eliminators for inductive types, and their computation rules are para

equations. Unfortunately, as the name suggests, primitive recursion is still not general

enough to capture all useful recursion schemes. No truly practical theory of datatypes

has been built around primitive recursion, as all experienced functional programmers

would testify.

5 Advanced recursion

The observation that not all programs are primitive recursive is of course not new. For

instance in the well-known de�nition of the computable functions on the natural numbers

the primitive recursive functions are a proper subclass of the class of all computable

functions. Therefore, a number of researchers have proposed generalisations of the para

23

equation. Malcolm [19] de�ned the zygo equation, which type of equation was generalised

by Fokkinga [11] to the mutu equation

X :: X = R � F:X4F:X � in[.(20)

It can be shown that such an equation has a unique solution. (Fokkinga's proof requires

that R is a function. The proof we give later allows R to be an arbitrary relation.)

The problem with this kind of generalisation of primitive recursion is that it is rather

limited. The generalised programs are of the form

X :: X = R �G:X � plumbing � in[,(21)

where G is a functor, in an initial F -algebra for some functor F , and plumbing a

natural transformation. Recall that a natural transformation is only a coding of \where

the arguments have to go", so it does not represent a proper computation. Yet, many

programs perform a substantial amount of preprocessing before the recursive call and

are therefore not of the form (21).

Consider, for instance, the program known as \quicksort" , here abbreviated to qs .

qs = nil5(join � I�cons) � 11+(qs�(I�qs)) � nil[H dnf(22)

To see that this is the quicksort program one has to interpret dnf as the well-known

\Dutch national
ag" relation. This relation splits a non-empty list into a tuple (xs ; (x ;ys))

formed by a list, an element and a list such that all elements in the list xs are at most

x and all elements in ys are greater than x . The results of the recursive calls are

assembled to the output list by the operation join � I�cons , where join produces the

concatenation of two lists.

The recursion of the quicksort program di�ers from the recursion of equation (21)

because relation dnf can not be considered as a simple plumbing relation: it is not merely

a copying and rearranging of the input values in the sense that it does not disappear if

formula (22) is expressed point-wise. In short, dnf represents a considerable amount of

preprocessing.

Therefore, we might want to consider equations of the form

X :: X = R �G:X � prepro � in[(23)

as the standard recursion scheme. Fokkinga [11] has studied a limited class of equations

of this form (the class was limited because there were a number of restrictions on the

preprocessor relation prepro and functor G). He has shown that (in the case that all

components are functions) such equations have a unique solution and called that unique

solution a prepromorphism .

However, for our purposes (23) is still not general enough. We want for instance to

capture divide and conquer algorithms and such programs do not, in general, have the

24

form of equation (23) because no initial algebra is involved. A typical divide and conquer

program is of the form

X :: X = R5conquer � I+(X�X) � I+divide �AHB .(24)

Interpreting this program should not be diÆcult. A test is made to determine whether

the input is a base case (if the input satis�es A), the output then being computed by

R . If the input is not a base case (if the input satis�es B) the input is split into two

smaller \subproblems" by divide . Then the smaller problems are solved recursively and

�nally the two solutions of the subproblems are assembled into an output by conquer .

Of course there are more divide and conquer schemes. For example, the original

problem can be split into more than two subproblems. It is also possible that the divide

step produces, besides a number of subproblems, a value that is not \passed into the

recursion" ; then the middle relation of (24) has a form like I�(X�X) . Quicksort is an

example of such a divide and conquer algorithm.

Repetition is an elementary and familiar example of divide and conquer in which the

original problem is reduced to a single subproblem. A repetition is a solution of the

equation in x :

x = if :b! skip [] b! s;x � .(25)

Using the fact that skip (do nothing) corresponds to the identity function, I , on the

state space and writing B for the core
exive corresponding to predicate b and S for

the relation corresponding to the statement s , we may express (25) using disjoint sum

as:

X = I5I � I+X � �B H (S �B) .(26)

The function to reverse a list given in section 3 is a speci�c case.

If we express the implementation of list reversion in a style more typical of functional

programming rather than an imperative style then we see a further generalisation of the

sort of equations we want to consider. Speci�cally, the functional programmer would

write the de�nition of the reverse function as follows:

reverse xs = accumrev xs nil

where

% accumrev accumulates the reverse of the input list xs

% in the list ys

accumrev nil ys = ys

accumrev (x:xs) ys = accumrev xs (x:ys)

25

The form of this de�nition is structural recursion on the �rst argument, with an addi-

tional parameter as second argument, the additional parameter being used to accumulate

the reverse of the list.

Rewriting this de�nition in a point-free style it takes the form

reverse = exr �X , where

X = id5id � id+X � plumbing � in[� id .

Here the occurrences of id are all identity functions (the types of which are di�erent but

not relevant to the current discussion) and plumbing is a function of type

List:J�List:J+ I�List:J (11+J�I)�List:J

that is polymorphic in I and J . Reading from right to left, in[maps the �rst argument

into either an element of 11 (if it is an empty list) or its head element and its tail,

tagging the result to indicate whether the input list was empty or not. Then, in the case

of the empty list, plumbing reconstitutes the input lists. In the case of a non-empty list,

plumbing maps the triple ((j ; i) ; js) into the pair (i ; j : js). Note that in this particular

application the type I will always be List:J . However, the fact that the type of plumbing

is more general than this is important to the termination argument given in section 8.2.

6 A Programming Paradigm

6.1 Hylo programs

So far we have considered various restrictions on recursive program schemes and dis-

missed them all as too restrictive. Now it is time to de�ne the class of programs we

propose as the standard recursion scheme. The de�ning property of programs in the

class is very simple and generalises all the de�ning equations of the \morphisms" we

have encountered thus far.

De�nition 27 (Hylos) Let R and S be relations and F a relator. An equation of

the form

X:: X = R �F:X �S(28)

is said to be a hylo equation or hylo program.

2

26

(The name \hylomorphism" for the least solution of a (functional) equation of this form

was coined by Erik Meijer [11].)

Note that there are three components to a hylo program, the relator F and two

relations R and S . On typing grounds, if X is to have type A B then R must be an

F -algebra with carrier A . Also S must have type F:B B (equivalently S[must be an

F -algebra with carrier B). It is convenient to use the term coalgebra for a relation of

type F:B B for some B . So a coalgebra with carrier B is the converse of an algebra

with carrier B .

Recall that one of the goals of this paper was to identify a recursion scheme that makes

arbitrary recursion super
uous. The question is whether the class of hylo programs forms

a good candidate for such a recursion scheme. The answer, we believe, is positive for the

following reasons.

First, it is well known that everything that can be computed can be computed with

a repetition. Now a repetition is a hylo program. (See (26).) Therefore, the class of hylo

equations is large enough to write all programs we might want to write: every program

can be transformed into a hylo program. In other words we can safely restrict the class

of programs we want to consider to the class of hylo programs.

The class of programs can also be safely restricted to just repetitions. However,

although that is safe it would not be convenient because there are many practical

algorithms which can not be expressed as repetitions in a simple way, quicksort being

the classic example. It would not be convenient because we are then forced to express

such programs as repetitions, thereby making them unnecessarily complicated. On the

other hand, the question of whether it is convenient to require that all algorithms are

expressed in the form of hylo programs seems to have a positive answer. This is because

the great majority of programs that one encounters in practice are in the form of a

hylo equation. The few programs that are not are by no means standard, much used

algorithms. On the contrary: they tend to be rather arti�cial. An example is, for

instance, the program to compute the Ackerman function. Hylo programs thus combine

convenience with practicality.

Finally, the hylo recursion scheme o�ers substantially greater freedom in designing

programs because the solution strategy is a parameter of the scheme. The solution

strategy is encapsulated in the relator, F . For instance relator X 7! I+X encapsulates

repetition, X 7! I+X�X encapsulates a divide and conquer strategy, and X 7!F:(I�X)

encapsulates primitive recursion. A �rst step in the design of hylo programs is thus the

choice of the relator.

Because of these considerations we conclude that a discipline of programming focused

on the design of hylo programs is well worth pursuing, particularly if it extends the

discipline of designing repetitions using invariants and bound functions and has the

same spirit. Developing such a discipline is the topic of the remaining sections of this

27

paper.

A discipline of programming should be underpinned by a mathematical theory that

guides the engineer to good, clean programs and protects them from inadvertent error.

In the next section we present an important theorem |the hylo theorem| that relates

hylo programs to so-called \virtual" data structures. The theorem is important because

it provides much insight into how to design the solution strategy. Later sections are

concerned with how to design terminating hylo programs.

6.2 Intermediate data structures

In section 4.2 we discussed the use of recursion on the structure of a datatype; if R is

an F -algebra with carrier A then the catamorphism ([R]) can be seen as a program that

destructs an element of an initial F -algebra in order to compute a value of type A . The

converse ([R])[is thus a program that constructs an element of the initial algebra from

a value of type A .

Now suppose R and S[are both F -algebras with carriers A and B , respectively.

Then the composition ([R]) � ([S[])[has type A B: It computes a value of type A from

a value of type B by �rst building up an intermediate value which is an element of an

initial F -algebra and then breaking the element down. The remarkable theorem is that

([R]) � ([S[])[is the least solution of the hylo equation (28).

This theorem (which we formulate precisely below) gives much insight into the design

of hylo programs. It says that executing a hylo program is equivalent to constructing

an intermediate data structure, the form of which is speci�ed by the relator F , and

then breaking this structure down. The two phases are called the anamorphism phase

and the catamorphism phase. Executing a hylo equation for a speci�c input value by

unfolding the recursion hides this process; it is as if the intermediate data structure is

broken down as it is being built up. (A good comparison is with a Unix pipe in which the

values in the pipe are consumed as soon as they are produced.) Execution of ([R]) � ([S[])[

does make the process explicit. For this reason, the relator F is said to specify a virtual

data structure [27].

Two simple examples of virtual data structures are provided by do-statements and

the factorial function. In the case of do-statements (see (26)) the virtual datatype is

the carrier set of an initial (I+)-algebra, a type which is isomorphic to I�Nat |thus

an element of the virtual datatype can be seen as a pair consisting of an element of the

state space and a natural number, the latter being a \virtual" count of the number of

times the loop body is executed. In the case of the factorial function, de�nition (18) can

be rewritten so as to make the relator F explicit:

fact = one5(times � succ�Nat) � 11+(Nat�fact) � zero[H (Nat4Nat � succ[) :

28

The \virtual" datatype is thus the type of lists of natural numbers, the carrier set of

an initial 11+(Nat�)-algebra. The list that is constructed for a given input n is the

list of natural numbers from n - 1 down to 0 and the hylo theorem states that the

factorial of n can be calculated by constructing this list (the anamorphism phase) and

then multiplying the numbers together after adding 1 (the catamorphism phase).

Language recognition also illustrates the process well. Let us explain the process �rst

with a concrete example following which we will sketch the generic process. Consider

the following grammar:

S ::= aSb j c

where, for our purposes, a , b and c denote some arbitrary sets of words over some

�xed alphabet. Associated with this grammar is a data structure: the class of parse

trees for strings in the language generated by the grammar. This data structure, Stree ,

satis�es the equation:

Stree = (a�Stree�b)+ c :

It is an initial F -algebra where F maps X to (a�X�b)+c . Now the process of unpars-

ing a parse tree is very easy to describe since it is de�ned by induction on the structure of

parse trees. Indeed the unparse function is the F -catamorphism ([(concat3 �a�id�b)5c])

where concat3 concatenates three strings together, a , b and c are the identity func-

tions on the sets a , b and c , and id is the identity function on all words. Moreover,

its left domain is equal to the language generated by the grammar. Since in general the

left domain of function f is f � f[the language generated satis�es

S = ([(concat3 �a�id�b)5c]) � ([(concat3 �a�id�b)5c])[:

This equation de�nes a (nondeterministic) program to recognise strings in the language.

The program is a partial identity on words. Words are recognised by �rst building a parse

tree and then unparsing the tree. By the hylo theorem (or directly from the de�nition

of S) we also have the hylo program

S = (concat3 �a�id�b)5c � (a�S�b)+c � (a�id�b � concat3[) H c :

This is a program that works by (nondeterministically) choosing to split the input word

into three segments (using concat3[) or to check whether the word is in the language c .

In the former case the �rst segment is checked for membership in a , the third segment is

checked for membership in b and the program is called recursively to check the middle

segment. Subsequently the three segments are recombined into one. In the latter case

the word is left unchanged.

The derivation of a language recogniser in this way can be generalised to an arbitrary

context-free grammar. A context-free grammar de�nes a type of parse trees in a fairly

29

obvious way. Also an unparse function can always be de�ned mapping parse trees to

strings. This function is a catamorphism. The language generated by the grammar

is the left domain of the unparse function, which is unparse � unparse[. This in turn is

the composition of a catamorphism and the converse of a catamorphism, which can be

expressed as a hylo program using the hylo theorem.

Of course, in practice the process is complicated by the fact that all practical context-

free grammars have more than one nonterminal, and nonterminals are linked together

via mutual recursion. But the theory we have developed covers this case too. Mutual

recursion is modelled by endorelators on a product category.

To illustrate how this is done let us consider a slightly more complicated example

than the one we have just treated. Consider the grammar:

S ::= ST j d

T ::= aSb j c

where, again small letters denote some arbitrary sets of words over some �xed alphabet.

Since the de�nition of the grammar involves mutual recursion, the class of parse trees

for strings in the language generated by the grammar is de�ned by mutual recursion.

Speci�cally, the two data structures, Stree and Ttree satisfy:

Stree = (Stree�Ttree)+d

Ttree = (a�Stree�b)+ c :

The pair of data structures forms an initial F -algebra where F maps the pair (X; Y) to

the pair ((X�Y)+d ; (a�X�b)+c) . The relator F is thus an endorelator on the product

allegory Rel2 . Unparsing functions unparseS and unparseT on Stree s and Ttree s are

de�ned in the obvious way by mutual recursion; formally, the pair (unparseS; unparseT)

is a catamorphism on the initial F -algebra. Finally, the pair of languages (S; T) is the

left domain of this catamorphism. Speci�cally, the catamorphism takes the form

([(concat5d ; (concat3 �a�id�b)5c)])

where concat concatenates a pair of strings and concat3 concatenates a triple of strings.

So the pair (S; T) is the composition of a catamorphism after an anamorphism. Applying

the hylo theorem we get the (single) hylo equation

(S; T) = (f; g) � F:(S; T) � (f; g)[

in Rel2 where, for brevity, we have used f to stand for concat5d and g for concat3 �a�id�b .

Unravelling the de�nition of composition and converse in the product allegory one gets

the pair of equations:

S = concat5d � (S�T)+d � concat[Hd

30

T = (concat3 �a�id�b)5c � (a�S�b)+ c � (a�id�b � concat3[) Hc :

This pair of equations is thus a single hylo equation in the allegory Rel2 .

We can now sketch how the hylo theorem relates to context-free language recognition

in general. A context-free grammar with n nonterminal symbols de�nes an endorelator F

on Reln . The de�nition is straightforward: choice between righthand sides is mapped to

disjoint sum and concatenation to cartesian product. Also terminal symbols are mapped

to constant endorelators (on Rel). An initial F -algebra is a vector of types indexed by

non-terminals; the element indexed by nonterminal A is the type of parse trees of words

generated by A . There are now two ways we can interpret the hylo theorem as applied

to this situation.

The �rst interpretation involves observing that the grammar also de�nes an unparse

operation. This too is a vector indexed by nonterminals; each element is a function that

unparses the corresponding parse trees. The unparse vector is an F -catamorphism and

its left domain is the vector of languages generated by the nonterminals of the grammar.

Since the left domain of a function f is f � f[the left domain of unparse is the composition

of a catamorphism and the converse of a catamorphism. The hylo theorem states that

this is the least solution of a hylo equation. That is, the hylo theorem con�rms that the

vector of languages generated by the nonterminals of a context-free grammar is the least

solution of a �xed point equation.

The second interpretation allows us to derive the unparsing operation. We observe

that the vector of languages generated by the nonterminals of a context-free grammar

is the least solution of a �xed point equation. Using the properties of disjoint sum and

cartesian product, this �xed point equation can be rewritten as a hylo equation. Now,

applying the hylo theorem, the vector of languages is equal to the composition of a

catamorphism after the converse of a catamorphism. The former is the unparse vector

for the grammar and the latter is the parse vector (albeit not in a form that can be

directly implemented).

6.3 The Hylo Theorem

We summarise the previous section with a formal statement of the hylo theorem. The

theorem is rather deeper than just the statement that the least solution of a hylo equation

is the composition of a catamorphism and an anamorphism. The proof of the theorem

has been given in detail elsewhere [4]1.

1Actually [4] contains a proof of the dual theorem concerning �nal coalgebras and is more general

than the theorem stated here. Unlike in a category, dualising between initiality and �nality is not always

straightforward in an allegory because of the lack of duality between intersection and union. However,

dualising from a �nality property to an initiality property is usually straightforward and it is the other

31

Recall that we de�ned the notion of an initial algebra in the context of a category.

(See (13).) To all intents and purposes this amounts to de�ning the notion of an initial

algebra in the context of functions between sets. What we need however is the notion of

an initial algebra in the context of binary relations on sets, that is, in the context of an

allegory. De�nition 29 is such a de�nition. The hylo theorem states that the categorical

notion of an initial algebra coincides with the allegorical notion if the allegory is locally

complete and tabular.

De�nition 29 Assume that F is an endorelator. Then (I ; in) is a relational initial

F -algebra i� in :: I F:I is an F -algebra and there is a mapping ([]) de�ned on all

F -algebras such that

([R]) :: A I if R :: A F:A ,(30)

([in]) = idI , and(31)

([R]) � ([S])[= �(X 7! R � F:X � S[) :(32)

That is, ([R]) � ([S])[is the smallest solution of the equation X:: R � F:X � S[� X .

2

In order to state the hylo theorem we recall that Map(A) denotes the sub-category

of functions in the allegory A . For clarity we distinguish between the endorelator F and

the corresponding endofunctor de�ned on Map(A) .

Theorem 33 (Hylo Theorem) Suppose F is an endorelator on a locally-complete,

tabular allegory A . Let F 0 denote the endofunctor obtained by restricting F to the

objects and arrows of Map(A) . Then in is an initial F 0 -algebra if and only it is a

relational initial F -algebra.

2

Note that the hylo theorem states an equivalence between two de�nitions. Consid-

ering �rst the implication (loosely speaking, an initial F -algebra is a relational initial

F -algebra), property (32) is the property that we have been referring to as the \hylo

theorem" above. Property (30) is a necessary prerequisite; essentially it states that cata-

morphisms are well-de�ned on relations given that they are well-de�ned on functions.

Property (31) is the key to proving Lambek's lemma that an initial F -algebra is an iso-

morphism between its source and its target. A consequence of the opposite implication

(a relational initial F -algebra is an initial F -algebra) is that catamorphisms on functions

are the unique solutions of their de�ning equations. We shall see a generalisation of this

result in section 9.1.

direction that is diÆcult. That is one reason why [4] chose to present the theorem in terms of coalge-

bras rather than algebras. The extra generality o�ered by the theorem in [4] encompasses the relational

properties of disjoint sum and cartesian product but at the expense of requiring a more sophisticated

understanding of allegory theory which we wanted to avoid in the current presentation.

32

6.4 A programming paradigm

Hylo programs, combined with relation algebra form the basis for a paradigm for program

design that combines the paradigms of sequential and functional programming.

In general, the design of a program starts with a speci�cation (relation) S , often

expressed using predicates. Relational, i.e. point-free, formulae can be far more compact

than predicates, so S is rewritten in relational form. Such a rewrite has the additional

advantage that it helps to structure the speci�cation. In this process, however, one

should not be holier than the pope by insisting that all points be removed. One can,

for instance, avoid making the plumbing of rearrangements of arguments and other nat-

ural transformations explicit by introducing a name for the plumbing relation and just

de�ning it pointwise.

Once speci�cation S has been moulded into relational form, program design starts.

We have to determine a relator F and relations R and T such that:

R �F:S �T � S :(34)

The choice of F corresponds to the choice of a solution strategy like structural recursion,

repetition, divide-and-conquer, etc. Alternatively, it may be easier to design a suitable

intermediate data structure. In the case of more complex problems it may also be

necessary to generalise S to a collection of speci�cations, the implementations of which

are designed together resulting in a mutually recursive program.

The design of R and T re
ects two phases in the implementation, the catamorphism

and the anamorphism phases, respectively. The design of the anamorphism part involves

the construction of a \type invariant" whilst the construction of the catamorphism is a

recursive problem decomposition, making use of the type invariant.

A good example is the design of merge sort. In the �rst phase a tree structure (with

the values in the leaves) is formed with the invariant property that, �rst, the subtrees are

balanced and, second, the elements of the subtrees are the elements of the input list. In

the second phase the tree is broken down into a sorted list whereby two lists are joined

by the standard \merging" process. Of course, in the usual implementations of merge

sort the construction of the tree is \virtual", i.e. not made explicit. (However, the tree

is implicitly present in the stack used to implement the recursion.)

Quicksort is also an example: the �rst phase constructs a binary search tree. That

is, a binary tree is constructed with the invariant property that the value in the root is

at least as big as the maximum value in the left subtree and smaller than the values in

the right subtree. Another invariant is that the values in the tree are the values in the

input list. It is then easy to construct the program for the second phase that
attens

this tree into a sorted list. For another example in which the intermediate data structure

is a heap we refer the reader to [27].

33

There is one vital element that is missing in this account: the notion of making

progress, that is, constructing a terminating program. Making progress towards the

termination condition is a vital element in the design of sequential programs, equal in

importance to the invariant property. The body of a loop is designed so as decrease the

value of a bound function whilst maintaining the invariant. Making progress is also vital

in designing recursive functions in a functional programming language. In the remainder

of this paper we develop a theory of program termination relative to a design strategy.

Formally, we develop a calculus of \ F -reductivity", where relator F represents the design

strategy, and \reductivity" relates to reducing the problem size.

7 Reductivity and termination

In this section we introduce the primary novel contribution of this paper. The section is

devoted to justifying a formal, calculational de�nition of termination of hylo programs.

In order to give such a justi�cation without resorting to a long, possibly complicated,

formal operational semantics of hylo programs we approach the issue from two di�erent

angles. To begin with we develop the formal de�nition of \reductivity" from an informal

operational understanding of the execution of hylo programs. This is done in subsection

7.1. Then, in subsection 7.2 we show how the de�nition corresponds to an intuitive

notion of reducing problem size. Section 9, which makes use of results in section 8,

provides further justi�cation for the relevance of the proposed \reductivity" de�nition

by relating it to well-foundedness and structural induction.

7.1 Safe sets

In order to derive a de�nition of termination, we must �rst have an idea of how a hylo

program,

X = S �F:X �R

is to be executed. As long as no non-determinism is involved there seems to be only

one reasonable choice: the program is executed by �rst unfolding the equation and

then computing the argument for the recursive call by executing R . This procedure

is repeated until a base case is reached and no further unfoldings are necessary. Then

the output is computed by executing S as often as the equation was unfolded. If no

base case is reached then the execution does not terminate and no output is produced.

Somewhat more precisely: for each input which gives rise to a terminating computation

there exists a natural number n such that the output value is related to the input value

by relation

S � F:S � � � � � Fn:S �Fn+1:?? � Fn:R � � � � � F:R �R(35)

34

(where the relation F:?? is the input-output relation for the base case). This is the

familiar execution scheme applied by the implementations of imperative languages like

Pascal and functional languages such as Haskell. (Because of this execution scheme, the

computed input-output relation is the least solution of the hylo program. Relators that

arise in practice are continuous, so the union over all n of the relations (35) is the least

solution of the program.)

If R is deterministic there is only one possible argument for each recursive call (and

therefore only one value for n). However if R is non-deterministic then each unfolding

can give rise to many possibilities for continuing the computation. The question is now

which of those possible continuations is chosen. The standard semantics of the guarded

command language is de�ned in such a way that one of the possibilities can be chosen

non-deterministically. However, there is another scenario imaginable: all possibilities

could be pursued, maybe in parallel, until a base case is reached.

An ideal implementation of Prolog should do the latter. There is then the prob-

lem that R can be unboundedly nondeterministic: there can be an in�nite number of

possible continuations. In that case (assuming that no machines exist with unbounded

parallellism) there can be two causes of non-termination: either there is never a base

case reached or at some point in�nitely many possible continuations have to be followed.

However, if R is boundedly non-deterministic this execution scheme will more often

lead to a terminating computation than the execution scheme of the guarded command

language.

For a given input, exploring all possible continuations in parallel will result in a

terminating computation if one of the possible continuations leads to a base case. On the

other hand, in the case that one continuation is chosen non-deterministically, termination

can only be guaranteed if all continuations lead to a base case.

Although the execution scheme of the guarded command language is perhaps less

attractive because it terminates less often we choose that as the way the hylo program

is run. The reason is that choosing a continuation non-deterministically, rather than

pursuing all possible continations, is compatible with the standard implementations of

functional and imperative languages.

Given program

X = S �F:X �R ,(36)

a subset of the carrier set I of coalgebra R is called \safe" if the program is guaranteed

to terminate when started in a state from the subset. The union of all safe sets is called

the maximal safe set and is modelled by core
exive B . So, maximal safe set B is to be

interpreted as the set of all states in which the program can be started without the risk

of non-termination. Note that, with this interpretation of safe, a set is safe if and only

if it is contained in B .

35

The assumption is now that the maximal safe set exists and our goal is to characterise

this set.

A �rst requirement on a safe set A (i.e. a set with property A�B) is that, whenever

program X is started in it, all possible recursive calls terminate: we can not be sure which

of them is chosen. So, if the program is started in set A , the recursive call should be

started in the maximal safe set B . This can be expressed as (R �A)<� F:B . In words, the

left domain of R �A is an F -structure and each element in such an F -structure should

satisfy property B . The requirement on A can thus be formalised as:

A�B) (R �A)< � F:B :(37)

Conversely, if property (R �A)<� F:B holds (i.e. the recursive calls are started in the

safe set B whenever the program is started in set A) then set A can be considered safe

and should therefore be contained in the maximal safe set:

A�B ((R �A)< � F:B :(38)

Now we can make use of the de�ning Galois connection of the core
exive factor: ex-

pression (R �A)< � F:B can be rewritten as A�RnF:B . Therefore (37) and (38) can be

combined giving:

8(A :: A�B � A�RnF:B)(39)

The rule of indirect equality gives that (39) is equivalent to B=RnF:B . This leaves us

with the choice which solution of this equation in B to take. Basically there are only two

obvious choices: the least and the greatest solution. In general, however, the greatest

solution is equal to the identity relation. So if we take that one as a safe set we adopt

the view that the computation can be started safely in any state, regardless of what R

is. This would obviously be too optimistic. Therefore we take the least solution as the

maximal safe set. (The pessimistic view is a \demonic" view as opposed to an \angelic"

view of program termination.)

De�nition 40 (Safe set) The safe set of program X = S � F:X �R is the core
exive

�(A 7!RnF:A) .

2

Now the execution of program X = S � F:X �R terminates if the program is started in

its safe set. Admittedly, this de�nition is a bit informal: we did not de�ne what it

means for a program (an equation) to be started in a core
exive. This can be made

precise, but we will not do so here because here we are interested only in programs

which terminate everywhere. Such a program will be called a terminating program and

the notion \terminating program" can be de�ned (precisely) in terms of reductivity.

36

If �(A 7!RnF:A) equals the carrier of R , the program can be started safely in any

state. Conversely, if �(A 7!Rn F:A) does not equal the carrier of R , there is a non-safe

state because �(A 7!RnF:A) is the maximal safe set. This gives the connection between

reductivity and termination.

De�nition 41 (F -reductivity) Relation R :: F:I I is said to be F -reductive if and

only if it enjoys the property:

�(Rn ÆF) = idI .(42)

2

De�nition 43 (Terminating program) Program X = S � F:X �R is a terminating

program if and only if the relation R is F -reductive.

2

Note that reductivity states that the equation B=Rn F:B has only one solution. So

if we restrict our attention to terminating programs in the sense of de�nition 43 the

choice which solution of this equation should be taken as the maximal safe set becomes

irrelevant.

7.2 Reducing problem size

Having de�ned termination, we have to check that the de�nition given here is compatible

with the programmer's de�nition.

A programmer proves termination by using well-founded relations: he has to prove

that the argument of every recursive call is \smaller" than the original argument. For

hylo program X = S � F:X �R this means that all values stored in an output F -structure of

R have to be smaller than the corresponding input of R . More formally, with xhmemiy

standing for \ x is a member of F -structure y " (or, x is a value stored in F -structure

y "), we need for all x and z

8(y :: xhmemiy ^ yhRiz) x� z) ,

for some well-founded ordering � . That is, a relation R is F -reductive if and only if

there is a well-founded relation � such that whenever an F -structure is related by R to

some y , it is the case that every value stored in the F -structure is related to y by � .

To make this statement precise we need to formalise the concept of \values stored in

an F -structure". Hoogendijk and De Moor [16, 15] have shown that this is possible for

so-called \container types". For the relators from this class one can de�ne a membership

37

relation, say mem . For example, for the list relator this relation holds between a point

of the universe and a list precisely when the point is in the list. For product the relation

holds between x and (x;y) and also between y and (x;y).

A precise characterisation of the membership relation of a relator is the following (see

[16, 15]):

De�nition 44 (Membership) Relation mem :: I F:I is a membership relation of

relator F if and only if it satis�es, for all core
exives A , A� I :

F:A = memnA :

2

When this de�nition is expressed pointwise it reads:

x2F:A � 8(i: ihmemix: i2A) :

Informally: an F -structure satis�es the property F:A i� all the values stored in the

structure satisfy property A .

Using this de�nition of membership we get a precise relationship between reductivity

and well-foundedness. Indeed, for coalgebra R with carrier I and core
exive A below

I , we have:

Rn F:A

= f de�nition 44 g

Rn (memnA)

= f factors (1) g

(mem �R)nA :

Now, well-foundedness of S :: I I is the condition that the least pre�x point of the

function A 7!SnA is I [8] whereas reductivity of R :: F:I I is the condition the

least pre�x point of the function A 7! Rn F:A is I . So, for coalgebra R :: F:I I , the

statement that R is F -reductive is equivalent to the statement that mem �R is well-

founded. Formally,

R is F-reductive � mem �R is well-founded :

Conversely,

S is well-founded � memnS is F-reductive :

This follows because, by the argument above with R instantiated to memnS ,

(memnS)n F:A = (mem �memnS)nA :

38

But mem �memnS � S . So, by the anti-monotonicity of (nA),

(memnS)n F:A � SnA :

Hence, the least pre�x point of (((memnS)n) ÆF) is at least the least pre�x point of (Sn).

Summarising, we have:

Theorem 45 Suppose mem is the membership relation for relator F . Then the func-

tions R 7!mem �R and S 7!memnS form a Galois connection between the F -reductive

relations, R , and the well-founded relations, S .

2

To illustrate this theorem we recall that the relator corresponding to iteration over

state space I is (I+). Termination of a loop with body S should therefore be expressible

in terms of (I+)-reductivity. Indeed:

Theorem 46 For all R and S ,

RHS is (I+)-reductive � S is well-founded :

Proof The membership relation for (I+) is inr[and inr[�RHS = S and inr[nS = >>HS .

So, by theorem 45, if RHS is (I+)-reductive then S is well-founded and if S is well-

founded >>HS is (I+)-reductive. But >>HS�RHS for all R . Thus RHS is (I+)-reductive

for all R . (The theorem can be proved without recourse to theorem 46 if desired.)

2

Bird and De Moor [6, chapter 6] avoid the introduction of the notion of reductivity by

always requiring that mem �R is well-founded whenever F -reductivity of R is required.

This only works if F has a membership relation. The class of such relators is large.

It contains for instance all the polynomial relators, the relators we use in our everyday

work. So, although there exist relators that do not have a membership relation it is likely

that these are interesting for theoretical reasons only. The main advantage of de�ning

termination in terms of reductivity instead of well-foundedness and membership is that

it is possible to formulate theorems relating reductivity of one type to reductivity of

another type. Several of the rules presented in section 8 are of this nature.

For a profound discussion of membership the reader is referred to Hoogendijk's thesis

[15].

8 A calculus of reductive relations

In the previous section we argued that the notion of F -reductivity captures precisely

the termination of hylo programs. In this section we give a number of rules that allow

39

us to prove that a relation is reductive. These rules form the basis of a calculus of

reductive relations. In each case we motivate the rule by showing how it is used to

verify the termination of a known program or class of programs. However, the major

design criterion for the calculus is not program veri�cation but that it is useful for the

construction of terminating programs.

8.1 Basic F -reductive relations

In this section it is shown that for any relator F there exist F -reductive relations. We

begin with perhaps the most commonly used theorem.

Theorem 47 The converse of an initial F -algebra is F -reductive.

Proof Let in :: I F:I be an initial F -algebra and A an arbitrary core
exive of type

I I . We must show that

I�A (in[n F:A � A :

We start with the antecedent and derive the consequent:

in[n F:A � A

� f for function f and core
exive B , fnB = f[�B � f ,

in[is a function and F:A is a core
exive g

in � F:A � in[� A

) f Hylo theorem: (33) and (29) ,

in is an initial F -algebra g

([in]) � A

� f identity rule: (31), in :: I F:I is an initial F -algebra g

I�A :

2

An immediate corollary of theorem 47 is that the cata program

X :: X = R � F:X � in[

is terminating according to de�nition 43. Also, by theorem 63 which we prove later, the

solution of the equation is unique for all R and not just the maps in the allegory.

Our next theorem is motivated by a desire to show that selection sort is a terminating

program. The program is:

slsrt = nil5cons � 11+I�slsrt � nil[H (cons[� select) .(48)

40

Relation select holds between two lists if the output list has the property that it can

be obtained from the input list by swapping the �rst element and the minimum of the

list. Because there is no plumbing relation involved the program is easy to interpret: it

relates the empty list to the empty list. A non-empty list is sorted by swapping the �rst

element and the minimum of the input list (select), then the list is taken apart into the

head and the tail (cons[), the tail is sorted recursively (I�slsrt), �nally the head, i.e.

the minimum of the input, is added to the result of the recursive call (cons).

The termination proof of selection sort depends on the observation that select is a

relation between lists of equal length. The largest relation between lists of equal length

is List:>> : this relation holds between lists of equal length such that the elements of

the input and output list are related by the total relation, which means that the only

thing we can say about the input and output is that they are of equal length. In fact,

the relation List:>> can be used to formalise the notion \equal length": relation R is a

relation between lists of equal length i� R is contained in List:>> .

The desired theorem is generic in inductively de�ned types like List . The basis for

the theorem is that if � is a binary relator and, for each I , inI :: T:I I�T:I is

an initial (I�)-algebra, then the function mapping R :: A B to the catamorphism

([(idB�) ; inI � R� idT:A]) extends the mapping T on objects to a relator, often called a

tree relator [5, 6].

Theorem 49 Let � be a binary relator, inI an initial (I�)-algebra, and T the tree

relator corresponding to � and inI . Then inI
[�T:>>I I is (I�)-reductive.

Proof For brevity we omit the subscripts on in and >> (except where the information

is relevant), and we let B denote �(A 7! (in[�T:>>)n (I�A)) . Then

in[�T:>> is (I�)-reductive

� f in[�T:>> :: I�T:I T:I , de�nition 41 g

idT:I � B

(f in[:: I�T:I T:I is (I�)-reductive. g

in[n (I�B) � B

(f by the rolling rule of �xed point calculus [24]

in[n (I�B) = �(A 7! in[n (I� (T:>>nA))) g

�(A 7! in[n (I� (T:>>nA))) � �(A 7! (in[�T:>>)n (I�A))

(f for all A , in[n (I� (T:>>n A)) � (in[�T:>>)n (I�A)

(for proof, see below) monotonicity of � g

true :

41

The proof is completed by establishing the inclusion contained in the last hint. This we

do as follows.

(in[�T:>>)n (I�A)

= f T:>> = ([(idI�) ; in � >>� idT:I]) and >>I I = (>>I I)
[.

Thus in[�T:>> = >>�T:>> � in[g

(>>�T:>> � in[)n (I�A)

= f factors: (1) g

in[n ((>>�T:>>)n (I�A))

� f relators distribute over core
exive factors;

this also holds for binary relators g

in[n ((>>n I)�(T:>>n A))

= f Rn I= I g

in[n (I� (T:>>n A)) :

2

The following theorem is not deep, nevertheless it is extremely useful. Recall that

the re�nement order of programs is the same as inclusion of relations. The content of

theorem 50 is therefore that reductivity is preserved under re�nement.

Theorem 50 If R is F -reductive and S�R then S is F -reductive.

Proof Immediate from the de�nition of F -reductivity and the monotonicity properties

of the core
exive factor, relators and the operator � .

2

Now we can return to the proof of termination of selection sort. We have:

nil[H (cons[� select)

� f select is a relation between lists of equal length g

nil[H (cons[� List:>>)

= f List:R � nil = nil , i.e. List:R maps the empty list to the empty

list; this is used in the \converse" form

nil[� (List:>>)[= nil[;

relators commute with converse; >>[=>> g

42

(nil[� List:>>)H(cons[� List:>>)

= f H - � -fusion g

nil[H cons[� List:>>

By theorem 50, relation nil[H (cons[� select) is (11+I�)-reductive if nil[H cons[� List:>>

is, which is a consequence of theorem 49 obtained by taking List for map , 11+(R�S)=R�S ,

and nil5 cons = in .

8.2 New F -reductive relations from old

This section is intended to show how, given an F -reductive relation, other reductive

relations can be constructed.

An important lemma in �xed point calculus is the so-called square rule. The rule

says that if in is an initial F -algebra then in � F:in is an initial F2 -algebra.

A concrete instance of this theorem in action is the de�nition of integer division by

two: 0 and 1 divided by two are both 0 , and n+2 divided by two is equal to n divided

by two plus one. This de�nes division by two on a (11+11+)-algebra, rather than on a

(11+)-algebra which is the usual case when de�ning functions by primitive recursion on

the natural numbers.

The theoretical importance of the square rule is as a lemma in the proof that the

cartesian product of two algebraically complete categories is also algebraically complete

[12]. The square rule can clearly be extended to an n th power rule. The corresponding

reductivity lemma is the following:

Lemma 51 (Power Rule) Suppose R :: F:I I is F -reductive. De�ne the function

f on positive numbers by f:1=R , f:(n+1) = F:(f:n) �R . Then f:n is Fn -reductive.

Proof We �rst prove by induction on n , n� 1 , that

(Rn ÆF)n:A � f:nn Fn:A :

The basis, n=1 , is trivial. For the induction step we have:

(Rn ÆF)n+1:A

= f de�nition of gn+1 g

R n F:((Rn ÆF)n:A)

� f induction hypothesis, monotonicity of Rn and F g

Rn F:(f:nn Fn:A)

� f factors: (1), F distributes through composition g

43

Rn (F:(f:n)n F:(Fn:A))

= f factors: (1) g

(F:(f:n) �R)n F:(Fn:A)

= f de�nition g

f:(n+1) n Fn+1:A :

The proof of the lemma is now straightforward. We have:

f:n is Fn -reductive

� f de�nition g

�(((f:n)n) ÆFn) � I

(f above, monotonicity of the �xed point operator g

�((Rn ÆF)n) � I

(f �(gn)��g g

�(Rn ÆF) � I

� f de�nition g

R is F -reductive :

2

The next two theorems can be used to change the \kind of reductivity", i.e. to

construct F -reductive relations from G -reductive relations. These theorems formalise

the idea that composing a reductive relation with a relation which \has no real e�ect" on

a data structure results in a reductive relation. Of course, the phrase \has no real e�ect"

is a bit vague, but the intended meaning is that such a relation transforms G -structures

into F -structures without a�ecting the contents of the structures. That is, the only thing

that can happen is that elements are copied or discarded. In order to state the theorem

precisely we need to formalise what we have been loosely describing as \plumbing".

De�nition 52 Relation R is a plumbing to relator F from relator G , written R ::

F
:
<� G , i� R :: F:I G:I , for some I , and for all core
exives A such that A� I :

G:A � Rn F:A :

2

Natural transformations are families of plumbing relations:

Lemma 53 Suppose � :: F -G is a natural transformation. Then, for each I , �I

is a plumbing to F from G:

44

Proof Suppose A is a core
exive below I . Then

G:A � �I n F:A

� f factors: (1) g

(�I �G:A)< � F:A

� f domains g

F:A ��I �G:A = �I �G:A

� f � :: F -G . Thus, F:A ��I � �I �G:A .

G:A �G:A = G:A g

F:A ��I �G:A � �I �G:A

� f F:A� idF:I g

true :

2

We can now formulate our theorem.

Theorem 54 Let Q be G -reductive and S :: F
:
<� Id , where Id denotes the identity

relator. Then F:Q �S is (FÆG)-reductive.

Proof We prove the stronger:

�(A 7! Qn G:A) � �(A 7! (F:Q �S) n F:(G:A)) :

This follows, by monotonicity of the �xpoint operator � , from the fact that, for all A ,

(F:Q �S)n F:(G:A)

= f factors: (1) g

Sn (F:Qn F:(G:A))

� f factors: (1) g

Sn F:(Qn G:A)

� f S :: F
:
<� Id g

Qn G:A :

2

45

A typical use of theorems (50) and (54) is: R is F -reductive follows from the fact that

there is a well-founded relation Q and a relation S :: F
:
<� Id such that R � F:Q �S .

As an example of this theorem, consider the largest relation R with the property

that mhRix implies that x is a natural number and m is a list of natural numbers, all

smaller than x . Now consider the relation fan 2 which relates a number x to a list of

arbitrary length containing only copies of x . This relation certainly has the property

fan �A � List:A � fan : if fan is applied to an argument enjoying property A , the result

is a list and all of the elements in that list have property A . If fan is now composed

with the relation List:< , where < is the (well-founded) less-than relation on the natural

numbers, it follows that the resulting relation List:< � fan has precisely the properties of

relation R . By instantiating Q to < and G to the identity relator in theorem 54, it

follows that R is List -reductive.

(This argument is in fact an instance of the generic discussion of membership in

section 7.2. Associated with each container type F there is a family of fan relations such

that fanI :: F:I I . Given a seed value x of type I the fan relation fanI constructs

non-deterministically an F -structure in which the value stored at each storage location

is x: Given relation R :: I I , the relation F:R � fanI is equal to memnR where mem is

the membership for F (of the appropriate type). See [16, 15] for further details. Thus,

by applying theorem 45, T:R � fanI is T -reductive if R is well-founded.)

A particularly important F -reductivity theorem is:

Theorem 55 Let R :: F:I I be F -reductive, and S :: H:(G:I) G:(F:I) such that

S :: HÆG
:
<� GÆF , and G be a relator that is a lower adjoint in a Galois connection.

Then S �G:R is H -reductive.

Proof We have to prove that G:I � �(A 7! (S �G:R)n H:A) , assuming that R is F -

reductive. We in fact prove the stronger: for all F -coalgebras R

G :�(A 7! Rn F:A) � �(A 7! (S �G:R) n H:A)(56)

The theorem then follows from the assumed F -reductivity of R: Because G is a lower

adjoint in a Galois connection, property (56) follows by �xpoint fusion [24] from the fact

that, for all A ,

(S �G:R)n H:(G:A)

= f factors: (1) g

G:Rn (Sn H:(G:A))

� f S :: HÆG
:
<� GÆF g

2See [16, 15] for a discussion of the generic concept of a fan relation.

46

G:R n G:(F:A)

� f factors: (1), G is a relator g

G:(Rn F:A) :

2

The restriction imposed on relator G in this theorem is rather severe. However, there

is one important class of relators satisfying it: the sections X 7! J�X and X 7!X�J

of the product relator. With this instantiation of G , the theorem allows one to prove

termination of programs with several parameters that are de�ned by structural recursion

on one of the parameters.

There are, of course, many examples of such programs. Elementary examples are the

inductive de�nitions of addition, multiplication and exponentiation on natural numbers:

0+n = n and (m+1)+n = (m+n)+1 ;

0�n = 0 and (m+1)�n = m�n+n ;

n0
= 1 and nm+1

= nm�n :

All these de�nitions have the form

X:(0; n) = f:n and X:(m+1 ; n) = g:(m; h:n)

where X is the function being de�ned and f , g and h are known functions. (We leave

the reader to supply the instantiations for f , g and h .) In point-free form,

X = k � (11+X)� id � pass4 exr � (zero[H succ[)� id

where

k = (f � exr)5 (g � id�h) � distr :

Here distr is a function of type (H�K)+(J�K) (H+J)�K that is polymorphic in H ,

J and K , and pass is a function of type 11+(I�K) (11+ I)�K that is polymorphic in

I and K .

Another example, with the same structure but de�ned on a datatype other than

the natural numbers, is the program that appends two lists. The standard de�nition

comprises the two equations

nil ++ ys = ys and (x :xs) ++ ys = x : (xs ++ ys) :

As a single equation (where we write join instead of ++):

join = post � (11+(idI� join))� idList:I � pass4 exr � (nil
[
H cons[)� idList:I :

47

where post = exr 5 cons � distr . Here distr is as before whereas in this case pass is a

function of type 11+(I�(J�K)) (11+(I�J))�K that is polymorphic in I , J and K .

Yet another example (which we will not spell out in detail) is the program that inserts

an element in a tree. The recursion is according to the structure of its tree argument.

The other argument, i.e. the element to be inserted, serves as a parameter that is only

used in the \base case" of the recursion.

All these examples conform to the general form:

X = R � F:X�P � F:(I�S)�P � pass4 exr � in[�P .(57)

Here P is (the identity function on) the type of the parameter. The carrier of the initial

algebra in is I , and the type of X is J I�P for some J . The types of the relations R

and S are J F:J�P and P P , respectively.

The generic component pass has type F:(I�P) F:I�P . Its function is to pass the

parameter to all values stored in an F -structure. (Other names for it are \broadcast"

[15] and \strength" [23].) In order to prove termination of program (57) we require that,

for all core
exives A under I ,

pass � F:A�B � F:(A�B) � pass .(58)

It can be shown that for any so-called regular relator (a relator built, possibly inductively,

from constant, product, sum and map relators) such a relation pass can be constructed.

Making use of the requirement (58) on pass we can show that program (57) ful�lls the

conditions for theorem 55 to be applied as follows. First we note that, for all core
exives

A and B where A�P and B�P ,

F:(P�S)�P � pass4 exr � F:A�B

� f distribution of composition over split g

F:(P�S)�P � (pass � F:A�B)4(exr � F:A�B)

� f assumption (58); computation rules g

F:(P�S)�P � (F:(A�B) � pass)4(B � exr)

= f � - 4 -fusion g

F:(P�S)�P � F:(A�B)�B � pass4 exr

= f functors distribute over composition g

F:(A�(S �B))�B � pass4 exr

� f A�P and domains g

F:(A� (S �B)<)�B � F:(P�S)�P � pass4 exr :

48

Thus it follows that

F:(P�S)�P � pass4 exr � F:A�P � F:(A�P)�P � F:(P�S)�P � pass4 exr :

In other words: relation

F:(P�S)�P � pass4 exr

is a plumbing relation with type

(�P) ÆF Æ (�P)
:
<� (�P) ÆF :

Furthermore, (�P) is a relator which distributes over all unions of core
exives. By

theorem 55 it now follows that

F:(P�S)�P � pass4 exr � in[�P

is a (�P) ÆF -reductive relation. Hence, by de�nition, program (57) is a terminating

program.

In this way, with one theorem we have also proved that all the examples mentioned

above (addition, multiplication, exponentiation and join) are terminating programs.

(Understanding how to apply the theorem is, of course, much harder than proving the

termination of the individual programs on an ad hoc basis but, in our view, the extra

e�ort is well worth while.)

From theorem 55 the next result follows as a simple corollary.

Corollary 59 If R is F -reductive and S :: H
:
<� F then S �R is H -reductive.

Proof Instantiate theorem 55 with the identity relator (which distributes, of course,

over any union).

2

Termination of the para program (see section 5)

X :: X = R � F:(I�X) � F:(I4I) � in[

is now straightforward to show. Relation in[is F -reductive. Furthermore, we have

F:(I4I) � F:A � F:(I�A) �F:(I4I)

To show this one needs that relators distribute over composition, that composition dis-

tributes over split (i.e. I4I �Y � Y4Y), the � -4 -fusion rule, that A is a core
exive and

also that relators are monotonic. This means that relation F:(I4I) is a plumbing relation

of type F Æ (I�)
:
<� F . It now follows by corollary 59 that F:(I4I) � in[is an F Æ (I�) -

reductive relation. Hence, by de�nition 43, the para program is terminating (and has,

by theorem 63 proved later, a unique solution).

49

The proof that a mutu program (see section 5)

X :: X = R � F:X4F:X � in[

is terminating is similar to the proof for the para program. One needs to check that I4I

is of type G
:
<� F , where relator G is de�ned by G:Y = F:Y� F:Y , i.e. one has to show

that

I4I � F:A � I4I � F:A�F:A

which follows immediately by distribution of composition over split and � -4 -fusion.

8.3 Bound functions

The mathematical construction of while loops typically makes use of a so-called bound

function, often with range the natural numbers. The idea is that termination of the

loop is guaranteed if the loop body decreases the bound function at each iteration of

the loop. The formal basis for the use of bound functions is the theorem that if R is a

well-founded relation on the set I , and f is a function to I from some set J , then any

relation S on J such that S � f[�R � f is well-founded. That is, S is well-founded if,

for all x and y , xhSiy implies that f:xhRif:y . In particular, taking J to be the state

space of the program, S to be the loop body, and R to be the less-than ordering on

natural numbers, it thus follows that S is well-founded if xhSiy implies that f:x<f:y .

Generalising this theorem to F -reductivity, we have to take account of the fact that

the outputs of an F -coalgebra are F -structures. We get:

Theorem 60 Let R :: F:I I be an F -reductive relation and f :: I J a functional

relation. Then F:f[� R � f is F -reductive.

Proof We have, for all A such that A� J ,

�(A 7! (F:f[� R � f)n F:A)

= f factors: (1) g

�(A 7! fn ((F:f[� R)n F:A))

= f rolling rule g

fn�(A 7! (F:f[� R)n F:(fnA))

= f factors: (1) g

fn�(A 7! Rn F:f[n F:(fnA))

� f factors: (1), F is a relator, monotonicity g

50

fn�(A 7! Rn F:(f[n (fnA)))

= f factors: (1) g

fn�(A 7! Rn F:((f � f[)nA))

� f f � f[� I , antimonotonicity of n ,

monotonicity of the other operators g

fn�(A 7! Rn F:A) :

So, if R is F -reductive, �(A 7! (F:f[� R � f)n F:A)� fn I . The result follows from the

fact that Sn I equals J for all S :: I J .

2

It now follows by theorem 50 that, if R and f satisfy the conditions of theorem 60,

and S satis�es the property

S � F:f[� R � f ;

then S is F -reductive. This condition is satis�ed when f is a homomorphism to coal-

gebra R from coalgebra S . In particular we have:

Theorem 61 Let f be an isomorphism to F -coalgebra S from F -reductive relation

R . Then S is F -reductive. In other words: reductivity is preserved under isomorphism

of coalgebras.

2

9 Connections to other concepts

The notion of reductivity introduced in section 7 is novel and, as such, needs to be

explored from several di�erent angles before it can be claimed that it is the \right"

notion. In this section we study the connection between reductivity and alternative

notions that might have been proposed in its place.

In general, a relation on some state space is well-founded if and only if it admits

induction. An alternative notion that we might wish to explore is therefore a gener-

alisation of well-founded to \ F -well-founded". This alternative is discussed in section

9.1 where it is shown that every F -reductive relation is F -well-founded. A consequence

is that every hylo program with an F -reductive coalgebra is terminating. It is shown,

however, that not every F -well-founded relation is F -reductive.

We also explore in section 9.2 a point-free formulation of the principle of structural

induction, which we call \ F -inductivity". Here we show that the converse of every total

F -reductive relation is F -inductive but that it is not the case that the converse of every

51

F -inductive relation is F -reductive. We also show that the converse of every injective

F -inductive relation is F -reductive.

9.1 Well-foundedness generalised

In general, a relation on some state space is well-founded if and only if it admits induction.

Point-free formulations of these concepts have been given in [8]. Comparing these with

the de�nition of F -reductivity it is clear that F -reductivity generalises the notion of

admitting induction. Our concern in this section is with generalising the notion of well-

foundedness and relating the generalised notion to F -reductivity.

Well-foundedness of relation R is equivalent to the equation X:: X=X �R having a

unique solution (which is obviously ?? , the empty relation) [8]. This is easily generalised

to the property that, for all relations S , the equation X:: X=S �X �R has a unique

solution. The generic notion of well-foundedness we propose focusses on this unicity of

the solution of equations.

De�nition 62 (F -well-founded) Relation R :: F:I I is F -well-founded i�, for all

relations S :: I F:I and X :: I I ,

X = S �F:X �R � X=�(Y 7! S � F:Y �R) :

2

As mentioned above, a relation is Id -well-founded if and only if it is well-founded

in the traditional sense [7]. So F -well-foundedness is a proper generalisation of well-

foundedness.

Next we show that the property that reductivity implies well-foundedness goes through

for the generalised notions. In other words: if R :: F:I I is an F -reductive relation then,

for any relation S :: I F:I , the function Y 7! S � F:Y �R has a unique �xed point. This,

in turn, is equivalent to: every �xed point is contained in the least �xed point. So we

assume that X is an arbitrary �xed point and Z is the least �xed point of Y 7! S � F:Y �R .

We have to show that X�Z under the assumption that R is F -reductive.

X�Z

� f assumption: R is F -reductive, i.e �(Rn ÆF)= I g

X ��(Rn ÆF) � Z

(f � -fusion ;

assumption: Z is least �xed point g

8(A:: X � Rn F:A � S �F:(X �A) �R)

52

� f assumption: X is a �xed point;

F distributes over composition g

8(A:: S � F:X � R � Rn F:A � S � F:X � F:A �R)

(f monotonicity g

8(A:: R � Rn F:A � F:A �R)

� f factors: (3) g

true :

This completes the proof of the following theorem.

Theorem 63 An F -reductive relation is F -well-founded.

2

For the identity relator it is the case that \admitting induction" and \well-founded"

are equivalent notions. This is not the case for the generalisations F -reductive and F -

well-founded, as is demonstrated by the following counter example. Let F:X=X�X and

consider the relation R4I where R :: I I is a non-empty but (Id-)well-founded relation.

First we demonstrate that R4I is F -well-founded by showing that any �xed point of the

function Y 7! S � F:Y �R4I is equal to the least �xed point of that function.

X = S � F:X �R4I

) f Leibniz; de�nition of F ; � - 4 -fusion g

>> �X = >> �S � (X �R)4X

) f >> � S�>> g

>> �X � >> � (X �R)4X

� f domains: >> �Y = >> �Y> g

>> �X � >> � ((X �R)4X)>

) f domains: (Y4Z)> = Y>\Z> g

>> �X � >> � (X �R)>

� f domains: >> �Y = >> �Y> g

>> �X�>> �X �R

) f assumption: R well-founded g

>> �X=??

� f as before g

53

X=??

� f F is ?? -strict g

X=�(Y 7! S �F:Y �R4I)

On the other hand R4I is certainly not F -reductive, something we show by contradiction.

R4I is F -reductive

) f exr 2 Id
:
<� F ; Corollary 59;

Id -reductive implies well-founded g

exr �R4I is well-founded

� f exr �R4I = I �R> g

R> is well-founded

� f The only well-founded core
exive is ?? g

R>=??

However, by assumption R , and therefore R> , di�er from bottom. Hence R4I is not

F -reductive

Because an F -reductive relation is also F -well-founded we have that a consequence

of termination is that a terminating program has a unique solution (i.e. a unique input-

output relation).

Theorem 64 If program X = S �F:X �R is terminating it has a unique solution.

Proof De�nition 43, theorem 63 and de�nition 62.

2

In order to illustrate the importance of unicity consider the following context-free

grammar:

S ::= " j aSbS j bSaS :

Here " denotes the empty word and the assumed alphabet is fa;bg .

The hylo program corresponding to this grammar (see section 6.2) is clearly termi-

nating. Formally this is a consequence of theorem 60: the bound function is the length

function on words, which is clearly reduced in every recursive call of the hylo program.

It therefore follows that the language generated, L:S , is the unique �xed point of the

hylo equation. Equivalently, L:S is the unique �xed point of the equation

X:: X = f"g [fagXfbgX [fbgXfagX :(65)

54

The language generated by this grammar is in fact the set of all words with an equal

number of a s and b s. Let M denote this set. The unicity property means that we can

prove this fact by showing that, �rst,

M � f"g [fagMfbgM [fbgMfagM

and, second,

M � f"g [fagMfbgM [fbgMfagM :

The former (which is easy to prove) shows that M is at least the least solution of

(65), whilst the latter (which is the harder part to prove and, of course, depends on the

alphabet being fa;bg) shows that M is at most the greatest solution of (65). Since (65)

has unique solution L:S it follows that M equals L:S .

Now consider the grammar

S ::= " j aSb j bSa j SS :

Straightforward �xed point calculus shows that the languages generated by the two

grammars are equal. However, the hylo equation corresponding to this grammar is not

terminating. Indeed it is easy to see that fa;bg� is also a solution of the equation

X:: X = f"g [fagXfbg [fbgXfag [XX :

The task of proving that the language generated by this grammar is M cannot be

achieved by using the same strategy. Thus either one has to show that the transformation

to the original grammar is valid, or one has to use an inductive argument based on the

length of words in M . The former strategy is, in our view, preferable in that it separates

the proof into distinct lemmas, each of which is relatively straightforward and each of

which adds additional insight.

9.2 Structural Induction

Structural induction is the standard induction scheme that is part of the de�nition of

recursive datatypes. For instance, structural induction over the type of natural numbers

is what is usually called the principle of induction, and its validity is one of the de�ning

properties of the naturals. In this section we present a point-free relational de�nition of

structural induction and relate it to reductivity.

The principle of induction on natural numbers can be expressed informally as: a

property is true of all natural numbers if it is an invariant of zero5succ . By this

we mean that the property is established by zero |a property is an \invariant" of a

constant function if the result of the function satis�es the property| and the property

55

is an invariant of succ if the function succ maps numbers satisfying the property to

numbers also satisfying the property.

The question we have to tackle is how to formalise the notion of \invariance". We

propose calling a core
exive A an invariant of R i�

(R � F:A)< � A :

Equivalently, in the predicate calculus, A is an invariant of F-algebra R i�

8(x:9(y: xhRiy: y2 F:A):x2A) :

We call this property an invariance property because it expresses the idea that an F-

structure (y) all of whose elements satisfy property A (y2 F:A) is mapped by R into

a value (x) also satisfying A (x2A).

Our notion of a relation R , being \inductive" with respect to F , is that it is possible

to deduce that all elements of the left domain of R satisfy some property A whenever

A is an invariant of R .

De�nition 66 (F -inductivity) A relation R :: I F:I is said to be F-inductive if,

for all core
exives A under I ,

I�A ((R � F:A)<�A :(67)

2

To make clear that de�nition 66 indeed captures structural induction, we consider the

datatype of lists. Let F be the relator that maps X to J+(11+(X�X)) and R the function

�J5(nillJ5joinJ) . Thus R is a coalgebra with carrier I equal to List:J consisting of the

junc of the relations �J (the function that maps a point x of type J to the singleton list

[x]), nillJ (the constant function mapping the element of the unit type to the empty list

of type List:J) and joinJ (the function that concatenates two lists of type List:J). We

now show that R is F -inductive.

With the above substitutions for F and R , the antecedent of (67) can be rewritten:

(�J5(nillJ5joinJ) � J+(11+(A�A)))< � A

� f 5 -+ -fusion, �J � J=�J , nillJ � 11=nillJ g

(�J 5 (nillJ 5 (joinJ �A�A)))< � A

� f (X5Y)< = X<[Y< g

(�J)< � A ^ (nillJ)< � A ^ (joinJ �A�A)<�A :

56

The �rst two conjuncts can be interpreted as: all singleton lists and the empty list satisfy

property A . This is the base case of a familiar type of inductive argument. The second

conjunct is the induction step: if two lists satisfy property A the join of the two lists

also satis�es A . Clearly, if the base case and induction step are true, all lists satisfy A .

This last fact can be restated as the consequent of (67) because the left domain of R

equals the type of lists: any list can be constructed as either a singleton, the empty list

or the concatenation of two lists. Therefore, with this choice of F and R formula (67)

holds true: the relation �5(nill5join) is (X 7! I+(11+(X�X)))-inductive.

If we substitute the relator (11+) for F and the relation zero5succ for R in the

antecedent of (67), a calculation similar to the previous one can be carried out. It

can then be veri�ed that the resulting formula is equivalent to the familiar formulation

of the base case and \step" of the induction principle for the natural numbers. So, the

statement that zero5succ is (11+)-inductive is equivalent to the statement that standard

induction over the natural numbers is allowed.

There is another way of justifying the de�nition of inductivity which we will just

sketch. Recall that de�nition 43 of termination depends on the assumption that if, due

to non-determinism there is, at a certain point during the execution, more than one

possibility to proceed, only one of those possibilities is chosen. Had we adopted the

other assumption, viz. that all possible continuations of the executions are pursued, it

would have turned out that the maximal safe set for coalgebra R should be a solution of

the equation B= (F:B �R)> . The argument in this case is that a set A is safe if and only

if a computation of R started in set A has at least one output for which every recursive

call is in the safe set B: That is,

A�B � A� (F:B �R)> :

Thus inductivity corresponds to an angelic notion of termination whereas reductivity is

demonic.

Recall that reductivity was meant to formalise strong induction, that is it should

be in a sense stronger than inductivity. Since inductivity is a property of algebras and

reductivity is a property of coalgebras, the right question to ask is: is the converse of a

reductive relation inductive? This turns out to be almost true.

Theorem 68 Let R be an F -reductive relation such that R< � F:R> . Then R[is

F -inductive.

Proof Let I be the carrier of R: Then, for all core
exives A under I ,

R[< � A

� f X< = X[> g

57

R>�A

� f factors: (1) g

I � R>n A

(f R is F -reductive g

Rn F:(R>n A) � R>n A

(f factors (1), relators g

R> �Rn (F:R> n F:A) � A

� f factors (1) g

R> � (F:R> � R)n F:A � A

� f assumption: R< � F:R> g

R> � R n F:A � A

(f R> � RnF:A = (R � RnF:A)> , factors: (2) g

(F:A �R)> � A

� f X< = X[> g

(R[� F:A)< � A :

2

An immediate corollary is that the converse of a total, reductive coalgebra is inductive.

This totality restriction is not severe and, indeed, is often desirable.

Next, we address the question whether reductivity is really stronger than inductivity.

Does there exist an inductive relation such that its converse is not reductive? To �nd

such a counter example we �rst prove a theorem that gives a suÆcient condition such that

inductive implies reductive. The theorem can be read as: the converse of an inductive

injection is reductive.

Theorem 69 If R :: I F:I is an F -inductive relation such that R[�R � I , then R[

is F -reductive.

Proof

I�A

(f R is F -inductive, de�nition 66 g

(R � F:A)<�A

� f X< = X[> ; distribution properties of [g

58

(F:A �R[)>�A

� f for single-valued f and all A , f> � fnA = (A � f)> ,

by assumption R[is single-valued g

R[> � R[n F:A � A

(f R[> � I g

R[n F:A � A :

2

To �nd a relation that is inductive but whose converse is not reductive we therefore have

to look at non-injective inductive relations. The function �5(nill5join) introduced earlier

in this section o�ers just such an example. The converse of this relation is not reductive.

It is easy to check that the following holds:

exl � inr[� inr[:: Id -F

where F is the relator X 7! I+(11+(X�X)) . So, if (�5(nill5join))[is F -reductive, the

relation

exl � inr[� inr[� (�5(nill5join))[

is Id -reductive by corollary 59 | in other words, it is well-founded. However this relation

is equal to exl � join[, a relation that relates the empty list to the empty list, which is

clearly not well-founded.

10 Generic Uni�cation

In this section we provide yet more evidence for the practical relevance of the notion of

reductivity. The example is drawn from the emerging �eld of \generic programming" [5].

It concerns the proof of correctness of a generic uni�cation algorithm. Such an algorithm

has been formulated by Jeuring and Jansson [17] but without proof of correctness. The

algorithm is \generic" in the sense that it is parameterised by a functor F that speci�es

the structure of expressions to be uni�ed.

Here we consider just one small aspect of such a proof of correctness of the algo-

rithm. Speci�cally, we show that the \occurs-properly-in" relation on expressions is

well-founded. Particularly remarkable about our proof is that it is very simple. This is

a result of its not requiring the de�nition of a size function on expressions in any way,

the key to the proof being instead the fact that the converse of an initial F -algebra is

F -reductive.

59

In its generic form, uni�cation takes the following form. A parameter is a relator F .

A second parameter is a type V , elements of which are called variables. Given these

two we may de�ne a relator FV which maps relation X to F:X+ idV . Then we assume

that in is an initial FV -algebra with carrier F?V . That is,

in :: F?V F:F?V+V :

The relator F? (together with appropriately de�ned unit and multiplier) is a monad

which, as the Kleene star-like notation suggests, is obtained by repeated application of

the relator F . Elements of F?V are called expressions ; the parameter F limits the way

that new expressions are built up out of subexpressions. Substitution of an expression

for a variable can now be de�ned in such a way that the composition of substitutions is

Kleisli composition in the monad. The ordering \more general than" on substitutions

is then de�ned in the usual way. Generic uni�cation is then the problem of �nding a

substitution that uni�es two expressions and is more general than any other uni�er.

As remarked earlier, Jeuring and Jansson have formulated a generic uni�cation al-

gorithm but without proof of correctness. One element of such a proof of correctness is

to show that if a variable occurs in an expression then the variable and expression are

not uni�able. The way to do this is to de�ne an \occurs-properly-in" relation between

expressions, show that this relation is well-founded (and thus is irre
exive) and �nally

show that it is preserved by substitution. Here we will just show the �rst two of these

steps as an illustration of the reductivity calculus.

Suppose mem is the membership relation of the relator F . Let inlA;B denote the in-

jection function of type A+B A . (We will drop subscripts from now on for simplicity.)

Then we can de�ne the relation occurs properly in of type F?V F?V by

occurs properly in = (mem � (in�inl)[)+ :

Informally, the relation (in�inl)[(which has type F:(F?V) F?V) destructs an element

of F?V into an F structure and then mem identi�es the data stored in that F structure.

Thus mem � (in�inl)[destructs an element of F?V into a number of immediate subcompo-

nents. Application of the transitive closure operation repeats this process thus breaking

the structure down into all its subcomponents.

The occurs properly in relation has a very simple structure. We ought to be able to

see that it is well-founded almost directly just from that structure. Indeed this is what

the reductivity calculus allows us to do. The lemma and its proof follow. The �rst step

involves a well-known property of well-founded relations. Otherwise, every non-trivial

step uses the theory of reductivity developed in this paper.

Lemma 70 The relation occurs properly in is well-founded.

Proof

60

occurs properly in is well-founded

� f de�nition of occurs properly in ,

R is well-founded � R+ is well-founded g

mem � (in�inl)[is well-founded

(f mem �R is well-founded � R is F -reductive g

(in�inl)[is F -reductive

� f (in�inl)[= inl[� in[, g

inl[� in[is F -reductive

(f If R :: G:I I is G -reductive and S :: F
:
<� G

then S�R is F -reductive. g

in[is FV -reductive ^ inl[:: F
:
<� FV

(f the converse of an initial G -algebra is G -reductive,

de�nition of
:
<� g

true ^ 8hA:: FV:A � inl[n F:Ai

� f FV:A = F:A+ idV , factors (1) and computation rule g

true :

2

Note that the proof is entirely algebraic. We have given an \intuitive" justi�cation

for the de�nition of occurs properly in but nowhere do we rely on that \intuition". Note

also that the proof does not involve any notion of the \size" of expressions. Many

well-foundedness arguments are based on de�ning a variant function with range the

natural numbers and exploiting their well-foundedness. The above proof is based on

the basic reductivity theorem that the converse of an initial G -algebra is G -reductive, a

consequence of which theorem is that the natural numbers are well-founded. Introducing

the natural numbers into the proof would be introducing unnecessary detail.

11 Conclusion

This paper has introduced a methodology for recursive program design that extends the

well-established design methodology for imperative programming. Within the method-

ology, a relator F plays the role of solution strategy, whether that be simple iteration

(as in imperative programming), primitive recursion or some other divide-and-conquer

scheme.

61

Making progress in a recursive computation is modelled by the notion of F -reductivity,

also introduced in this paper. Parameterising progress properties by the solution strat-

egy is, we feel, an extremely important innovation since it opens up the possibility of

relating one form of reductivity to another. Such rules, combined with the central result

that the converse of an initial F -algebra is F -reductive, allow straightforward proofs of

program termination, often at a generic level. Several examples have been shown.

Strong evidence has been provided for basing program development on relation alge-

bra, even when the desired implementation vehicle is a functional programming language.

A particularly good example of this is the discussion of parsing in section 6.2. A similar

discussion would be impossible in a functional programming framework because of the

non-determinism in a typical context-free grammar. Using relation algebra, however, it

is straightforward to show that parsing is implemented by a hylo program whatever the

form of the context-free grammar.

The paper has also discussed the relationship between reductivity, well-foundedness

and structural induction. Generic formulations of the latter two notions have been

presented, and the precise mathematical relationship with reductivity has been explored.

There are several directions in which the current work can be extended. The rules

on F -reductivity presented in section 8 are clearly incomplete. More e�ort needs to be

expended on building up a useful collection of rules. For example, it should be possible to

develop rules based on the structure of the relator F (whether it is the sum of two relators

or the product of two relators, etc.). What is remarkable about the rules presented in

section 8 is that, in some cases, they reduce proofs of program termination to a process

akin to type checking. The core of the termination argument is the presence of (the

converse of) an initial G -algebra in the program, for some G ; this is combined with

plumbing relations to construct the desired F -reductive relation. This paves the way for

the possibility of verifying the termination of hylo programs at the compilation stage.

The process will never be complete in a formal sense but there is a good possibility that

it is suÆciently powerful to make it worth the while.

The notion of termination of programs is based here on a demonic model of program

execution. Our work could be used as inspiration for a study of termination properties

based on an angelic model of computation. Such a study would lead to theorems and

lemmas like the ones in section 8 and could be useful in gaining a better understanding

of the design of logic programs and distributed programs.

Most of the results in this paper are of a generic nature. That is, the design strategy

F is a parameter of the theorem or lemma. Generic programming, whereby the structure

of the data and or problem-solving strategy is a parameter, has much, as yet unexplored,

potential. This paper establishes a theoretical basis for generic programming that is

simple and e�ective.

62

References

[1] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and

J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and

G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology

and Software Technology, AMAST'91, pages 303{326. Springer-Verlag, Work-

shops in Computing, 1992.

[2] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der

Woude. Relational catamorphisms. In M�oller B., editor, Proceedings of the IFIP

TC2/WG2.1 Working Conference on Constructing Programs from Speci�ca-

tions, pages 287{318. Elsevier Science Publishers B.V., 1991.

[3] R.C. Backhouse and J. van der Woude. Demonic operators and monotype factors.

Mathematical Structures in Computer Science, 3(4):417{433, December 1993.

[4] Roland Backhouse and Paul Hoogendijk. Final dialgebras: From categories to alle-

gories. Theoretical Informatics and Applications, 33(4/5):401{426, 1999.

[5] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic

programming. An introduction. In S.D. Swierstra, editor, 3rd International Sum-

mer School on Advanced Functional Programming, Braga, Portugal, 12th-19th

September, 1998, volume LNCS 1608, pages 28{115. Springer Verlag, 1999.

[6] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall Inter-

national, 1996.

[7] H. Doornbos. Reductivity arguments and program construction. PhD thesis,

Eindhoven University of Technology, Department of Mathematics and Computing

Science, June 1996.

[8] H. Doornbos, R.C. Backhouse, and J. van der Woude. A calculation approach to

mathematical induction. Theoretical Computer Science, (179):103{135, 1997.

[9] Henk Doornbos and Roland Backhouse. Induction and recursion on datatypes.

In B. M�oller, editor, Mathematics of Program Construction, 3rd International

Conference, volume 947 of LNCS, pages 242{256. Springer-Verlag, July 1995.

[10] Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer Pro-

gramming, 26(1{3):217{236, 1996.

[11] Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit

Twente, The Netherlands, 1992.

63

[12] Peter Freyd. Algebraically complete categories. In G. Rosolini A. Carboni,

M.C. Pedicchio, editor, Category Theory, Proceedings, Como 1990, volume 1488

of Lecture Notes in Mathematics, pages 95{104. Springer-Verlag, 1990.

[13] P.J. Freyd and A. �S�cedrov. Categories, Allegories. North-Holland, 1990.

[14] C.A.R. Hoare and Jifeng He. The weakest prespeci�cation. Fundamenta Infor-

maticae, 9:51{84, 217{252, 1986.

[15] Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Department of

Mathematics and Computing Science, Eindhoven University of Technology, 1997.

[16] Paul Hoogendijk and Oege de Moor. Container types categorically. Journal of

Functional Programming, 10(2):191{225, 2000.

[17] P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension.

In POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 470{482. ACM Press, 1997.

[18] J. Lambek. A �xpoint theorem for complete categories. Mathematische Zeitschrift,

103:151{161, 1968.

[19] G. Malcolm. Algebraic data types and program transformation. PhD thesis,

Groningen University, 1990.

[20] G. Malcolm. Data structures and program transformation. Science of Computer

Programming, 14(2{3):255{280, October 1990.

[21] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413{424, 1992.

[22] Eric Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with

bananas, lenses, envelopes and barbed wire. In FPCA '91: Functional Program-

ming Languages and Computer Architecture, number 523 in LNCS, pages 124{

144. Springer-Verlag, 1991.

[23] E. Moggi. Notions of computation and monads. Information and Computation,

93(1):55{92, 1991.

[24] B. M�oller, editor. Mathematics of Program Construction, 3rd International

Conference, number 947 in LNCS. Springer-Verlag, 1995.

[25] B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type

Theory: An Introduction. Oxford University Press, 1990.

64

[26] J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,

editor, IFIP '83, pages 513{523. Elsevier Science Publishers, 1983.

[27] Doaitse Swierstra and Oege de Moor. Virtual data structures. In Helmut Partsch,

Bernhard M�oller, and Steve Schuman, editors, Formal Program Development,

volume 755 of LNCS, pages 355{371. Springer-Verlag, 1993.

[28] P. Wadler. Theorems for free! In 4'th Symposium on Functional Programming

Languages and Computer Architecture, ACM, London, September 1989.

65

