When is a function a fold or an unfold?

Jeremy Gibbons (Oxford) Graham Hutton (Nottingham) Thorsten Altenkirch (Nottingham) WGP, July 2001

1. A problem

Consider the following two functions:

> either ^x y zs ⁼ elem ^x zs || elem y zs > both ^x y zs ⁼ elem ^x zs && elem y zs

where

```
> elem x = foldr ((| | ) . (x ==)) False
```
 $>$ foldr f e [] $=$ e $>$ foldr f e (x:xs) = f x (foldr f e xs)

Can either or both be expressed directly as ^a foldr ? (They would be more efficient that way.)

2. Folds

Categorically speaking, an *algebra* for a functor $\mathcal F$ is a pair (A,f) with

$$
jehra \text{ for a func}
$$
\n
$$
f \rightarrow A
$$

Initial algebra (μ F, in) for functor F has unique homomorphism to any other such algebra: \overrightarrow{u}

For instance, with $\mathcal{F} X = 1 + \mathit{Nat} \times X$, initial algebra $\mu \mathcal{F}$ is finite lists of naturals. Function *sum* is an example of ^a fold.

3. The question

Which *h* can be written as ^a fold? That is, which *h* can be written in the form

 $h =$ fold f

for some *f* of the appropriate type?

4. Non-answers

Universal property states that

$$
h = \text{fold } f \iff h \circ \text{in} = f \circ \text{F } h
$$

This is not such ^a satisfactory answer, as it entails knowing *f*, an *intensional* aspect of *h*.

Moreover, such an *f* is not always obvious, even when one does exist.

4.1. Another non-answer: Injectivity

Partial answer, but purely *extensional*: *h* in S*et* can be written as ^a fold if it is injective.

For if *h* is injective, then there exists g with $g \circ h = \mathsf{id}$, and

 h = fold $(h \circ \mathsf{in} \circ \mathcal{F} \mathcal{g})$

For example, *rev* is injective, so is ^a fold.

(Corollary: for any f, the h such that $hx = (x, f x)$ is a fold.)

An extensional answer, because depends only on observable aspects of *h*. Only ^a partial answer, because only an implication. For example, *sum* is not injective, yet is ^a fold.

4.2. More non-answers: Fusion etc

More extensional but still partial answers: *h* of the form re ext
• fold

- *f* map *g* \bullet
- $g \circ \text{fold } f \text{ (provided } g \circ f = f' \circ f \circ f \text{ for some } f' \text{)}$ *fork (*fold
- *f,*fold *g)*

can be written as ^a fold.

Still no complete answer, even when all taken together. We want an *equivalence*.

5. Main theorem for folds

Characterization as fold boils down to properties of *congruences* and *kernels*.

Ugly proofs in S*et* and P*fun*.

Elegant proof for total functions in R*el*.

5.1. Congruences

Given relation $S: \mathcal{F}A \leadsto A$, say that relation $R:A \leadsto A$ is an \mathcal{F} *-congruence for S* when

```
S\circ\mathcal{F} \: R \subseteq R\circ S
```
Informally, arguments to *S* related (pointwise under F) by *R* will yield results from *S* related (directly) by *R*.

(When *R* is an ordering, *R* is an F-congruence for *S* iff *S* is monotonic under *R*. But we will be using this for non-ordering *R*s.)

5.2. Kernels

Define the *kernel* of ^a relation *R* by

 $\mathsf{ker}\,R = R^\circ \mathrel{\circ} R$

5.3. Theorem for folds

Function $h: \mu {\mathcal F} \leadsto A$ (ie simple and entire relation) is a fold iff ker h is an F-congruence for in.

5.4. Proof of theorem for folds

$$
\exists f. \quad h = \text{fold } f
$$

 \Leftrightarrow { folds } ∃ *f. h* ◦ in = *f* ◦ F *h* \Leftrightarrow { function equality as inclusion } ∃ *f. h* ◦ in ⊆ *f* ◦ F *h* \Leftrightarrow { shunting: $R \circ f^{\circ} \subseteq S \Leftrightarrow R \subseteq S \circ f$ } ∃ *f. h* ◦ in ◦ F *h* ◦ ⊆ *f* \Leftrightarrow

h∘in∘ *f h*° is simple

Now. . .

h∘in∘ *f`h*°is simple

- \Leftrightarrow { simplicity }
	- $(h\circ{\mathsf{in}}\circ{\mathcal{F}}\,h^\circ)\circ (h\circ{\mathsf{in}}\circ{\mathcal{F}}\,h^\circ)^\circ\subseteq{\mathsf{id}}$
- \Leftrightarrow { converse of composition } *h*∘in∘ *f h*°∘ *f h*∘in°∘*h*°⊆id
- \Leftrightarrow { shunting again, and dual: $f \circ R \subseteq S \Leftrightarrow R \subseteq f^{\circ} \circ S$ } in ∘ *f` h* ° ∘ *f` h* ⊆ *h*° ∘ *h* ∘ in
- \Leftrightarrow { functors; kernels }
	- in F *(*ker *h)* [⊆] ker *h* in
- \Leftrightarrow { congruences } ker *h* is an F-congruence for in

6. Examples of theorem

On finite lists of naturals, theorem reduces to: *h* is ^a fold iff kernel of *h* closed under *cons*:

 h *xs* = h *ys* \Rightarrow *h (cons* (*x*, *xs*)) = *h* (*cons* (*x*, *ys*))

Kernel of *sum* is closed under *cons*, so *sum* is ^a fold.

Kernel of *stail* is not closed, where

stail nil = *nil stail (cons (^x, xs))* = *xs*

so *stail* is not ^a fold.

6.1. Examples of theorem on trees

On finite binary trees

 $\text{Tree } A$ = $\text{leaf } A + \text{node} \left(\text{Tree } A \right) \left(\text{Tree } A \right)$

function *h* is ^a fold iff kernel of *h* closed under *node*:

 $ht = ht' \wedge hu = hu' \Rightarrow h(node(t, u)) = h(node(t', u'))$

Kernel of *bal* : *Tree A* \rightarrow *Bool* is not closed under *node*: even when (t, u) is in kernel, $node(t, t)$, $node(t, u)$ need not be. So *bal* is not a fold.

However, kernel of *dbal* such that *dbal t* = *(depth ^t, bal ^t)* is closed under *node*, so *dbal* is ^a fold.

7. Duality

A *coalgebra* for a functor $\mathcal F$ is a pair (A,f) with

Final coalgebra (ν F*,* out*)* for functor F has unique homomorphism to any other such coalgebra: -

For instance, with $\mathcal{F} X = Nat \times X$, final coalgebra $\mathcal{\nu} \mathcal{F}$ is streams of naturals. Function *from* such that *from* $n = [n, n + 1, n + 2, \ldots]$ is an example of an unfold.

7.1. Invariants

Given relation S : $A \leadsto \mathcal{F} A$, say that relation R : $A \leadsto A$ is an \mathcal{F} *-invariant for S* when

```
S\mathrel{\circ} R \subseteq \mathcal{F}\,R \mathrel{\circ} S
```
(Invariance is the dual of congruence.)

In particular, when *R* is a monotype ($R \subseteq$ id), applying *S* to arguments 'in' *R* yields results 'in' *R* (pointwise under \mathcal{F}).

7.2. Images

Define the *image* of ^a relation *R* by

 ${\sf img}\,R = R\circ R^\circ$

(The image is the dual of the kernel.)

7.3. Theorem for unfolds

Function *h* : *A* - *ν* F (ie simple entire relation) is an unfold iff img *h* is an F-invariant for out.

Note that img *h* is ^a monotype.

7.4. Proof of theorem for unfolds

- $\exists f$. $h =$ unfold f
- \Leftrightarrow { unfolds }
	- ∃ *f.* out *h* ⁼ F *h f*
- \Leftrightarrow { function equality as inclusion } ∃*f*. *f* h∘f ⊆ out∘h
- $\Leftrightarrow \{ shunting\}$ ∃ *f. f* [⊆] F *h* ◦ ◦ out ◦ *h*

 \Leftrightarrow

F *h* ◦ ◦ out ◦ *h* is entire

Now. . .

F *h* ◦ ◦ out ◦ *h* is entire

- \Leftrightarrow { entirety }
	- $\mathsf{id} \subseteq (\mathcal{F}\: h^\circ \circ \mathsf{out} \circ h)^\circ \circ (\mathcal{F}\: h^\circ \circ \mathsf{out} \circ h)$
- \Leftrightarrow { converse of composition } id ⊆ *h*°∘out°∘ ${\mathcal{F}}$ *h*∘ ${\mathcal{F}}$ *h*°∘out ∘ *h*
- \Leftrightarrow { shunting again } out ∘ *h* ∘ $\Lambda^\circ \subseteq \mathcal{F}$ *h* ∘ \mathcal{F} *h* $^\circ$ ∘ out
- \Leftrightarrow { functors; images } $\mathsf{out} \circ \mathsf{img}\ h \subseteq \mathcal{F} \ (\mathsf{img}\ h) \circ \mathsf{out}$
- \Leftrightarrow { invariants }

img *h* is an F-invariant for out

7.5. Examples on lists

On streams of naturals, theorem reduces to: *h* is an unfold iff tail of ^a list produced by *h* may itself be produced by *h*:

img *(tail* ◦ *h)* [⊆] img *h*

Now *tail* $(from n) = from (n + 1)$, so from is an unfold. But in general for no *^m* is *tail (mults ⁿ)* ⁼ *mults ^m*, where

mults $n = [0, n, 2 \times n, 3 \times n, \ldots]$

so *mults* is not an unfold.

8. Back to original problem

Recall:

> either ^x y zs ⁼ elem ^x zs || elem y zs > both ^x y zs ⁼ elem ^x zs && elem y zs

Kernel of either x y is closed under cons, so either is a foldr:

either x y (z:zs) = $(x==z)$ || $(y==z)$ || either x y zs

Kernel of both x y is not closed under cons, so both is not a foldr:

both 1 2 $[2]$ = False = both 1 2 $[3]$ both 1 2 $(1: [2])$ = True /= False = both 1 2 $(1: [3])$

9. Partiality

The results also hold (with suitable adaptations) for partial functions. But I don't see (yet!) how to adapt the elegant relational proofs.

9.1. Set-theoretic version of main theorem for folds

Definition 1. Kernel ker *f* of $f : A \rightarrow B$ is the set of pairs identified by *f*:

$$
\ker f = \{ (a, a') \in A \times A \mid f a = f a' \}
$$

Informally, it is necessary and sufficient for kernel of function to be 'closed under the constructors':

Theorem 2. Function $h: \mu \mathcal{F} \to A$ in Set is a fold iff

ker *(*F *h)* [⊆] ker *(h* ◦ in*)*

9.2. Lemmas for proof of Theorem 2

Crucial lemma — inclusion of kernels equivales existence of 'postfactors':

Lemma 3. For functions $f : A \rightarrow B$ and $h : A \rightarrow C$ in Set,

$$
\exists g: B \to C. \quad h = g \circ f \quad \Leftrightarrow \quad \ker f \subseteq \ker h \wedge B \to C \neq \emptyset
$$

Simple result about non-emptiness of algebra types:

Lemma 4.

$$
\mu \mathcal{F} \to A \neq \emptyset \quad \Rightarrow \quad \mathcal{F} A \to A \neq \emptyset
$$

9.3. Proof of Theorem 2

Almost embarrassingly simple:

$$
\exists g. \quad h = \text{fold } g
$$
\n
\n⇒ {universal property }
\n
$$
\exists g. \quad h \circ \text{in} = g \circ \mathcal{F} \, h
$$
\n
\n
$$
\Leftrightarrow \{ \text{Lemma 3} \}
$$
\n
\n
$$
\ker(\mathcal{F} \, h) \subseteq \ker(h \circ \text{in}) \quad \land \quad \mathcal{F} \, A \to A \neq \emptyset
$$

Note that $h:\mu \mathcal{F} \rightarrow A$, so second conjunct follows from Lemma 4.

9.4. Generalizing for partial functions

Definition 5. Kernel ker f of partial function $f : A \rightarrow B$ is the equivalence relation

$$
\ker f = \{ (a, a') \in A \times A \mid a, a' \in \text{dom } f \wedge f \neq f \neq a' \} \cup
$$

$$
\{ (a, a') \in A \times A \mid a, a' \notin \text{dom } f \}
$$

Lemma 6. For partial functions $f : A \rightarrow B$ and $h : A \rightarrow C$ in Pfun, $\exists g : B \to C$. $h = g \circ f \quad \Leftrightarrow \quad \ker f \subseteq \ker h \wedge \operatorname{\mathsf{dom}} f \supseteq \operatorname{\mathsf{dom}} h$

Theorem 7. Partial function $h: \mu \to A$ in P *fun* is a fold iff $\mathsf{ker}\,(\mathcal{F}\,h)\subseteq \mathsf{ker}\,(h\circ\mathsf{in})\wedge\mathsf{dom}\,(\mathcal{F}\,h)\supseteq\mathsf{dom}\,(h\circ\mathsf{in})$

9.5. Dualizing the generalization

Definition 8. Image img f of partial function $f : A \rightarrow B$ is the set ${\sf img}\, f = \{\, b \in B \mid \exists\, a \in {\sf dom}\, f\colon \;\; f\, a = b\,\}$

Lemma 9. For partial functions $f : B \to C$ and $h : A \to C$ in Pfun, $\exists g : A \to B$. $h = f \circ g \quad \Leftrightarrow \quad \text{img } f \supseteq \text{img } h$

Theorem 10. Partial function $h: A \rightarrow v \mathcal{F}$ in $Pfun$ is an unfold iff $\mathsf{img}\left(\mathcal{F}\right. h\right) \supseteq\mathsf{img}\left(\mathsf{out}\circ h\right)$