
Type-indexed data types

Ralf Hinze1;2, Johan Jeuring2, Andres L�oh2

1Institut f�ur Informatik III, Universit�at Bonn

R�omerstra�e 164, 53117 Bonn, Germany

ralf@informatik.uni-bonn.de

http://www.informatik.uni-bonn.de/~ralf/

2Institute of Information and Computing Sciences, Utrecht University

P.O.Box 80.089 3508 TB Utrecht, The Netherlands

fralf,johanj,andresg@cs.uu.nl
http://www.cs.uu.nl/~fralf,johanj,andresg

Abstract

A polytypic function is a function that can be instantiated
on many data types to obtain data type speci�c functional-
ity. Examples of polytypic functions are the functions that
can be derived in Haskell, such as show , read , and (). More
advanced examples are functions for digital searching, pat-
tern matching, uni�cation, rewriting, and structure editing.
For each of these problems, we not only have to de�ne poly-
typic functionality, but also a type-indexed data type: a data
type that is constructed in a generic way from an argument
data type. For example, in the case of digital searching we
have to de�ne a search tree type by induction on the struc-
ture of the type of search keys. This paper shows how to
de�ne type-indexed data types, discusses several examples of
type-indexed data types, and shows how to specialize type-
indexed data types. The specialization is illustrated with
example translations to Haskell. This specialization is also
used in the extension of Generic Haskell with a construct for
de�ning type-indexed data types.

1 Introduction

A polytypic (or generic, type-indexed) function is a function
that can be instantiated on many data types to obtain data
type speci�c functionality. Examples of polytypic functions
are the functions that can be derived in Haskell [29], such
as show , read , and (). See Backhouse et al [1] for an
introduction to polytypic programming.

More advanced examples of polytypic functions are func-
tions for digital searching [10], pattern matching [21], uni�-
cation [18, 4], and rewriting [19]. For each of these problems,
we not only have to de�ne polytypic functionality, but also
a type-indexed data type: a data type that is constructed in
a generic way from an argument data type. For example,
in the case of digital searching we have to de�ne a search
tree type by induction on the structure of the type of search
keys. Since type-indexed types can not yet be implemented
in the languages supporting generic programming, the type-
indexed data types that appear in the literature are either
implemented in an ad-hoc fashion [18], or not implemented
at all [10].

This paper shows how to de�ne type-indexed data types,
discusses several examples of type-indexed data types, and
shows how to specialize type-indexed data types. The
specialization is illustrated with example translations to
Haskell. This specialization is also used in the extension of
Generic Haskell with a construct for de�ning type-indexed
data types.

Note that there also exist many polytypic functions that
do not use type-indexed data types: all basic polytypic func-
tions from PolyLib [16] do not need type-indexed data types.

Example 1: Digital searching. A digital search tree or trie
is a search tree scheme that employs the structure of search
keys to organize information. Searching is useful for various
data types, so we would like to allow for keys and informa-
tion of any data type. This means that we have to construct
a new kind of trie for each key type. For example, consider
the data type String de�ned by1

data String = nil j cons Char String :

We can represent string-indexed tries with associated values
of type V as follows:

data FMapString V =
trieString (Maybe V) (FMapTChar (FMapString V)):

Our goal is to abstract from String , and to de�ne a data
type indexed by an arbitrary type T : FMaphT i. The �rst
component of the constructor trieString contains the value
associated with nil . Its type is Maybe V instead of V , since
nil may not be in the domain of the �nite map. The sec-
ond component of trieString is derived from the constructor
cons :: Char ! String ! String . We assume that a suit-
able data structure, FMapTChar (the T that appears in
the name avoids a name clash with a generated name), and
an associated look-up function lookupTChar :: 8V :Char !
FMapTChar V ! Maybe V for characters are prede�ned.

1The examples are given in Haskell [29]. Deviating from Haskell
we use identi�ers starting with an upper case letter for types (this
includes type variables), and identi�ers starting with a lower case
letter for values (this includes data constructors).

Such a trie for strings would typically be used for a concor-
dance or another index on texts. Given these prerequisites
we can de�ne a look-up function for strings as follows.

lookupString :: String ! FMapString V ! Maybe V
lookupString nil (trieString tn tc) = tn
lookupString (cons c s) (trieString tn tc) =
(lookupTChar c 3 lookupString s) tc:

To look up a non-empty string, cons c s, we look up c
in the FMapTChar obtaining a trie, which is then recur-
sively searched for s. Since the look-up functions have re-
sult type Maybe V , we use the monadic composition of
the Maybe monad, called `3', to compose lookupString and
lookupTChar .

(3) :: (A! Maybe B)! (B ! Maybe C)! A! Maybe C
(f 3 g) a = case f a of fnothing ! nothing ; just b ! g bg:

In the following section we will show how to de�ne a trie
and an associated look-up function for an arbitrary data
type. The material is taken from Hinze [10], and it is re-
peated here because it serves as a nice and simple example
of a type-indexed data type.

Example 2: Zipper. The zipper [14] is a data structure that
is used to represent a tree together with a subtree that is
the focus of attention, where that focus may move left, right,
up, or down the tree. For example, the data type Bush and
its corresponding zipper, called LocBush , are de�ned by

data Bush = leaf Char j fork Bush Bush

type LocBush = (Bush;ContextBush)

data ContextBush = top
j forkL ContextBush Bush
j forkR Bush ContextBush :

Using the type of locations we can eÆciently navigate
through a tree. For example:

downBush :: LocBush ! LocBush
downBush (leaf a; c) = (leaf a; c)
downBush (fork tl tr ; c) = (tl ; forkL c tr)

rightBush :: LocBush ! LocBush
rightBush (tl ; forkL c tr) = (tr ; forkR tl c)
rightBush l = l :

Note that we go down to the left subtree of a node. Huet [14]
de�nes the zipper data structure for rose trees and for the
data type Bush, and gives the generic construction in words.
In Section 5 we show how to de�ne a zipper for an arbitrary
data type. This is a rather involved example of a type-
indexed data type, together with some type-indexed func-
tions that take an argument of a type-indexed data type.

Example 3: Pattern matching. The polytypic functions for
the maximum segment sum problem [2] and pattern match-
ing [21] use labelled data types. These labelled data types,
introduced in [2], are used to store at each node the sub-
tree rooted at that subtree, or a set of patterns (trees with
variables) matching at a subtree, etc. For example, the data
type of labelled bushes is de�ned by

data LabBush L = labelLeaf Char L
j labelFork (LabBush L) (LabBush L) L:

In the following section we show how to de�ne such a labelled
data type generically.

Other examples. Besides these three examples, a number
of other examples of type-indexed data types have appeared
in the literature [3, 9, 31]. Another �eld where we expect
that type-indexed data types will be useful is generic DTD
transformations [22]. We think that type-indexed data types
are just as important as type-indexed functions.

Background and related work. There is little related work
on type-indexed data types. Type-indexed functions [23, 2,
26, 8, 15] were introduced back in the nineties. There exist
other approaches to type-indexed functions, see Dubois et
al [7], Jay et al [20] and Yang [33], but none of themmentions
user-de�ned type-indexed data types.

Type-indexed data types appear in the work on inten-
sional type analysis [9, 6, 5, 30, 32]. Intensional type analy-
sis is used in typed intermediate languages in compilers for
polymorphic languages, among others to be able to optimize
code for polymorphic functions. This work di�ers from our
work in that typed intermediate languages are expressive,
but rather complex languages not intended for program-
mers but for compiler writers; typed intermediate languages
are not built on top of an existing programming language,
so there is no integration problem; and, most importantly,
typed intermediate languages interpret (a representation of
a) type argument at run-time, whereas the specialization
technique described in this paper does not require passing
around (representations of) type arguments.

Organization. The rest of this paper is organized as fol-
lows. We will show how to de�ne type-indexed data types
in Section 2 using Hinze's approach to polytypic program-
ming [12, 13]. Section 3 gives some example specializations
on concrete data types of type-indexed data types and func-
tions de�ned on type-indexed data types in Haskell. This
specialization is also used in the extension of Generic Haskell
with a construct for de�ning type-indexed data types. Sec-
tion 4 shows that type-indexed data types possess kind-
indexed kinds, and gives a theoretical background for the
specialization of type-indexed data types and functions with
arguments of type-indexed data types. Section 5 gives the
details of the zipper example. Section 6 summarizes the
main points and concludes.

2 De�ning type-indexed data types

This section shows how to de�ne type-indexed data types.
Section 2.1 brie
y reviews the concepts of polytypic pro-
gramming necessary for de�ning type-indexed data types.
The subsequent sections de�ne type-indexed data types for
the problems described in the introduction. We assume a
basic familiarity with Haskell's type system and in partic-
ular with the concept of kinds [25]. For a more thorough
treatment the reader is referred to Hinze's work [13, 12].

2.1 Type-indexed de�nitions

The central idea of polytypic programming (or type-indexed
programming) is to provide the programmer with the ability
to de�ne a function by induction on the structure of types.
Since Haskell's type language is rather involved|we have
mutually recursive types, parameterized types, nested types,
and type constructors of higher-order kinds|this sounds
like a hard nut to crack. Fortunately, one can show that
a polytypic function is uniquely de�ned by giving cases for

2

primitive types and type constructors. For concreteness, let
us assume that 1, Char , `+', and `�' are primitive, that is,
the language of types of kind ? is de�ned by the following
grammar:

T? ::= 1 j Char j T? + T? j T? � T?:

Note that the unit type, sum and product types are required
for modeling Haskell's data construct that introduces a sum
of products. For example, for the type of naturals we have:
Nat = 1 +Nat . We treat these type constructors as if they
were given by the following data declarations:

data 1 = ()

data A+ B = inl A j inr B

data A � B = (A;B):

Now, a polytypic function is simply given by a de�nition
that is inductive on the structure of T?. As an example,
here is the polytypic equality function. For emphasis, the
type index is enclosed in angle brackets.

equalhT :: ?i :: T ! T ! Bool
equalh1i () () = true
equalhChari c1 c2 = equalChar c1 c2
equalhT1 + T2i (inl a1) (inl a2) = equalhT1i a1 a2
equalhT1 + T2i (inl a1) (inr b2) = false
equalhT1 + T2i (inr b1) (inl a2) = false
equalhT1 + T2i (inr b1) (inr b2) = equalhT2i b1 b2
equalhT1 � T2i (a1; b1) (a2; b2) =
equalhT1i a1 a2 ^ equal hT2i b1 b2:

This simple de�nition contains all ingredients needed to spe-
cialize equal for arbitrary data types. Note that the type lan-
guage T? does not contain constructions for type abstrac-
tion, application, and �xed points. Instances of polytypic
functions on types with these constructions are generated
automatically (type application is translated to value ap-
plication, type abstraction to value abstraction, and type
�xed points to value �xed points). The type language T?

does not contain a construction for referring to construc-
tor names either. Since we sometimes want to be able
to refer to constructor names, for example in a polytypic
show function, we add one extra case to the type language:
c of A, where c is a value of type String or another ap-
propriate abstract data type for constructors, and A is a
value of T?. For example, for the type of naturals we have
Nat = zero of 1 + succ of Nat . We will not always write
the constructor names in the functors for the data types. If
the c of A case is omitted in the de�nition of a polytypic
function, we assume that it is equal to the A case.

T? only de�nes the type language on which we de�ne
polytypic functions. The process of specialization is de-
scribed in detail in [12].

The function equal is indexed by types of kind ?. A
polytypic function may also be indexed by type constructors
of kind ?! ? (and, of course, by type constructors of other
kinds, but these are not needed in the sequel). The language
of types of kind ? ! ? is characterized by the following
grammar:

F?!? ::= Id j K 1 j K Char j F?!? + F?!? j
F?!? � F?!? j c of F?!?;

where Id , K T (T = 1 or Char), `+', `�', and of are given

by (note that we overload the symbols `+', `�', and of)

Id = �A :A

K T = �A :T

F1 + F2 = �A :F1 A+ F2 A

F1 � F2 = �A :F1 A � F2 A

c of F = �A : c of F A:

Here, �A :T denotes abstraction on the type level. For ex-
ample, the type of lists parameterized by some type are de-
�ned by List = K 1 + Id � List . Again, F?!? is used to
describe the language on which we de�ne polytypic functions
by induction, it is not a complete description of all types of
kind ?! ?.

A well-known example of a (? ! ?)-indexed function is
the mapping function, which applies a given function to each
element of type A in a given structure of type F A.

maphF :: ?! ?i :: 8A B : (A! B)! (F A! F B)
maphIdi m a = m a
maphK 1i m c = c
maphK Chari m c = c
maphF1 + F2i m (inl f) = inl (maphF1i m f)
maphF1 + F2i m (inr g) = inr (maphF2i m g)
maphF1 � F2i m (f ; g) = (maphF1i m f ;maphF2i m g):

Using map we can, for instance, de�ne generic versions of
cata- and anamorphisms [27]. To this end we assume that
data types are given as �xed points of so-called pattern func-
tors. In Haskell the �xed point combinator can be de�ned
as follows.

newtype Fix F = infout :: F (Fix F)g:

For example, the type of naturals might have been de�ned
by Nat = Fix (K 1+Id). Cata- and anamorphisms are then
given by

catahF :: ?! ?i :: 8A : (F A! A)! (Fix F ! A)
catahF i ' = ' �maphF i (catahF i ') � out

anahF :: ?! ?i :: 8A : (A! F A)! (A! Fix F)
anahF i = in �maphF i (anahF i) � :

Note that both functions are parameterized by the type
functor F rather than by the �xed point Fix F .

2.2 Tries

Tries are based on the following isomorphisms, also known
as the laws of exponentials.

1!�n V �= V
(T1 + T2)!�n V �= (T1 !�n V) � (T2 !�n V)
(T1 � T2)!�n V �= T1 !�n (T2 !�n V):

where T !�n V denotes a �nite map. As FMaphT i V ,
the generalization of FMapString given in the Introduction
section, represents the set of �nite maps from T to V , the
isomorphisms above can be rewritten as de�ning equations
for FMaphT i.

FMaphT :: ?i :: ?! ?
FMaph1i = �V :Maybe V
FMaphChari = �V :FMapTChar V
FMaphT1 + T2i = �V :FMaphT1i V � FMaphT2i V
FMaphT1 � T2i = �V :FMaphT1i (FMaphT2i V):

3

Note that FMaph1i is Maybe rather than Id since we
use the Maybe monad for exception handling. We as-
sume that a suitable data structure, FMapTChar , and an
associated look-up function lookupTChar :: 8V :Char !
FMapTChar V ! Maybe V for characters are prede�ned.

2.2.1 Look-up function

The look-up function is given by the following generic de�-
nition.

lookuphT :: ?i :: 8V :T ! FMaphT i V ! Maybe V
lookuph1i () t = t
lookuphChar i c t = lookupTChar c t
lookuphT1 + T2i (inl k1) (t1; t2) = lookuphT1i k1 t1
lookuphT1 + T2i (inr k2) (t1; t2) = lookuphT2i k2 t2
lookuphT1 � T2i (k1; k2) t =
(lookuphT1i k1 3 lookuphK2i k2) t :

On sums the look-up function selects the appropriate map;
on products it `composes' the look-up functions for the com-
ponent keys.

2.3 Labelling

A labelled data type is used to store information at the nodes
of a tree. The kind of information that is stored varies:
in the case of the maximum segment sum it is the subtree
rooted at that node, in the case of pattern matching it is the
set of patterns matching at that node. We will show how
to de�ne such labelled data types in this section. The data
type Labelled labels a data type given by a pattern functor:

LabelledhF :: ?! ?i :: ?! ?
LabelledhF i = �L :Fix (�R :LabelhF i L R);

where the type-indexed data type Label distributes the label
type over the sum, and adds a label type L to each other
construct. Since each construct is guarded by a constructor
(c of F), it suÆces to add labels to constructors.

Label hF :: ?! ?i :: ?! ?! ?
Label hF1 + F2i = �L R :LabelhF1i L R + LabelhF2i L R
Label hc of F i = �L R :F R � L:

The type-indexed function suÆxes labels a value of a data
type with the subtree rooted at each node. It uses a function
add , which adds a label to a value of type F T , giving a value
of type LabelhF i L T .

addhF :: ?! ?i :: L! F T ! LabelhF i L T
addhF1 + F2i l (inl x) = inl (addhF1i l x)
addhF1 + F2i l (inr y) = inr (addhF2i l y)
addhc of F i l x = (x ; l):

Function suÆxes is then de�ned as a recursive function that
adds the subtrees rooted at each level to the tree. It adds
the argument tree to the top level, and applies suÆxes to
the children by means of function map.

suÆxeshF :: ?! ?i :: Fix F ! LabelledhF i (Fix F)
suÆxeshF i l@(in t) = in (addhF i l (maphF i (suÆxeshF i) t)):

A type-indexed data type can be viewed as an abstract data
type. A value of a type-indexed data type can only be con-
structed by means of functions for this data type; there
are no constructors for a type-indexed data type. Alter-
natively, the type-indexed functions that return values of
type-indexed data types can be seen as constructors.

3 Examples of translations to Haskell

The semantics of type-indexed data types will be given by
means of specialization. This section gives some example
specializations as an introduction to the formal rules given
in the following section.

We illustrate the specialization of type-indexed data
types by means of a translation of the digital search tries
example to Haskell. This translation also shows how type-
indexed data types are specialized in Generic Haskell: the
translation given here will be generated by the compiler for
Generic Haskell.

In the examples in the previous section we introduced
three type-indexed programming concepts: type-indexed
functions (map), type-indexed data types (FMap), and
type-indexed functions that take arguments of type-indexed
data types (lookup). The specialization of type-indexed
functions (see Hinze [13]) is a special case of the specializa-
tion of type-indexed functions that take arguments of type-
indexed data types given in this paper.

The example specializations are described in three sub-
sections: a translation of data types, a translation of type-
indexed data types, and a translation of type-indexed func-
tions that take arguments of type-indexed data types.

3.1 Translating data types

A type-indexed function is translated to several functions:
one for each user-de�ned data type on which it is used.
These translated functions work on a slightly di�erent, but
isomorphic data type. This implies that values of user-
de�ned data types have to be translated to these isomor-
phic data types too. For example, the type Nat of natural
numbers de�ned by

data Nat = zero j succ Nat ;

is translated to the following type (in which Nat itself still
appears), together with two conversion functions.

type Nat 0 = 1 +Nat

fromNat :: Nat ! Nat 0

fromNat zero = inl ()
fromNat (succ x) = inr x

toNat :: Nat 0 ! Nat
toNat (inl ()) = zero
toNat (inr x) = succ x :

This mapping avoids direct recursion by adding the extra
layer of Nat 0. Furthermore, it translates n-ary products and
sums to binary products and sums.

3.2 Translating type-indexed data types

A type-indexed data type is translated to several newtypes
in Haskell: one for each type case in its de�nition. The
translation proceeds in a similar fashion as in Hinze [13], but
now for types instead of values. For example, the product
case T1 � T2 takes two argument types for T1 and T2, and
returns the type for the product. The type-indexed data
type FMap, de�ned by

FMaph1i = �V :Maybe V
FMaphChari = �V :FMapTChar V
FMaphT1 + T2i = �V :FMaphT1i V � FMaphT2i V
FMaphT1 � T2i = �V :FMaphT1i (FMaphT2i V):

4

is translated to:

newtype FMapUnit V =
fMapUnit (Maybe V)

newtype FMapChar V =
fMapChar (FMapTChar V)

newtype FMapEither FMA FMB V =
fMapEither (FMA V ;FMB V)

newtype FMapProduct FMA FMB V =
fMapProduct (FMA (FMB V)):

Furthermore, for each data type on which we want to use a
trie we generate the trie type specialized on the data type.
For example, for the type Nat of natural numbers we have

type FMapNat 0 V =
FMapEither FMapUnit FMapNat V

newtype FMapNat V =
fMapNatfunFMapNat :: FMapNat 0 V g:

Note that we use newtype for FMapNat because it is not
possible to de�ne recursive types in Haskell.

3.3 Translating type-indexed functions on type-indexed
data types

The translation of a type-indexed function that takes an ar-
gument of a type-indexed data type is a generalization of the
translation of other type-indexed functions. The translation
consists of two parts: a translation of the type-indexed func-
tion, and a specialization on each data type on which the
type-indexed function is used, together with a conversion
function.

A type-indexed function is translated by generating a
function, together with its type, for each line in its de�ni-
tion. For the type indices of kind ? (i.e. 1, Char) we generate
types that are instances of the type of the type-indexed func-
tion. The occurrences of the type index are replaced by the
instance, and occurrences of type-indexed data types are re-
placed by the translation of the type-indexed data type on
the type index. For example, for the type-indexed function
lookup of type:

lookuphT :: ?i :: 8V :T ! FMaphT i V ! Maybe V ;

the instances are obtained by replacing T by 1 or Char ,
and by replacing FMaphT i by FMapUnit or FMapChar ,
respectively. So for the function lookup we have that the
lines

lookuph1i () t = t
lookuphChari c t = lookupTChar c t ;

are translated into

lookupUnit :: 8V : 1! FMapUnit V ! Maybe V
lookupUnit () (fMapUnit t) = t

lookupChar :: 8V :Char ! FMapChar V ! Maybe V
lookupChar c (fMapChar t) = lookupTChar c t :

Note that we add the constructors for the tries to the trie
arguments of the function.

For the type indices of kind ? ! ? ! ? (i.e. +, �)
we generate types that take two functions as arguments,
corresponding to the instances of the type-indexed function
on the arguments of + and �, and return a function of the

combined type, see Hinze [13]. For example, the following
lines

lookuphT1 + T2i (inl k1) (t1; t2) = lookuphT1i k1 t1
lookuphT1 + T2i (inr k2) (t1; t2) = lookuphT2i k2 t2
lookuphT1 � T2i (k1; k2) t =
(lookuphT1i k1 3 lookuphK2i k2) t

are translated into the following functions

lookupEither :: 8A FMA B FMB :
(8V :A! FMA V ! Maybe V)!
(8V :B ! FMB V ! Maybe V)!
8V :A+ B ! FMapEither FMA FMB V !

Maybe V
lookupEither lua lub (inl a) (fMapEither (fma; fmb)) =
lua a fma

lookupEither lua lub (inr b) (fMapEither (fma; fmb)) =
lub b fmb

lookupProduct :: 8A FMA B FMB :
(8V :A! FMA V ! Maybe V)!
(8V :B ! FMB V ! Maybe V)!
8V :A � B ! FMapProduct FMA FMB V !

Maybe V
lookupProduct lua lub (a; b) (fMapProduct t) =
(lua a 3 lub b) t :

These functions are obtained from the de�nition of lookup
by replacing the occurrences of the lookup function in the
right-hand sides by their corresponding arguments.

Finally, we generate a specialization of the type-indexed
function on each data type on which it is used. For example,
on Nat we have

lookupNat :: 8V :Nat ! FMapNat V ! Maybe V
lookupNat =
convLookupNat (lookupEither lookupUnit lookupNat):

The argument of function convLookupNat (de�ned below)
is generated directly from the type Nat 0. For each special-
ization we also have to generate a conversion function. The
conversion function converts a type-indexed function that
works on the translated isomorphic data type to a function
that works on the original data type that appears as the
type index. For example, function convLookupNat converts
a lookup function on the internal isomorphic data type used
for natural numbers to a lookup function on the type of nat-
ural numbers itself.

convLookupNat :: (Nat 0 ! FMapNat 0 V ! Maybe V)!
(Nat ! FMapNat V ! Maybe V)

convLookupNat lu =
�t fmt ! lu (fromNat t) (unFMapNat fmt):

Note that the functions toNat and fMapNat are not
used on the right-hand side of the de�nition of function
convLookupNat . This is because no values of type Nat or
FMapNat are built for the result of the function. If the re-
sult of the type-indexed function consists of values of the
type index or the type-indexed data type these functions
will be applied at the appropriate position.

3.4 Implementing FMap in Haskell directly

Alternatively, we could also use multi-parameter type classes
and functional dependencies to implement a type-indexed

5

class FMap fma a j a ! fma where
lookup :: a ! fma v ! Maybe v

instance FMap Maybe () where
lookup () fm = fm

data Pair f g a = Pair (f a) (g a)

instance (FMap fma a;FMap fmb b)) FMap (Pair fma fmb) (Either a b) where
lookup (Left a) (Pair fma fmb) = lookup a fma
lookup (Right b) (Pair fma fmb) = lookup b fmb

data Comp f g a = Comp (f (g a))

instance (FMap fma a;FMap fmb b)) FMap (Comp fma fmb) (a; b) where
lookup (a; b) (Comp fma) = (lookup a 3 lookup b) fma

Figure 1: Implementing FMap in Haskell directly

data type such as FMap in Haskell. An example is given
in Figure 1. However, to use this implementation we would
have to marshal and unmarshal user-de�ned data types and
values of user-de�ned data types by hand.

4 Specializing type-indexed types and values

This section gives a formal semantics of type-indexed data
types by means of specialization. Examples of this special-
ization have been given in the previous section. The special-
ization on concrete data type instances given in this section
removes the type arguments of type-indexed data types and
functions. Thus all type arguments are removed at compile-
time, and type-indexed data types and functions can be used
at no run-time cost. The specialization can be seen as partial
evaluation of type-indexed functions where the type index is
the static argument. The specialization is obtained by lift-
ing the semantic description of type-indexed functions given
in Hinze [11] to the level of data types.

An alternative approach to giving a semantics of type-
indexed data types is obtained by translating type-indexed
data types to the intensional type analysis extension of
ML [9], in which types can be analyzed at run-time.

Type-indexed data types and type-indexed functions
take types as arguments, and return types and functions.
For the formal description of type-indexed data types and
functions and for their semantics by means of specialization
we use an extension of the polymorphic lambda calculus, de-
scribed in Section 4.1. Section 4.2 brie
y discusses the form
of type-indexed de�nitions. The description of the special-
ization is divided in two parts: Section 4.3 on the special-
ization of type-indexed data types, and Section 4.4 on the
specialization of type-indexed functions that take arguments
of type-indexed data types.

4.1 The polymorphic lambda calculus

This subsection brie
y introduces kinds, types, type
schemes, and terms.

Kind terms Kind terms are formed by:

T;U 2 Kind ::= ? kind of types
j (T! U) function kind:

Type terms Type terms are built from type constants and
type variables using type application and type abstraction.

T ;U 2 Type ::= C type constant
j A type variable
j (�A :: U :T) type abstraction
j (T U) type application:

For typographic simplicity, we will often omit the kind anno-
tation in �A :: U :T (especially if U = ?) and we abbreviate
nested abstractions �A1 : : : :�Am :T by �A1 : : : Am :T .

The set of type constants includes a family of �xed point
operators indexed by kind: FixT :: (T ! T) ! T. In the
examples, we will often omit the kind annotation T in FixT.

Type schemes Type schemes are formed by:

R;S 2 Scheme ::= T type term
j (R! S) functional type
j (8A :: U : S) polymorphic type:

Terms Terms are formed by:

t ; u 2 Term ::= c constant
j a variable
j (�a :: S : t) abstraction
j (t u) application
j (�A :: U : t) universal abstraction
j (t R) universal application:

Here, �A :: U : t denotes universal abstraction (forming a
polymorphic value) and t R denotes universal application
(instantiating a polymorphic value). Note that we use the
same syntax for value abstraction �a ::S : t (here a is a value
variable) and universal abstraction �A :: U : t (here A is a
type variable). We assume that the set of value constants
includes at least the polymorphic �xed point operator

�x :: 8A : (A! A)! A

and suitable functions for each of the other type constants
C (such as () for `1', inl , inr , and case for `+', and outl ,
outr , and (;) for `�'). To improve readability we will usually
omit the type argument of �x .

We omit the standard typing rules for the polymorphic
lambda calculus.

6

4.2 On the form of type-indexed de�nitions

The type-indexed de�nitions given in Section 2 implicitly de-
�ne a catamorphism on the language of types. For the spe-
cialization we have to make these catamorphisms explicit.
This section describes the di�erent views on type-indexed
de�nitions.

Almost all inductive de�nitions of type-indexed functions
and data types given in Section 2 take the form of a cata-
morphism:

catah1i = cata1
catahChari = cataChar
catahT1 + T2i = cata+ (catahT1i) (catahT2i)
catahT1 � T2i = cata� (catahT1i) (catahT2i):

These equations implicitly de�ne the (family of) functions
cata1, cataChar , cata+, and cata�. In this section we will
assume that a type-indexed function and data type are ex-
plicitly de�ned as a catamorphism. For example, for digital
search tries we have

FMap1 = �V :Maybe V
FMapChar = �V :FMapTChar V
FMap+ = �FMapA FMapB V :FMapA V � FMapB V
FMap

�
= �FMapA FMapB V :FMapA (FMapB V);

Some inductive de�nitions, such as the de�nition of Label ,
also use the argument types themselves in their right-hand
sides. Such functions are called paramorphisms [26], and are
characterized by:

parah1i = para1
parahChari = paraChar
parahT1 + T2i = para+ T1 T2 (parahT1i) (parahT2i)
parahT1 � T2i = para

�
T1 T2 (parahT1i) (parahT2i):

Fortunately, every paramorphism can be transformed into a
catamorphism by tupling it with the identity. Likewise, mu-
tually recursive de�nitions can be transformed into simple
catamorphisms using tupling.

Section 4.3 describes how to specialize type-indexed data
types with type indices that appear in the set C of type
constants: 1, Char , +, and �. However, we have also used
the type indices Id , K 1, K Char , and lifted versions of +
and �. So how are type-indexed data types with these type
indices specialized?

The specialization of type-indexed data types with
higher-order type indices proceeds in much the same fashion
as in Section 4.3. The process described in that section has
to be lifted to higher-order type indices. For the details of
of this lifting process, see Hinze [11], where it is also shown
that this approach is limited to types of second-order kinds.

4.3 Specializing type-indexed data types

The process of specialization of type-indexed data types on
concrete data type instances is phrased as an interpretation
of the simply typed lambda calculus. The interpretation of
the constants (1, Char , + and �) is obtained from the def-
inition of the type-indexed data type as a catamorphism.
Type application is interpreted as type application (in a dif-
ferent domain), abstraction as abstraction, and �xed points
as �xed points.

In the previous sections, the `types' of type-indexed data
types are of a �xed kind. For example, FMapT ::? :: ? ! ?.

However, when type application is interpreted as applica-
tion, we have that FMapList A = FMapList FMapA. Since
List is of kind ? ! ?, it is not in the domain of FMap .
We extend the domain of FMap by giving it a kind-indexed
kind, in such a way that FMapList :: (?! ?)! (?! ?).

Generalizing the above example, we have that a type-
indexed data type possesses a kind-indexed kind:

DataT ::T :: DataT;

where DataT has the following form:

DataT::2 :: 2

Data? = : : :
DataA!B = DataA ! DataB:

Here 2 is the superkind: the type of kinds. Note that only
the de�nition of Data?, indicated by : : :, has to be given
to complete the de�nition of the kind-indexed kind. The
de�nition of Data on functional kinds is dictated by the
specialization process. Since type application is interpreted
by type application, the kind of a type with a functional
kind is functional.

For example, the kind of the type-indexed data type
FMapT , where T is a type of kind ? is:

FMap
?

= ?! ?:

As described above, the process of specialization of type-
indexed data types on concrete data type instances is
phrased as an interpretation of the simply typed lambda
calculus. The interpretation of the constants (1,Char , +
and �) is obtained from the de�nition of the type-indexed
data type as a catamorphism, and the interpretation of ap-
plication, abstraction, and �xed points is obtained from the
de�nition of an environment model [28] for the type-indexed
data type.

An environment model is an applicative structure
(M; app; const), whereM is the domain of the structure, app
a mapping that interprets functions, and const maps con-
stants to the domain of the structure. Furthermore, in order
to qualify as an environment model, an applicative structure
has to be extensional and to satisfy the combinatory model
condition. The precise de�nitions of these concepts can be
found in Mitchell [28], where environment models are used
to give semantics to the simply typed lambda calculus. For
an arbitrary type-indexed data type DataT ::T :: DataT we
use the following applicative structure:

MT = TypeDataT = E

app
T;U

[T] [U] = [T U]

const(C) = [DataC]:

The domain of the applicative structure for a kind T is the
equivalence class, under an appropriate set of equations E
between type terms, of the set of types of kind DataT. The
application of two equivalence classes of types (denoted by
[T] and [U]) is the equivalence class of the application of
the types. The de�nition of the constants is obtained from
the de�nition as a catamorphism of the type-indexed data
type.

It can be veri�ed that the applicative structure de�ned
thus is an environment model.

The family of functions obtained from the formulation
as a catamorphism of the type-indexed data type does not

7

contain a component for the �xed point. The interpretation
of �xed points is the same for di�erent type-indexed data
types:

const(FixT) = [DataFixT];

where DataFixT is de�ned by

DataFixT = �D ::DataT!T :FixDataT D :

4.4 Specializing type-indexed values

A type-indexed value possesses a kind-indexed type [13],

polyT ::T :: PolyT Data1T : : : DatanT

in which Poly
T
has the following general form

Poly
T::2 :: Data1T ! � � � ! DatanT ! ?

Poly
?

= �X1 ::Data
1
? : : : : :�Xn ::Data

n
? : : : :

Poly
A!B

= �X1 ::Data
1
A!B : : : : :�Xn ::Data

n
A!B :

8A1 ::Data
1
A : : : : : 8An ::Data

n
A :

Poly
A
A1 : : : An !

Poly
B
(X1 A1) : : : (Xn An):

Again, note that only the de�nition of Poly
?
has to be given

to complete the de�nition of the kind-indexed type. The
de�nition of Poly on functional kinds is dictated by the spe-
cialization process. The presence of type-indexed data types
slightly complicates the type of a type-indexed value. In
Hinze [13] Poly

T
takes n arguments of type T. Here Poly

T

takes n possibly di�erent type arguments obtained from the
type-indexed data type arguments. For example, for the
look-up function we have:

Lookup
T::2 :: IdT ! FMapT ! ?

Lookup
?

= �K :�FMK : 8V :K ! FMK V ! Maybe V ;

where Id is the identity function on kinds. From the de�ni-
tion of the look-up function in Section 2.2.1 we obtain the
following equations:

lookupT ::T :: Lookup
T
IdT FMapT

lookup1 = �V k fmk : fmk
lookupChar = lookupTChar
lookup+ = �A FMA lookupA B FMB lookupB :

�V k fmk :
case k of finl a ! lookupA V a (outl fmk)

; inr b ! lookupB V b (outr fmk)
g

lookup
�

= �A FMA lookupA B FMB lookupB :
�V k fmk :
(lookupA V (outl k) 3 lookupB V (outr k))

fmk :

Just as with type-indexed data types, type-indexed values
on type-indexed data types are specialized by means of an
interpretation of the simply typed lambda calculus. The
environment model used for the specialization is somewhat
more involved than the environment model used for the spe-
cialization of type-indexed data types. The domain of the
environment model is a dependent product: the type of the
last component (the equivalence class of the terms of type
Poly

T
D1 : : : Dn) depends on the �rst n components (the

equivalence classes of the type schemes D1 : : : Dn of kind
T). Note that the application operator applies the term

component of its �rst argument to both the type and the
term components of the second argument.

MT = ([D1] 2 Scheme
Data

1

T = E
; : : :

; [Dn] 2 SchemeData
n

T = E
;TermPolyT D1 ::: Dn = E
)

app
T;U

([R1]; : : : ; [Rn]; [t]) ([S1]; : : : ; [Sn]; [u])
= ([R1 S1]; : : : ; [Rn Sn]; [t S1 : : : Sn u])

const(C) = ([Data1C]; : : : ; [Data
n
C]; [polyC]):

Again, the interpretation of �xed points is the same for dif-
ferent type-indexed values:

const(FixT) = ([FixData1
T

]; : : : ; [FixDatan
T
]; [polyFixT]);

where polyFixT is given by

polyFixT = �F1 : : : Fn : �polyF :: Poly
T!T

F1 : : : Fn :
�x (polyF (Fix

Data1
T

F1) : : : (FixDatan
T
Fn)):

5 An advanced example: the Zipper

This section shows how to de�ne a zipper for an arbitrary
data type. This is a rather involved example of a type-
indexed data type, together with some type-indexed func-
tions that take an argument of a type-indexed data type.

The zipper is a data structure that is used to represent
a tree together with a subtree that is the focus of attention,
where that focus may move left, right, up or down in the
tree. The zipper is used in tools in which a user interactively
manipulates trees, such as editors for structured documents
such as proofs and programs. The focus of the zipper may
only move to (sub-) trees, so, for example in the data type
Tree :

data Tree A = empty j node (Tree A) A (Tree A);

if the left subtree of a node constructor is selected, moving
right means moving to the right tree, not to the A-label.
This implies that recursive positions in trees play an impor-
tant rôle in the de�nition of a generic zipper data structure.
To obtain access to these recursive positions, we have to be
explicit about the �xed points in the data type de�nitions.
The zipper data structure is then de�ned by induction on
the pattern functor of a data type.

The tools in which the zipper is used allow the user to
repeatedly apply navigation or edit commands, and to up-
date the focus or tree accordingly. In this section we de�ne
a type-indexed data type for locations, which consist of a
subtree (the focus) together with a context, and we de�ne
several navigation functions on locations. We will not de�ne
edit functions, and we will not further specify the edit loop
of the tools in which the zipper is used.

5.1 Locations

A location is a subtree, together with a context, which en-
codes the path from the top of the original tree to the se-
lected subtree. The type-indexed data type Loc returns a
type for locations given an argument pattern functor.

LochF :: ?! ?i :: ?
LochF i = (Fix F ;ContexthF i (Fix F))

ContexthF :: ?! ?i :: ?! ?
ContexthF i = �R :Fix (�C : 1 + Ctx hF i C R):

8

The type Loc is de�ned in terms Context , which constructs
the context parameterized by the original tree type. The
Context of a value is either empty (represented by 1 in the
pattern functor for Context), or is it a path from the root
down into the tree. Such a path is constructed by means of
the second component of the pattern functor for Context :
the type-indexed data type Ctx . The type-indexed data
type Ctx is de�ned by induction on the pattern functor of
the original data type.

Ctx hF :: ?! ?i :: ?! ?! ?
Ctx hIdi = �C R :C
Ctx hK 1i = �C R : 0
Ctx hK Chari = �C R : 0
Ctx hF1 + F2i = �C R :Ctx hF1i C R + Ctx hF2i C R
Ctx hF1 � F2i =
�C R : (CtxhF1i C R � F2 R) + (F1 R � Ctx hF2i C R):

This de�nition can be understood as follows. There are
three simple cases: the sum case, and the constant cases
K 1 and K Char . Since it is not possible to descend into a
constant, the constant cases do not contribute to the result
type, which is denoted by the `empty type' 0. Note that
although 0 does not appear in the grammars for types intro-
duced in Section 2.1, we do allow it to appear as the result
of a type-indexed data type. The Id case denotes a recursive
component, in which it is possible to descend. Hence it may
occur in a context. Finally, there are two ways to descend in
a product: descending left, adding the contents to the right
of the node to the context, or descending right, adding the
contents to the left of the node to the context.

For example, for natural numbers with pattern functor
K 1 + Id (or, equivalently, �N : 1 + N), and for trees of
type Bush whose pattern functor is K Char + Id � Id (or,
equivalently, �T :Char + (T � T)) we obtain

ContexthK 1 + Idi = �R :Fix (�C : 1 + (0 +C))
ContexthK Char + Id � Idi =
�R :Fix (�C : 1 + (0 + (C � R + R � C)));

Note that the context of a natural number is isomorphic to
a natural number (the context of m in n is n �m), and the
context of a Bush applied to the data type Bush itself is
isomorphic to the type CtxBush introduced in Section 1.

We recently found that McBride [24] also de�nes a type-
indexed zipper data type. His zipper slightly deviates from
Huets and our zipper: the navigation functions on McBride's
zipper are not constant time anymore. Interestingly, he ob-
serves that the Context of a data type is its derivative (as
in calculus).

5.2 Navigation functions

We de�ne type-indexed functions on the type-indexed data
types Loc, Context , and Ctx for navigating through a tree.
All of these functions act on locations. These are the basic
functions for the zipper.

Function down. The function down is a type-indexed func-
tion that moves down to the leftmost recursive child of the
current node, if such a child exists. If the current node is
a leaf node such a child does not exist, and then function
down returns the location unchanged. The instantiation of
function down on the data type Bush has been given in Sec-
tion 1. Function down satis�es the following property:

8l : downhF i l 6= l) (uphF i � downhF i) l = l ;

that is, �rst going down the tree and then up again is the
identity function on locations in which it is possible to go
down. Since function down moves down to the leftmost
recursive child of the current node, the equality downhF i �
uphF i = id does not hold in general. However, there does
exist a natural number n such that

8l : uphF i l 6= l) (righthF in � downhF i � uphF i) l = l :

Function down is de�ned as follows.

downhF :: ?! ?i :: LochF i ! LochF i
downhF i (t ; c) = case �rsthF i (out t) c of

just (t 0; c0)! (t 0; in (inr c0))
nothing ! (t ; c):

To �nd the leftmost recursive child, we have to pattern
match on the pattern functor F , and �nd the �rst occur-
rence of Id . Function �rst is a type-indexed function that
possibly returns the leftmost recursive child of a node, to-
gether with the context (a value of type Ctx hF i C T) of the
selected child. Function down then turns this context into a
value of type Context by inserting it in the right (`non-top')
component of a sum by means of inr , and applying the �xed
point constructor in to it.

�rsthF :: ?! ?i :: F T ! C ! Maybe (T ;Ctx hF i C T)
�rsthIdi t c = return (t ; c)
�rsthK 1i t c = fail
�rsthK Chari t c = fail
�rsthF1 + F2i (inl x) c =
do f(t ; cx) �rsthF1i x c; return (t ; inl cx)g

�rsthF1 + F2i (inr y) c =
do f(t ; cy) �rsthF2i y c; return (t ; inr cy)g

�rsthF1 � F2i (x ; y) c =
do f(t ; cx) �rsthF1i x c; return (t ; inl (cx ; y))g
++ do f(t ; cy) �rsthF2i y c; return (t ; inr (x ; cy))g;

where (++) is the standard monadic plus, called mplus is
Haskell, given by

(++) :: Maybe A! Maybe A! Maybe A
nothing ++m = m
just a ++m = just a:

Function �rst returns the value and the context at the left-
most Id position. So in the product case, it �rst tries the left
component, and only if it fails, it tries the right component.

The de�nitions of functions up, right and left are not
as simple as the de�nition of down , since they are de�ned
by pattern matching on the context instead of on the tree
itself. We will just de�ne functions up and right , and leave
function left to the reader.

Function up. The function up moves up to the parent of
the current node, if the current node is not the top node.

uphF :: ?! ?i :: LochF i ! LochF i
uphF i (t ; c) = case out c of

inl ()! (t ; c)
inr c0 ! do fft inserthF i c0 t

; c00 extracthF i c0

; return (in ft ; c00)
g:

Remember that inl () denotes the empty top context. Func-
tion up uses two helper functions: insert and extract . Func-
tion extract returns the context of the parent of the current

9

node. Note that each element of type Ctx hF i C T has at
most one C component (by an easy inductive argument),
which marks the context of the parent of the current node.
The polytypic function extract extracts this context.

extract hF :: ?! ?i :: Ctx hF i C T ! Maybe C
extract hIdi c = return c
extract hK 1i c = fail
extract hK Chari c = fail
extract hF1 + F2i (inl cx) = extract hF1i cx
extract hF1 + F2i (inr cy) = extract hF2i cy
extract hF1 � F2i (inl (cx ; y)) = extract hF1i cx
extract hF1 � F2i (inr (x ; cy)) = extract hF2i cy ;

where return is obtained from the Maybe monad and fail is
shorthand for nothing . Note that extract is polymorphic in
C and in T .

Function insert takes a context and a tree, and inserts
the tree in the current focus of the context, e�ectively turn-
ing a context into a tree.

inserthF :: ?! ?i :: Ctx hF i C T ! T ! Maybe (F T)
inserthIdi c t = return t
inserthK 1i c t = fail
inserthK Char i c t = fail
inserthF1 + F2i (inl cx) t =
do fx inserthF1i cx t ; return (inl x)g

inserthF1 + F2i (inr cy) t =
do fy inserthF2i cy t ; return (inr y)g

inserthF1 � F2i (inl (cx ; y)) t =
do fx inserthF1i cx t ; return (x ; y)g

inserthF1 � F2i (inr (x ; cy)) t =
do fy inserthF2i cy t ; return (x ; y)g:

Note that the extraction and insertion is happening in the
identity case Id ; the other cases only pass on the results.

Since uphF i � downhF i = id on locations in which it is
possible to go down, we expect similar equalities for the func-
tions �rst , extract , and insert . We have that the following
computation

do f (t ; c0) �rst hF i ft c
; c00 extract hF i c0

; ft 0 inserthF i c0 t
; return c c00 ^ ft ft 0

g

returns true on locations in which it is possible to go down.

Function right . The function right moves the focus to the
next sibling to the right in a tree, if it exists. The context
is moved accordingly. The instance of function right on the
data type Bush has been given in Section 1. Function right
satis�es the following property:

8l : righthF i l 6= l) (lefthF i � righthF i) l = l ;

that is, �rst going right in the tree and then left again is the
identity function on locations in which it is possible to go to
the right. Of course, the dual equality holds on locations in
which it is possible to go to the left.

Function right is de�ned by pattern matching on the
context. It is impossible to go to the right at the top of
a value. Otherwise, we try to �nd the right sibling of the

current focus.

righthF :: ?! ?i :: LochF i ! LochF i
righthF i (t ; c) = case out c of

inl ()! (t ; c)
inr c0 ! case nexthF i t c0 of
just (t 0; c00)! (t 0; in (inr c00))
nothing ! (t ; c):

Function next is a type-indexed function that returns the
�rst location that has the recursive value to the right of the
selected value as its focus. Just as there exists a function left
such that lefthF i � righthF i = id on locations in which it is
possible to go to the right, there exists a function previous ,

nexthF :: ?! ?i; previoushF :: ?! ?i::
T ! Ctx hF i C T ! Maybe (T ;Ctx hF i C T)

such that

do f (t 0; c0) nexthF i t c
; (t 00; c00) previoushF i t 0 c0

; return c c00 ^ t t 00

g

returns true on locations in which it is possible to go to the
right. We will de�ne function next , and omit the de�nition
of function previous .

nexthF :: ?! ?i :: T ! Ctx hF i C T ! Maybe (T ;CtxhF i C T)
nexthIdi t c = fail
nexthK 1i t c = fail
nexthK Char i t c = fail
nexthF1 + F2i t (inl cx) =
do f(t 0; cx 0) nexthF1i t cx ; return (t 0; inl cx 0)g

nexthF1 + F2i t (inr cy) =
do f(t 0; cy 0) nexthF2i t cy ; return (t 0; inr cy 0)g

nexthF1 � F2i t (inl (cx ; y)) =
do f(t 0; cx 0) nexthF1i t cx ; return (t 0; inl (cx 0; y))g
++ do fc extracthF1i cx

; x inserthF1i cx t
; (t 0; cy) �rsthF2i y c
; return (t 0; inr (x ; cy))
g

nexthF1 � F2i t (inr (x ; cy)) =
do f(t 0; cy 0) nexthF2i t cy ; return (t 0; inr (x ; cy 0))g:

The �rst three lines in this de�nition show that it is im-
possible to go the right in an identity or constant context.
If the context argument is a value of a sum, we select the
next element in the appropriate component of the sum. The
product case is the interesting case of function next . If the
context is in the right component of a pair, next returns the
next value of that context, properly combined with the left
component of the tuple. On the other hand, if the context
is in the left component of a pair, the next value may be
either in that left component (the context), or it may be in
the right component (the value). If the next value is in the
left component, it is returned by the �rst line in the def-
inition of the product case. If it is not, next extracts the
context c (the context of the parent) from the left context
cx , it inserts the given value in the context cx giving a `tree'
value x , and selects the �rst component in the right compo-
nent of the pair, using the extracted context c for the new
context. The new context that is thus obtained is combined
with x into a context for the selected tree.

10

6 Conclusion

We have shown how to de�ne type-indexed data types, and
we have given several examples of type-indexed data types,
for digital search tries, the zipper, and labelling a data
type. Furthermore, we have shown how to specialize type-
indexed data types and type-indexed functions that take
values of type-indexed data types as arguments. The spe-
cialization is a generalization of the specialization of type-
indexed functions given in Hinze [13], and is used in the
extension of Generic Haskell with a construct for de�n-
ing type-indexed data types. Please contact the authors
for the current, experimental, implementation of Generic
Haskell with type-indexed data types. The �rst release of
Generic Haskell is planned for November 1, 2001, see also
http://www.generic-haskell.org/.

A type-indexed data type is de�ned in a similar way as
a type-indexed function. The only di�erence is that the
`type' of a type-indexed data type is a kind instead of a
type. Note that a type-indexed data type may also be a
type constructor, it need not necessarily be a type of kind
?. For instance Label is indexed by types of kind ?! ? and
yields types of kind ?! ?! ?.

There are some things that remain to be done. We want
to test our framework on the type-indexed data types ap-
pearing in the literature [3, 31], and we want to create a
library of type-indexed data type examples. Furthermore,
we have to investigate how we can deal with sets of possibly
mutually recursive type-indexed data types.

Acknowledgements. Thanks to Dave Clarke, Ralf
L�ammel, and Doaitse Swierstra for comments on a previous
version of the paper. Jan de Wit suggested an improvement
in the labelling functions.

References

[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens.
Generic programming: An introduction. In S. Doaitse
Swierstra, Pedro R. Henriques, and Jos�e N. Oliveira,
editors, Advanced Functional Programming, volume
1608 of LNCS, pages 28{115. Springer-Verlag, 1999.

[2] Richard Bird, Oege de Moor, and Paul Hoogendijk.
Generic functional programming with types and rela-
tions. Journal of Functional Programming, 6(1):1{28,
1996.

[3] Manuel M. T. Chakravarty and Gabriele Keller. More
types for nested data parallel programming. In Proceed-
ings ICFP 2000: International Conference on Func-
tional Programming, pages 94{105. ACM Press, 2000.

[4] Koen Claessen and Peter Ljungl�of. Typed logical vari-
ables in Haskell. In Proceedings Haskell Workshop 2000,
2000.

[5] Karl Crary and Stephanie Weirich. Flexible type anal-
ysis. In Proceedings ICFP 1999: International Confer-
ence on Functional Programming, pages 233{248. ACM
Press, 1999.

[6] Karl Crary, Stephanie Weirich, and J. Gregory Mor-
risett. Intensional polymorphism in type-erasure se-
mantics. In Proceedings ICFP 1998: International Con-
ference on Functional Programming, pages 301{312.
ACM Press, 1998.

[7] C. Dubois, F. Rouaix, and P. Weis. Extensional poly-
morphism. In 22nd Symposium on Principles of Pro-
gramming Languages, POPL '95, pages 118{129, 1995.

[8] M.M. Fokkinga. Law and Order in Algorithmics. PhD
thesis, University of Twente, Dept INF, Enschede, The
Netherlands, 1992.

[9] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In 22nd
Symposium on Principles of Programming Languages,
POPL '95, pages 130{141, 1995.

[10] Ralf Hinze. Generalizing generalized tries. Journal of
Functional Programming, 10(4):327{351, 2000.

[11] Ralf Hinze. Generic Programs and Proofs. 2000. Ha-
bilitationsschrift, Bonn University.

[12] Ralf Hinze. A new approach to generic functional pro-
gramming. In Conference Record of POPL '00: The
27th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 119{132. ACM
Press, 2000.

[13] Ralf Hinze. Polytypic values possess polykinded types.
In Roland Backhouse and Jos�e Nuno Oliveira, editors,
Mathematics of Program Construction, volume 1837 of
LNCS, pages 2{27. Springer-Verlag, 2000.

[14] G�erard Huet. The zipper. Journal of Functional Pro-
gramming, 7(5):549{554, 1997.

[15] P. Jansson and J. Jeuring. PolyP | a polytypic pro-
gramming language extension. In Conference Record of
POPL '97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
470{482. ACM Press, 1997.

[16] P. Jansson and J. Jeuring. PolyLib { a polytypic
function library. Workshop on Generic Programming,
Marstrand, June 1998. Available from the Polytypic
programming WWW page [17].

[17] Patrik Jansson. The WWW home page
for polytypic programming. Available from
http://www.cs.chalmers.se/~patrikj/poly/, 2001.

[18] Patrik Jansson and Johan Jeuring. Functional pearl:
Polytypic uni�cation. Journal of Functional Program-
ming, 8(5):527{536, September 1998.

[19] Patrik Jansson and Johan Jeuring. A framework for
polytypic programming on terms, with an applica-
tion to rewriting. In J. Jeuring, editor, Workshop on
Generic Programming 2000, Ponte de Lima, Portugal,
July 2000, pages 33{45, 2000. Utrecht Technical Report
UU-CS-2000-19.

[20] C.B. Jay, G. Bell�e, and E. Moggi. Functorial ML. Jour-
nal of Functional Programming, 8(6):573{619, 1998.

[21] J. Jeuring. Polytypic pattern matching. In Conference
Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8
Conference on Functional Programming Languages and
Computer Architecture, pages 238{248. ACM Press,
1995.

[22] Ralf L�ammel and Wolfgang Lohmann. Format evolu-
tion. In RETIS'01, 2001.

11

[23] G. Malcolm. Data structures and program transforma-
tion. Science of Computer Programming, 14:255{279,
1990.

[24] Connor McBride. The derivative of a regular type is
its type of one-hole contexts. Unpublished manuscript,
2001.

[25] Nancy J. McCracken. An investigation of a program-
ming language with a polymorphic type structure. PhD
thesis, Syracuse University, June 1979.

[26] L. Meertens. Paramorphisms. Formal Aspects of Com-
puting, 4(5):413{425, 1992.

[27] E. Meijer, M.M. Fokkinga, and R. Paterson. Func-
tional programming with bananas, lenses, envelopes,
and barbed wire. In J. Hughes, editor, FPCA'91: Func-
tional Programming Languages and Computer Archi-
tecture, volume 523 of LNCS, pages 124{144. Springer-
Verlag, 1991.

[28] John C. Mitchell. Foundations for Programming Lan-
guages. The MIT Press, 1996.

[29] Simon Peyton Jones [editor], John Hughes [edi-
tor], Lennart Augustsson, Dave Barton, Brian Bou-
tel, Warren Burton, Simon Fraser, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas
Johnsson, Mark Jones, John Launchbury, Erik Mei-
jer, John Peterson, Alastair Reid, Colin Runci-
man, and Philip Wadler. Haskell 98 | A
non-strict, purely functional language. Available
from http://www.haskell.org/definition/, Febru-
ary 1999.

[30] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully
re
exive intensional type analysis. In Proceedings ICFP
2000: International Conference on Functional Pro-
gramming, pages 82{93. ACM Press, 2000.

[31] M�ans Vestin. Genetic algorithms in Haskell with
polytypic programming. Examensarbeten 1997:36,
G�oteborg University, Gothenburg, Sweden, 1997.
Available from the Polytypic programming WWW
page [17].

[32] Stephanie Weirich. Encoding intensional type analysis.
In European Symposium on Programming, volume 2028
of LNCS, pages 92{106. Springer-Verlag, 2001.

[33] Zhe Yang. Encoding types in ML-like languages. In
Proceedings ICFP 1998: International Conference on
Functional Programming, pages 289{300. ACM Press,
1998.

12

