When is a function

a fold or an unfold?

Jeremy Gibbons (Oxford)
Graham Hutton (Nottingham)

Thorsten Altenkirch (Nottingham)
WGP, July 2001



When is a function a fold or an unfold?

1. A problem

Consider the following two functions:

> elither x y zs = elem x zs || elem y zs
> both x vy zs = elem x zs && elem y zs

where

> elem x = foldr ((||).(x==)) False

> foldr f e [] = e
> foldr f e (x:xs) = f x (foldr f e xs)

Can either or both be expressed directly as a foldr?
(They would be more efficient that way.)



2. Folds

Categorically speaking, an algebra for a functor F is a pair (A, [) with

fAf=A

Initial algebra (uF,in) for functor F has unique homomorphism to any
other such algebra:

F ) 1, T
F (fold f) fold f
FA——— A

For instance, with F X = 1 + Nat x X, initial algebra uF is finite lists of
naturals. Function sum is an example of a fold.



3. The question

Which h can be written as a fold?

That is, which h can be written in the form
h=foldf

for some [ of the appropriate type?



4. Non-answers

Universal property states that

h=foldf < hoin=foFh

This is not such a satisfactory answer, as it entails knowing [, an
intensional aspect of h.

Moreover, such an [ is not always obvious, even when one does exist.



4.1. Another non-answer: Injectivity

Partial answer, but purely extensional: hin Set can be written as a fold if it
is injective.

For if his injective, then there exists g with go h = id, and

h = fold (hoino Fg)

For example, rev is injective, so is a fold.

(Corollary: for any [, the h such that hx = (x, [ x) is a fold.)

An extensional answer, because depends only on observable aspects of h.

Only a partial answer, because only an implication. For example, sum is
not injective, yet is a fold.



4.2. More non-answers: Fusion etc

More extensional but still partial answers: h of the form
e foldf omapg
e gofoldf (provided go f =" o F g for some [”)
e fork (foldf,fold g)

can be written as a fold.

Still no complete answer, even when all taken together.
We want an equivalence.



5. Main theorem for folds

Characterization as fold boils down to properties of congruences and
kernels.

Ugly proofs in Set and Pfun.

Elegant proof for total functions in Rel.



5.1. Congruences

Given relation S : F A ~ A, say that relation R: A ~ A is an ‘F-congruence

for S when
SoFRS RoS

Informally, arguments to S related (pointwise under F) by R will yield
results from S related (directly) by R.

(When R is an ordering, R is an ‘F-congruence for S iff S is monotonic
under R. But we will be using this for non-ordering Rs.)



When is a function a fold or an unfold?

5.2. Kernels

Define the kernel of a relation R by

kerR=R° o R

10



5.3. Theorem for folds

Function h: uf ~ A (ie simple and entire relation) is a fold iff ker h is an
‘F-congruence for in.



5.4. Proof of theorem for folds

Now. ..

df. h=foldf

{folds }
Af. hoin=fo Fh

{ function equality as inclusion }
Af. hoinc fo Fh

{shunting: Rof°c S< Rc Sof}
Af. hoino Fh°cf

hoino F h° is simple



hoino F h°is simple
{ simplicity }
(hoino Fh°)o(hoino Fh°)° cid
{ converse of composition }
hoino Fh°o Fhoin®°oh® cid
{ shunting again, and dual: foc RS S < R< [° 0§}
ino Fh°oFh< h°ohoin
{ functors; kernels }
ino F(kerh) < kerhoin
{ congruences }
ker his an ‘F-congruence for in



6. Examples of theorem

On finite lists of naturals, theorem reduces to: his a fold iff kernel of h
closed under cons:

hxs=hys = h(cons(x,xs)) = h(cons(x,ys))

Kernel of sum is closed under cons, so sum is a fold.

Kernel of stail is not closed, where

stail nil = nil
stail (cons (x,xs)) = XS

so stail is not a fold.



6.1. Examples of theorem on trees

On finite binary trees
TreeA = leaf A+ node (TreeA) (TreeA)
function h is a fold iff kernel of h closed under node:

ht=ht Ahu=hu = h(node(t,u)) = h(node(t',u’))

Kernel of bal : Tree A — Bool is not closed under node: even when (t, u) is
in kernel, (node (t, t), node (t, u)) need not be. So bal is not a fold.

However, kernel of dbal such that dbalt = (deptht, bal t) is closed under
node, so dbal is a fold.



7. Duality

A coalgebra for a functor F is a pair (A, [) with

A f=fA

Final coalgebra (vF,out) for functor F has unique homomorphism to any
other such coalgebra:

A f - T A
unfoldfé F (unfold f)
vE —sut FOF)

For instance, with F X = Nat x X, final coalgebra v F is streams of
naturals. Function from such that fromn=[n,n+1,n+ 2,...]is an
example of an unfold.



7.1. Invariants

Given relation S : A ~ F A, say that relation R: A ~ A is an ‘F-invariant

for S when
SoR< FRoS

(Invariance is the dual of congruence.)

In particular, when R is a monotype (R < id), applying S to arguments ‘in’
R yields results ‘in’ R (pointwise under F).



7.2. Images

Define the image of a relation R by

iImMgR = Ro R°

(The image is the dual of the kernel.)



7.3. Theorem for unfolds

Function h: A ~ vF (ie simple entire relation) is an unfold iff img h is an
‘F-invariant for out.

Note that img h is a monotype.



7.4. Proof of theorem for unfolds

Now...

df. h=unfoldf
{unfolds }
df. outoh= Fhof
{ function equality as inclusion }
Af. Fhof coutoh
{ shunting }
Af. f< Fh°ooutoh

‘F h° o out o his entire



‘F h° o out o his entire
{ entirety }

id = (Fh°oouto h)° o (F h°oouto h)
{ converse of composition }

id < h°oout® o Fho Fh°ooutoh
{ shunting again }

outoho h®° € Fho F h° oout
{ functors; images }

outoimgh < F (img h) o out
{ invariants }

img h is an ‘F-invariant for out



7.5. Examples on lists

On streams of naturals, theorem reduces to: his an unfold iff tail of a list
produced by h may itself be produced by h:

img (tail o h) < img h

Now tail (fromn) = from(n+ 1), so from is an unfold.

But in general for no mis tail (mults n) = mults m, where
multsn=[0,n,2 xn,3 xn,...]|

so mults is not an unfold.



When is a function a fold or an unfold? 23

8. Back to original problem

Recall:

> elither x y zs = elem x zs || elem y zs
> both x vy zs = elem x zs && elem y zs

Kernel of either x v is closed under cons, so eitheris a foldr:
elither xy (z:zs) = (x==z2) || (y==z) || either x y zs
Kernel of both x vy is not closed under cons, so both is not a foldr:

both 1 2 [2] = False = both 1 2 [3]
both 1 2 (1:[2]) = True /= False = both 1 2 (1:[3])



9. Partiality

The results also hold (with suitable adaptations) for partial functions.

But I don’t see (yet!) how to adapt the elegant relational proofs.



When is a function a fold or an unfold?
O.1. Set-theoretic version of main theorem for folds

Definition 1. Kernel kerf of f : A — B s the set of pairs identified by f:

kerf={(aad)eceAxAl|lfa=fa}

Informally, it is necessary and sufficient for kernel of function to be
‘closed under the constructors’:

Theorem 2. Function h: uf — Ain Set is a fold iff

ker (F h) < ker(hoin)

25



When is a function a fold or an unfold?

9.2. Lemmas for proof of Theorem 2

Crucial lemma — inclusion of kernels equivales existence of ‘postfactors’:

Lemma 3. For functions f: A —- Band h: A — Cin Set,

dg:B—- C. h=gof < kerfckerhAB—-C+# J

Simple result about non-emptiness of algebra types:

Lemma 4.
UF-A+0 = TFA-A+J

26



9.3. Proof of Theorem 2

Almost embarrassingly simple:

dg. h=foldg
= { universal property }
dg. hoin=go Fh
= { Lemma 3 }
ker (T h) c ker(heoin) AN TFTA-A+J

Note that h: uF — A, so second conjunct follows from Lemma 4.



When is a function a fold or an unfold?

9.4. Generalizing for partial functions

Definition 5. Kernel ker f of partial function f : A — B is the equivalence
relation

kerf=1{(a,ad) e AxA|aad edomfAfa=fa}u
{(a,d) e AxA|aa ¢domf}

Lemma 6. For partial functions f : A - Band h: A — C in Pfun,

dg:B—- C. h=gof < kerf<ckerhAdomf=2domh

Theorem 7. Partial function h: uf — A in Pfunis a fold iff
ker (‘F h) < ker(hoin) Adom (F h) 2 dom (hoin)

28



When is a function a fold or an unfold?

9.5. Dualizing the generalization

Definition 8. Image img [ of partial function [ : A — B s the set

imgf={beB|Jdaedomf. fa=Db}

Lemma 9. For partial functions f: B— C and h: A — C in Pfun,

dg:A—-B. h=fog < imgf=2imgh

Theorem 10. Partial function h: A — vF in Pfun is an unfold iff

img (‘F h) 2 img (out o h)

29



