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There is no a standard definition!

“Big Data” involves data whose volume, diversity and 

complexity requires new techniques, algorithms and 

analyses to extract valuable knowledge (hidden) .

What is Big Data?

Data Intensive 
applications
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What is Big Data? The 5V’s definition
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Big data has many faces
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How to deal with data intensive 
applications? Scale-up vs. Scale-out



Traditional HPC way of doing things
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Source: Jan Fostier. Introduction to MapReduce and its Application to Post-Sequencing Analysis



Data-intensive jobs

Low compute 
intensity…
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Data-intensive jobs

Low compute 
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Solution: store data on local disks of the nodes that perform 
computations on that data (“data locality”)



Distributed systems in Big Data

• Objective: To apply an operation to all data
– One machine cannot process or store all data

• Data is distributed in a cluster of computing nodes

• It does not matter which machine executes the 
operation

• It does not matter if it is run twice in different nodes 
(due to failures or stalled nodes)

• We look for an abstraction of the complexity behind 
distributed systems

– DATA LOCALITY is crucial
• Avoid data transfers between machines as much as 

possible



Distributed systems in Big Data

New programming model: MapReduce

– “Moving computation is cheaper than moving 
computation and data at the same time”

– Idea

• Data is distributed among nodes (distributed file 
system)

• Functions/operations to process data are distributed to 
all the computing nodes

• Each computing node works with the data stored in it

• Only the necessary data is moved across the network



MapReduce

• Parallel Programming model

• Divide & conquer strategy

 divide: partition dataset into smaller, independent
chunks to be processed in parallel (map)

 conquer: combine, merge or otherwise aggregate
the results from the previous step (reduce)

• Based on simplicity and transparency to the
programmers, and assumes data locality

• Becomes popular thanks to the open-source project
Hadoop! (Used by Google, Facebook, Amazon, …)
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MapReduce: How it works

Mapper Reducer



MapReduce: Example

• WordCount



Hadoop

• Open source framework for Big Data processing

– Based on two Works published by Google

• Google File System (GFS)[Ghe03]

• MapReduce algorithm[Dea04]

– Composed of

• Hadoop Distributed File System (HDFS)  Storage

• Implementation of the MapReduce algorithm 
Processing

[Ghe03] S. Ghemawat, H. Gobioff, S.-T. Leung. The Google file system. In Proceedings of the nineteenth ACM symposium on Operating 
systems principles (SOSP ’03). ACM, New York, NY, USA, 29-43. 2003
[Dea04] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proceedings of the 6th conference on Symposium 
on Opearting Systems Design & Implementation - Volume 6 (OSDI’04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10. 2004.



Hadoop

http://hadoop.apache.org/

• Hadoop is:

– An open-source framework written in Java

– Distributed storage of very large data sets (Big Data)

– Distributed processing of very large data sets

• This framework consists of a number of modules

– Hadoop Common

– Hadoop Distributed File System (HDFS)

– Hadoop YARN – resource manager

– Hadoop MapReduce – programming model

16



– Master: NameNode, JobTracker
– Slave: {DataNode, TaskTraker}, ..., {DataNode, 

TaskTraker}

Namenode JobTracker
Secondary
Namenode

Single Box Single Box Single Box

Optional to have in Two Box In Separate Box
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……
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e
Hadoop: A master/slave architecture
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Distributed File System: HDFS

• HDFS – Hadoop Distributed File System
– Distributed File System written in Java
– Scales to clusters with thousands of computing nodes

• Each node stores part of the data in the system

– Fault tolerant due to data replication
– Designed for big files and low-cost hardware

• GBs, TBs, PBs

– Efficient for read and append operations (random 
updates are rare)

– High throughput (for bulk data) more important than 
low latency



• Automatic parallelization:

– Depending on the size of the input data  there will be 
multiple  MAP tasks!

– Depending on the number of Keys <k, value>  there 
will be multiple REDUCE tasks!

• Scalability: 

– It may work over every data center or cluster of 
computers.

• Transparent for the programmer

– Fault-tolerant mechanism.

– Automatic communications among computers

Hadoop MapReduce: Main 
Characteristics
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Data Sharing in Hadoop MapReduce

iter. 1 iter. 2 .  .  .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

.  .  .

HDFS
read

Slow due to replication, serialization, and disk IO
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Paradigms that do not fit with Hadoop 
MapReduce

• Directed Acyclic Graph (DAG) model:

– The DAG defines the dataflow of the application, and the 
vertices of the graph defines the operations on the data

• Graph model:

– More complex graph models that better represent the 
dataflow of the application

– Cyclic models -> Iterativity.

• Iterative MapReduce model:

– An extented programming model that supports iterative 
MapReduce computations efficiently

21



GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Iterative graph processing

GPS - A Graph Processing System, 
(Stanford) 
http://infolab.stanford.edu/gps/
Amazon's EC2 

Distributed GraphLab
(Carnegie Mellon Univ.) 
https://github.com/graphlab-
code/graphlab
Amazon's EC2

HaLoop
(University of Washington)    

http://clue.cs.washington.edu/node/14    
http://code.google.com/p/haloop/
Amazon’s EC2

Twister (Indiana University)
http://www.iterativemapreduce.org/
Private Clusters

PrIter (University of Massachusetts 
Amherst, Northeastern University-
China)
http://code.google.com/p/priter/
Private cluster and Amazon EC2 cloud

GPU based platforms
Mars
Grex

Spark (UC 
Berkeley)http://spark.incubator.apache.org/rese
arch.html

New platforms to overcome Hadoop’s
limitations
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Big data technologies
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What is Spark?

Efficient

• General execution graphs

• In-memory storage

Usable

• Rich APIs in Java, Scala, 
Python

• Interactive shell

Fast and Expressive Cluster Computing 

Engine Compatible with Apache Hadoop

24



What is Spark?

• Data processing engine (only)

• Without a distributed file system

– Uses other existing DFS

• HDFS, NoSQL…

• Hadoop is not a prerequisite

• Works with different cluster management tools

– Hadoop (YARN)

– Mesos

– Standalone mode (included in Spark)



What is Spark?



Spark Goal

• Provide distributed memory abstractions for clusters 
to support apps with working sets

• Retain the attractive properties of MapReduce:

– Fault tolerance (for crashes & stragglers)

– Data locality

– Scalability

Initial Solution: augment data flow model with “resilient 
distributed datasets” (RDDs)

27



RDDs in Detail

• An RDD is a fault-tolerant collection of elements that 
can be operated on in parallel.

• There are two ways to create RDDs: 

– Parallelizing an existing collection in your driver 
program 

– Referencing a dataset in an external storage 
system, such as a shared filesystem, HDFS, Hbase.

• Can be cached for future reuse

28



Operations with RDDs

• Transformations (e.g. map, filter, groupBy, join)

– Lazy operations to build RDDs from other RDDs

• Actions (e.g. count, collect, save)

– Return a result or write it to storage

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

29



• RDDs – Simple example

• Simple wordCount in Spark

>>> lines = sc.textFile("README.md") # Creates an RDD

>>> lines.count() # Counts the number of elements in the RDD

127

>>> lines.first() # First element of the RDD -> 1st line of 

README.md

u'# Apache Spark‘

Operations with RDDs

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) 

\

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")



Spark vs. hadoop
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Spark

• Driver and Workers

– A Spark program is composed 
of two programs

• Driver program

• Workers program
– Executed in the computing nodes

– Or in local threads

– RDDs are distributed across 
the whole cluster



SparkSQL: Datasets y DataFrames

• Structured APIs
– DataFrames (>= Spark 1.3)

• Idea: RDDs of rows with columns that can be accessed 
by their names

• Similar to Pandas in Python (dataframes in R)

• Avoid Java serialization performed by RDDs

• API natural for developers familiar with building query 
plans (SQL)

• Introduced as a part of Tungsten project
– Efficient memory management

• Concept of schema to describe data



SparkSQL: Datasets y DataFrames

• Structured APIs
– Datasets (>= Spark 1.6)

• Idea: Strongly typed RDDs

• Functional transformations (map, flatMap, filter)

• Best of both RDDs and DataFrames

– Object-oriented programming

– Compile-time type safety

– Catalyst optimization

– Tungsten off-heap memory optimization

• Only for Scala and Java



SparkSQL: Datasets y DataFrames

• Structured APIs
– DataFrames and Datasets 

– Fused in Spark 2.0 (November 2016)

• A DataFrame is just a Dataset of Rows: Dataset[Row]

– Both make us of Catalyst and Tungsten projects



SparkSQL: Datasets y DataFrames

• Structured APIs in Spark

– Analysis of the reported errors before a job is 
executed



https://flink.apache.org/

Flink
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Big Data: Technology 
and Chronology

2001-2010

2010-2017

2010-2017:

Big Data 
Analytics:  
Mahout, MLLib, …

Hadoop
Ecosystem

Applications
New  

Technology

38
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2001

3V’s Gartner

Doug Laney
2004 

MapReduce 
Google 

Jeffrey Dean

2008

Hadoop

Yahoo!

Doug Cutting 

2010  Spark

U Berckeley

Apache Spark 
Feb. 2014

Matei Zaharia

2009-2013 Flink

TU Berlin

Flink Apache (Dec. 
2014) Volker 

Markl 



Big Data Ecosystem

Log data
Zepelin

Web-based notebook

ZooKeeper
Coordinador

Streaming data

Kafka
Gestión de 

fuentes de datos

Pig
Scripting para 
MapReduce

SQL

NoSQL DatabaseSqoop
Hadoop to RDBMS

Impala
Interactive SQL

DAG execution

NoSQL on HDFS

Data serialization

Streaming data

Docker
Containers

Cluster management
Cluster management
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Clustering

Recommendation

Systems

Classification

Association

Potential scenarios 

Real Time Analytics/

Big Data Streams

Social Media Mining
Social Big Data

Big Data Analytics
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Big Data Analytics: 
A 3 generational view

43



Mahout (Samsara)

44
http://mahout.apache.org/

• First ML library initially based on Hadoop MapReduce.

• Abandoned MapReduce implementations from version 0.9.

• Nowadays it is focused on a new math environment called
Samsara.

• It is integrated with Spark, Flink and H2O

• Main algorithms:
– Stochastic Singular Value Decomposition (ssvd, dssvd)

– Stochastic Principal Component Analysis (spca, dspca)

– Distributed Cholesky QR (thinQR)

– Distributed regularized Alternating Least Squares (dals)

– Collaborative Filtering: Item and Row Similarity

– Naive Bayes Classification



https://spark.apache.org/mllib/

Spark Libraries
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https://spark.apache.org/mllib/
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218


https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/

FlinkML
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Scalability

• Speed-up (m cores)
– How much faster can the same data be processed 

with m cores instead of 1 core

• 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑛 1 𝑐𝑜𝑟𝑒

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑛𝑚 𝑐𝑜𝑟𝑒𝑠

– The data size is kept constant and the number of cores 
is increased

– Ideal speed-up is linear
• Speedup(m) = m

– In practice
• Difficult to obtain due to communication                                 

and synchronization overhead



Scalability

• Size-up (data, m)
– How much time does it take to execute m times larger 

data

• 𝑆𝑖𝑧𝑒𝑢𝑝 𝑑𝑎𝑡𝑎,𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚·𝑑𝑎𝑡𝑎

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

– The number of cores is kept constant and the data size 
is increased

– Ideal size-up is linear
• Sizeup(data, m) = m

– In practice
• Few algorithms are linear with                                           

respect to the data



Scalability

• Scale-up (data, m)
– Measures the ability of the system to run a m-times 

greater job with a m-times larger system

• 𝑆𝑖𝑧𝑒𝑢𝑝 𝑑𝑎𝑡𝑎,𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑜𝑛 1 𝑐𝑜𝑟𝑒

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚·𝑑𝑎𝑡𝑎 𝑜𝑛𝑚 𝑐𝑜𝑟𝑒𝑠

– Both the number of cores and the data are increased

– Ideal scale-up is 1
• Scale-up(data, m) = 1

– In practice
• Few algorithms achieve a                                                      

scale-up of 1



Machine Learning in Big Data: 
Global vs. Local

Two main ways for learning a model in Big Data:

– Locally

• A model is created for each partition of the data 
(only using the data of that partition)

• All the models are combined when predicting the 
class of a new example  Ensemble

– Globally

• A single model is created using all the available data 

• They try to obtain the same model as the one that 
would be obtained if the method could be executed in 
a single node



Machine Learning in Big Data: 
Global vs. Local

Local model
– Advantages

• Usually faster
• Gets faster as the number of partitions is increased
• Any existing model can be applied
• Only the aggregation phase has to be designed

– Disadvantages
• Slow in test phase, too many models have to be executed
• Loss of accuracy as the number of partitions increases

– With few partitions, accuracy can improve due to the ensemble 
effect

– With too many partitions, the accuracy tends to drop, since there 
are not enough examples in each partition

• They do not take advantage of the data as a whole



Machine Learning in Big Data: 
Global vs. Local

Global model
– Advantages

• Greater accuracy is expected (not proved)

• All the examples are used to learn a single model

• Anyway, a global ensemble can also be built

• The model is independent of the number of partitions

• Faster in test phase

– Disadvantages
• More complex design and implementation

• Distributed nature of Big Data processing has to be taken 
into account (computation/communication)



Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• All the nodes in a level are learned with a single pass 
through the whole dataset

• Numeric attributes are discretized into bins in order to 
reduce the computational cost



Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• All the nodes in a level are learned with a single pass 
through the whole dataset



Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• Numeric attributes are discretized into bins in order to 
reduce the computational cost
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Data Preprocessing: Tasks to discover quality data
prior to use knowledge extraction algorithms. 

Data Preprocessing for Big Data

57

data

Target
data

Processed
data

Patterns

Knowledge

Selection

Preprocessing

Data Mining

Interpretation
Evaluation



Evolutionary algorithms for data 
preprocessing

• Many preprocessing stages can be modelled as optimisation
processes. For example:

– Feature selection/weighting

– Instance selection/Generation

• Evolutionary algorithms have excelled in this task in data with 
a moderate size. 

• However, their practical application is limited to problems 
with no more than tens of thousands of instances because of:

– Excessive chromosome size 

– Runtime requirements

58



Evolutionary algorithms for instance 
reduction in Big data

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. A Combined MapReduce-Windowing Two-Level Parallel 
Scheme for Evolutionary Prototype Generation.  Evolutionary Computation (CEC), 2014 IEEE Congress on, 3036-
3043

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. MRPR: A MapReduce solution for prototype reduction in 
big data classification. Neurocomputing 150 (2015) 331–345
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 Objective: reduce the number of samples 
to find better decision boundaries 
between classes, by selecting relevant 
samples or artificially generating new 
ones. 

 We focused on Prototype Generation
(PG) models, which are based on the
Nearest Neighbour (NN) classifier.

 Advantages:

Instance Reduction 

 Reduce Storage Requirements
 Remove noisy samples
 Speed up learning process

60



I. Triguero, S. García, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification. 

IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

 EPG algorithms adjust the positioning of the 
prototypes.

 Each individual encodes a single prototype or a 
complete generated set with real codification.

 The fitness function is computed as the 
classification performance in the training set using 
the Generated Set.

 Currently, best performing approaches use 
Differential Evolution.

 Known issues:

 Dealing with big data becomes impractical

Evolutionary Prototype Generation (EPG)
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Evolutionary Prototype Generation for
Big Data sets

Objectives

 The design of a scalable EPG 
approach that embraces the 
huge storage and processing 
capacity of cloud platforms.

 To do so, we rely on the success 
of Hadoop MapReduce in 
combination with a windowing
scheme for evolutionary models.

.
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Parallelising EPG with windowing

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations
0 Iter

Main properties:
Avoids a (potentially biased) static prototype 
selection/generation
This mechanism also introduces some generalization pressure
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Properties:

 Within this scheme, the algorithm disposes of the whole
information although it is accessed in successive iterations.

 This model itself aims to improve the runtime requirements
of EPG models. But it does not deal with the memory
consumption problem.

 This is why we use this strategy as a second level
parallelization scheme after a previous distribution of the
processing in a cluster of computing elements.

64

Parallelising EPG with windowing



MRPR: Evolutionary Prototype
Generation for Big Data sets
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Experimental Study

• 4 big data sets: Poker (1M), KddCup (4.8M), Susy (5M), 
RLCP(5.7M). 

• Performance measures:  Accuracy, reduction rate, runtime, test 
classification time and speed up. 

• 3x5 fold-cross validation 
• Number of mappers = 64/128/256/512/1024. 
• Number of reducers=1 
• PG techniques tested: SSMA-SFLSDE, LVQ3, RSP3 
• PS techniques tested: DROP3, FCNN 

Evolutionary Prototype Generation for
Big Data sets
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Evolutionary Prototype Generation
for Big Data sets
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Evolutionary Prototype Generation
for Big Data sets
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Evolutionary Prototype Generation
for Big Data sets



 Evolutionary algorithms continue to be the best performing 
models for Instance reduction in the big data context.

 Great synergy between the windowing and MapReduce 
approaches. They complement themselves in the proposed two-
level scheme.

 Without windowing, EPG could not be applied to datasets larger 
than approximately ten thousands instances.

 The application of this model has resulted in a very big reduction 
of storage requirements and classification time for the NN rule.

70

https://github.com/triguero/MRPR

Evolutionary Prototype Generation
for Big Data sets



Evolutionary algorithms for 
imbalanced Big data sets

I Triguero, M Galar et. al.  Evolutionary Undersampling for Extremely Imbalanced Big Data Classification under 
Apache Spark. IEEE Congress on Evolutionary Computation (CEC), 2016.

71

I Triguero, M Galar et. al.  Evolutionary undersampling for imbalanced big data classification. 
IEEE Congress on Evolutionary Computation (CEC), 2015.

I Triguero, M Galar et. al. A First Attempt on Global Evolutionary Undersampling for Imbalanced Big Data. 
IEEE Congress on Evolutionary Computation (CEC), 2017.



Class imbalance problem
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An example of an imbalanced data-set



Class imbalance problem

73

Standard classifiersmodels biased in favour of the majority class



Class imbalance problem

 Skewed data distribution by itself is not
harmful

 But… a series of difficulties usually turn up

 Small sample size

 Overlapping or class separability

 Small disjuncts

74

(a) Class overlapping (b) Small disjuncts



Class imbalance problem

 Two main approaches to tackle this
problem:

 Data sampling

 Undersampling

 Oversampling

 Hybrid approaches

 Algorithmic modifications

 Cost-sensitive approaches

 Ensemble models

-
-

-- -
-
--

- -

-
--

--
--

-- -- -
- -

- --

-
- -

-

+
+ +

+
+

V. López et al, An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics, Information Sciences 250 (2013)
M. Galar et al, A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42 (4) (2012)
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Evolutionary Undersampling

 Evolutionary undersampling (EUS) aims to select the best
subset of negative instances from the original training set.

 EUS not only intends to balance the training set, but also to
increase the overall performance on both classes of the
problem.

 To do so, a genetic algorithm is used to search for an optimal
subset of instances.

 This resulting set can be used by any standard classification
model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy”, Evolutionary
Computation, 17 (3) (2009). 275–306
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Evolutionary Undersampling in the big data 
context

 EUS does not generate more data, as opposed to
oversampling methods.

 However, the increasing number of instances would lead to
obtain an excessive chromosome size that can limit their
application.

 The required runtime increases not only with the number
of examples but also with the imbalance ratio (IR).
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L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, in Foundations of
Genetic Algorithms, G. J. E. Rawlins, Ed. San Francisco, CA: Morgan Kaufmann, 265-283, 1991.

Evolutionary undersampling

 Representation of the solution

 Performance: g-mean, 1NN hold-one-out

 Fitness Function

 We use the CHC algorithm and GM as performance measure.
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EUS-BD: A two-level parallelisation model 
for EUS

 A two-level parallelisation scheme:

 The MapReduce phase will allow us to divide the
computational effort over different machines.

Goal: Memory limitations and runtime.

 The windowing scheme will be applied to reduce the
computational time required by EUS.

Goal: Runtime.
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Windowing for Class Imbalance

 Disjoint windows with equal class distribution may lead to
information loss of the positive class.

 The minority class set will be always used to evaluate a
chromosome.

 The majority class set is divided into several disjoint
strata. The size of each subset will correspond to the
number of minority class instances.

 It means: Fixed number of strata.
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The EUS-BD scheme
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EUS-BD known issues

82

Too small 
amount of 
positive 
data.

Or even 
no 
minority-
class 
elements!

 This is a local model!

 Extremely imbalanced cases: lack
of density from the minority
class.

 We used Spark to alleviate that
issue splitting training data into
positive and negative sets. The
positive set was accessible in all
the maps (via broadcast)



EUS-BD for Extremely Imbalanced 
datasets
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EUS-BD for Extremely Imbalanced 
datasets
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EUS-BD for Extremely Imbalanced 
datasets
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Can we develop a Global 
Evolutionary model?

 Ideally, EUS should have access to all the data as a whole.
Can we do that with the current technology?

 A binary representation of the selected instances implies
a chromosome size equal to the number of negative
instances.

 However, the resulting selected dataset tends to be
fairly small, and balanced.

 Assumption: The number of positive instance is so
reduced that it perfectly fits in main memory of a single
computer.



Global Evolutionary Undersampling
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Outline

What is Big data? 

 How to deal with Data Intensive applications?

 Big Data Analytics 

 A demo with MLlib

 Conclusions 
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Demo

• In this demo we will show two ways of 
working with Apache Spark:
– Interactive mode with Spark Notebook.

– Standalone mode with IntelliJ.

• All the code used in this presentation is 
available at:

http://www.cs.nott.ac.uk/~pszit/BigDataCEC201
7.html

89

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html


DEMO with Spark Notebook in local

http://spark-notebook.io/
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http://spark-notebook.io/


DEMO with Spark Notebook in local

Advantages:
 Interactive.
 Automatic plots.
 It allows connection with a cluster.
 Tab completion

Disadvantages: 
 Built-in for specific spark versions.
 Difficult to integrate your own code.
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DEMO with IntelliJ IDE
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https://www.jetbrains.com/idea/



MapReduce in a cluster

• Hadoop V2

– YARN



MapReduce in a cluster

• Hadoop V2



MapReduce in a cluster

• Hadoop V2
– Container

• A subset of the resources of the cluster (part of a node)
– Number of cores

– Quantity of RAM memory

• A hold request is made

• Once granted, a process (task) can be run in the 
container



MapReduce in a cluster

• Hadoop V2

– ApplicationMaster

• New concept

• Responsible for the processing

• Responsible for negotiating with the ResourceManager
and working with the NodeManagers

• In charge of the fault tolerance
– ResourceManager is no longer used for this task



MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

1. The client launches the process (connection with the 
ResourceManager)



MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

2. The ResourceManager requests a container where the 
ApplicationMaster is executed



MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

3. The ApplicationMaster request the containers to 
execute all the tasks (in different nodes)



MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

4. All the tasks are executed in the containers
– Containers are released once its tasks are finished

5. The ApplicationMaster ends when all the tasks have 
been executed. Then, its container is released



Spark: Execution in a cluster

• SparkContext (sc) is created  in the driver

– Using the sc a connection with the cluster 
manager is established

– Once connected, executors are requested

• The processes that perform the computation and store 
the data

– The driver sends the code and tasks to the 
executors



Outline

 Introduction to Big Data

 Big Data Analytics

 Evolutionary algorithms in the big data 
context

 A demo with MLlib

 Conclusions 
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Conclusions

• We need new strategies to deal with big datasets

– Choosing the right technology is like choosing the 
right data structure in a program.

• The world of big data is rapidly changing. Being up-
to-date is difficult but necessary.

• Evolutionary models are powerful tools in data 
mining. They need to be adapted and redesigned to 
take the maximum advantages of their promising 
properties.
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Evolutionary algorithms for Feature 
Selection/Weighting in Big Data

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely
imbalanced big data bioinformatics problem. Knowledge-Based Systems (2015)

D. Peralta,et al. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach. Mathematical
Problems in Engineering, 2015 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Var. 5Var. 1. Var. 13

Feature Selection
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The outcome of FS would be:

 Less data  algorithms could learn quicker

 Higher accuracy the algorithm generalizes better

 Simpler results easier to understand them



 Each individual represents a set 
of selected features (binary 
vector).

 The individuals are crossed and 
mutated to generate new 
candidate sets of features.

 Fitness function:

 Classification performance in 
the training dataset using only 
the features in the 
corresponding set.

Evolutionary Feature Selection

108

L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search  when engaging in nontraditional genetic 

recombination, in: G. J. E. Rawlins (Ed.), Foundations of Genetic Algorithms, 1991, pp. 265--283.



Evolutionary Feature Weighting
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 Each individual represents the 
importance of the features in the range 
0,1 (real vector).

 The individuals are crossed and mutated
to generate new candidate importances.

 Fitness function:

 Classification performance in the 
training dataset using taking into 
consideration the weights of the 
features.

Neri, F., Tirronen, V., Scale factor local search in differential evolution. Memetic Computing 1:2 (2009) 153-171



MapReduce EFS process

The vector of weights

is binarized with a 

threshold
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Evolutionary Feature
Selection/Weighting for Big Data 



Dataset reduction

The maps

remove the

discarded

features

No reduce phase
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Evolutionary Feature
Selection/Weighting for Big Data 



Experimental Study: EFS scalability in MapReduce

 CHC is quadratic w.r.t. the number of instances

 Splitting the dataset yields nearly quadratic acceleration
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Evolutionary Feature Selection



Experimental Study: Classification

 Two datasets

 epsilon

 ECBDL14, after applying 
Random Oversampling

 The reduction rate is controlled 
with the weight threshold

 Three classifiers in Spark

 SVM

 Logistic Regression

 Naïve Bayes

 Performance measures



 Training runtime
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Experimental Study: results
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Evolutionary Feature Selection



Evolutionary Feature Weighting at 
GECCO-2014

Oversampling Feature Selection
Learning a Random

Forest
Classifying the test set

115

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
bioinformatics problem. Knowledge-Based Systems (2015)

• Details of the training data:

 32 million training samples (56.7GB of disk space)

 2.9 million of test samples (5.1GB of disk space)

 631 features (539 real & 92 nominal values)

 2 labels; 98% non-contact samples



Results

Team TPR TNR TPR * TNR

Efdamis 0.73043 0.73018 0.53335

ICOS 0.70321 0.73016 0.51345

UNSW 0.69916 0.72763 0.50873

Efdamis-
Without FS 0.7041 0.7103 0.500175
HyperEns 0.64003 0.76338 0.48858

PUC-Rio_ICA 0.65709 0.71460 0.46956

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
bioinformatics problem. Knowledge-Based Systems (2015)

116



 The proposed MapReduce processes provide several advantages:

 It enables tackling Big Data problems

 The feature weight vector is more flexible than a binary vector

 The data reduction process in MapReduce provides a scalable and 
flexible way to apply the feature selection/weighting,

 Both the accuracy and the runtime of the classification were 
improved after the preprocessing.

https://github.com/triguero/MR-EFS

117

Evolutionary Feature
Selection/Weighting


