IEEE Congress on Evolutionary Computation 2017

Donostia - San Sebastian, Spain

June 5-8, 2017/

Big Data Learning with Evolutionary Algorithms

Isaac Triguero Mikel Galar
School of Computer Science Dept. Automatic and Computation
University of Nottingham Public University of Navarre
United Kingdom Spain
Isaac.Triguero@nottingham.ac.uk mikel.galar@unavarra.es

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

vty
l.

upna

ASAP

r
UNITED KINGDOM - CHINA - MALAYSIA ..’Esia."i’g'":“ﬁ_ 1987-2017

Research
Institutes

5th June 2017

mailto:Isaac.Triguero@nottingham.ac.uk
mailto:Mikel.galar@unavarra.es

Outline

J Introduction to Big Data
] Big Data Analytics

. Evolutionary algorithms in the big data
context

J A demo with MLlib
] Conclusions

What is Big Data?

There is no a standard definition!

“Big Data” involves data whose volume, diversity and
complexity requires new techniques, algorithms and

analyses to extract valuable knowledge (hidden) .

. N

Data Intensive
applications

Processing
Capabilities

Activity: IOPS

File/Object Size, Content Volume

What is Big Data? The 5V’s definition

Big data has many faces

[Data Acquisition]

[Security and Privacy] Storage J

' [infrastructure

Computation
infrastructure

Big data

[Visualization J'

Databases/]

[Analytics/ Mining] [querying

Scale-Qut

How to deal with data intensive
applications? Scale-up vs. Scale-out

Traditional HPC way of doing things

Communication network (Infiniband)

Lots of
communication

worker

nodes
(lots of them)

Lots of
computations

Limited 1/0O

-
f input data

central (relatively small)
storage

Source: Jan Fostier. Introduction to MapReduce and its Application to Post-Sequencing Analysis

Data-intensive jobs

Fast communication network (Infiniband)
Limited
communication

Low compute
intensity

doesn’t
scale

Lots of I/O

Network for I/O

central
storage

lﬂlﬂﬂ

Data-intensive jobs

Communication network

Limited
communication
Low compute

intensity

~o. ‘0 | ‘0 ‘0 i

=R B2
, (lots of it)

L XTI

Solution: store data on local disks of the nodes that perform
computations on that data (“data locality”)

Distributed systems in Big Data

* Objective: To apply an operation to all data

— One machine cannot process or store all data
e Data is distributed in a cluster of computing nodes

* |t does not matter which machine executes the
operation

* |t does not matter if it is run twice in different nodes
(due to failures or stalled nodes)

* We look for an abstraction of the complexity behind
distributed systems

— DATA LOCALITY is crucial

* Avoid data transfers between machines as much as
possible

Distributed systems in Big Data

New programming model: MapReduce

— “Moving computation is cheaper than moving
computation and data at the same time”

— ldea

» Data is distributed among nodes (distributed file
system)

* Functions/operations to process data are distributed to
all the computing nodes

* Each computing node works with the data stored in it
* Only the necessary data is moved across the network

MapReduce Mp.!

* Parallel Programming model
* Divide & conquer strategy

= divide: partition dataset into smaller, independent
chunks to be processed in parallel (map)

" conquer: combine, merge or otherwise aggregate
the results from the previous step (reduce)

* Based on simplicity and transparency to the
programmers, and assumes data locality

* Becomes popular thanks to the open-source project
Hadoop! (Used by Google, Facebook, Amazon, ...)

MapReduce: How it works

MapReduce: Example

e WordCount

Input Mappers Sort, Shuffle Reducers Output
(hadoop, 1) fa, 11,11} a2
Hadoop uses (offset, R hadoop 1
l {hadoop, [1]}, adoop
MapReduce /:[fie, ”P: m ia?
Thereisa /
Map phase

{mapreduce, [1]}, mapreduce 1
{phase, [1,1]}

{map, [1,1]},] map 1

phase 2

. Y reduce, [1,1]}, uce
Thereisa [(offset, (there, 1) \:[{th e:;, [,] there 2
Reduce phase . . (reduce, 1) {uses, [1,1]} uses 1

Hadoop

* Open source framework for Big Data processing

— Based on two Works published by Google
* Google File System (GFS)[Ghe03]
 MapReduce algorithm[Dea04]

— Composed of
* Hadoop Distributed File System (HDFS) = Storage

* Implementation of the MapReduce algorithm =
Processing

[Ghe03] S. Ghemawat, H. Gobioff, S.-T. Leung. The Google file system. In Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP '03). ACM, New York, NY, USA, 29-43. 2003

[Dea04] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (OSDI'04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10. 2004.

Hadoop ‘aIaLc_r]

 Hadoop is:

— An open-source framework written in Java
— Distributed storage of very large data sets (Big Data)
— Distributed processing of very large data sets

* This framework consists of a number of modules
— Hadoop Common
— Hadoop Distributed File System (HDFS)
— Hadoop YARN — resource manager
— Hadoop MapReduce — programming model

Hadoop: A master/slave architecture

— Master: NameNode, JobTracker

— Slave: {DataNode, TaskTraker}, ..., {DataNode,
TaskTraker}

S

B Secondar

n Namenode JobTracker Y

4] Namenode
Single Box Single Box Single Box

Optional to have in Two Box In Separate Box

G>J TaskTraker TaskTraker TaskTraker TaskTraker

© Datanode 1 Datanode 2 Datanode3 |- Datanode N

(V)

17

Distributed File System: HDFS

 HDFS — Hadoop Distributed File System

— Distributed File System written in Java

— Scales to clusters with thousands of computing nodes
* Each node stores part of the data in the system

— Fault tolerant due to data replication

— Designed for big files and low-cost hardware
* GBs, TBs, PBs

— Efficient for read and append operations (random
updates are rare)

— High throughput (for bulk data) more important than
low latency

Hadoop MapReduce: Main MM
Characteristics

* Automatic parallelization:

— Depending on the size of the input data =2 there will be
multiple MAP tasks!

— Depending on the number of Keys <k, value> = there
will be multiple REDUCE tasks!

e Scalability:
— It may work over every data center or cluster of
computers.

* Transparent for the programmer
— Fault-tolerant mechanism.
— Automatic communications among computers

Data Sharing in Hadoop MapReduce

HDFS HDFS HDFS HDFS

read write r read write ————

result 1

result 2

result 3

[Slow due to replication, serialization, and disk 10

20

Paradigms that do not fit with Hadoop
MapReduce

* Directed Acyclic Graph (DAG) model:

— The DAG defines the dataflow of the application, and the
vertices of the graph defines the operations on the data

 Graph model:

— More complex graph models that better represent the
dataflow of the application

— Cyclic models -> Iterativity.
* Iterative MapReduce model:

— An extented programming model that supports iterative
MapReduce computations efficiently

New platforms to overcome Hadoop’s

limitations

GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Iterative graph processing

GPS - A Graph Processing System,
(Stanford)
http://infolab.stanford.edu/gps/
Amazon's EC2

phlab Distributed GraphLab

(Carnegie Mellon Univ.)
https://qithub.com/qraphlab-
code/qraphlab

Amazon's EC2

.S»‘par‘lgZ

Lightning-Fast Cluster Computing Spa rk (UC
Berkeley)http://spark.incubator.apache.org/rese

Twisters

Iterative MapReduce

Twister (Indiana University)

http://www.iterativemapreduce.org/

arch.html

Private Clusters

Priter (University of Massachusetts
Amherst, Northeastern University-
China)
http://code.google.com/p/priter/
Private cluster and Amazon EC2 cloud

HalLoop

(University of Washington)
http://clue.cs.washington.edu/node/14
http://code.google.com/p/haloop/
Amazon’s EC2

GPU based platforms

Mars
Grex 22

http://giraph.apache.org/
http://infolab.stanford.edu/gps/
https://github.com/graphlab-code/graphlab
http://www.iterativemapreduce.org/
http://code.google.com/p/priter/

Big data technologies

The World
of Big Data !
Tools I DAG Model MapReduce Model

' | |
F 1
Qr ! Graphlab
Iterations/
Learning E_IE!_
! :

Dryad/
} DryadLINQ Pig/PigLatin

For Query

B
Streaming Spark Streaming

23

What is Spark?

Fast and Expressive Cluster Computing
Engine Compatible with Apache Hadoop

2.5)(IGSS Code
Efficient Usable
* General execution graphs * Rich APIs in Java, Scala,
* |In-memory storage Python

* |nteractive shell

24

What is Spark?

* Data processing engine (only)

* Without a distributed file system ‘I\Z
. L APACHE
— Uses other existing DFS S Q K
* HDFS, NoSQL... p ™
* Hadoop is not a prerequisite
* Works with different cluster management tools
— Hadoop (YARN)

— Mesos
— Standalone mode (included in Spark)

What is Spark?

Spark SQL Spark Streaming m';AcLh'it:le Gr?aphhx
structured data real-time e prgcegsing

‘ Standalone Scheduler | ‘ YARN l ‘ Mesos |

Spark Goal

* Provide distributed memory abstractions for clusters
to support apps with working sets

* Retain the attractive properties of MapReduce:
— Fault tolerance (for crashes & stragglers)
— Data locality
— Scalability

Initial Solution: augment data flow model with “resilient
distributed datasets” (RDDs)

RDDs in Detail

e An RDD is a fault-tolerant collection of elements that
can be operated on in parallel.

* There are two ways to create RDDs:

— Parallelizing an existing collection in your driver
program

— Referencing a dataset in an external storage
system, such as a shared filesystem, HDFS, Hbase.

* Can be cached for future reuse

Operations with RDDs

* Transformations (e.g. map, filter, groupBy, join)

— Lazy operations to build RDDs from other RDDs

* Actions (e.g. count, collect, save)

— Return a result or write it to storage

Transformations
(define a new RDD)

map

filter

sample
union
groupByKey
reduceByKey
join

cache

Parallel operations

(return a result to driver)

reduce
collect
count
save
lookupKey

29

Operations with RDDs

 RDDs - Simple example

>>> lines = sc.textFile ("README.md") # Creates an RDD

>>> lines.count () # Counts the number of elements in the RDD
127

>>> lines.first() # First element of the RDD -> 1st line of
README . md

u'# Apache Spark’

Simple wordCount in Spark

text file = sc.textFile("hdfs://...")
counts = text file.flatMap(lambda line: line.split("™ "))
\

.map (lambda word: (word, 1)) \

.reduceByKey (lambda a, b: a + b)
counts.saveAsTextFile ("hdfs://...")

Spark vs. hadoop

K-Means
_ 300 - E m Hadoop
Lines of code for K- . = HadoopBinMem
Means % I = Spark
. E b
Spark ~ 90 lines — =
o
&
Hadoop ~ 4 files, > =
300 lines

25 50 100

Number of machines
[Zaharia et. al, NSDI’12]

M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. NSDI 2012.

Spark

 Driver and Workers

— A Spark program is composed Lelreipialis
(driver program)
of two programs

. SparkContext

* Driver program

* Workers program Cluster | ocal
— Executed in the computing nodes manager threads

— Orin local threads

L Worker ll Work
— RDDs are distributed across [REEEE B

the whole cluster executor W executor

Amazon 53, HDFS, or other storage

SparkSQL: Datasets y DataFrames

e Structured APIs

— DataFrames (>= Spark 1.3)

* |dea: RDDs of rows with columns that can be accessed
by their names

 Similar to Pandas in Python (dataframes in R)
* Avoid Java serialization performed by RDDs

* APl natural for developers familiar with building query
plans (SQL)
* Introduced as a part of Tungsten project

— Efficient memory management

* Concept of schema to describe data

SparkSQL: Datasets y DataFrames

e Structured APIs

— Datasets (>= Spark 1.6)
* |dea: Strongly typed RDDs
* Functional transformations (map, flatMap, filter)
* Best of both RDDs and DataFrames
— Object-oriented programming
— Compile-time type safety

— Catalyst optimization
— Tungsten off-heap memory optimization

* Only for Scala and Java

SparkSQL: Datasets y DataFrames

Untyped API

e Structured APlIs

— DataFrames and Datasets
— Fused in Spark 2.0 (November 2016)
* A DataFrame is just a Dataset of Rows: Dataset[Row]

Typed API
» Dataset[T]

— Both make us of Catalyst and Tungsten projects

Code
Generation

Logical Physical

Analysis Optimization Planning

(123, “data”, “bricks”)

L

Cost Model

Offset to data

.]
T T

Offset to data Field lengths

Null bitmap

SparkSQL: Datasets y DataFrames

e Structured APIs in Spark
— Analysis of the reported errors before a job is

executed
-
SQL DataFrames Datasets
Syntax Runtime Compile Compile
Errors Time Time
Analysis Compile

Runtime Runtime :
Errors Time

Flink

https://flink.apache.org/

Flink

&FI' K Overview Features Downloads FAQ ¢ Quickstart ~ ? Documentation -~
In

Apache Flink is an open source platform for distributed stream and batch data processing.

Flink’s core is a streaming dataflow engine that provides data distribution,
communication, and fault tolerance for distributed computations over data streams.

Flink includes several APIs for creating applications that use the Flink engine:

1. DataStream API for unbounded streams embedded in Java and Scala, and
2. DataSet AP for static data embedded in Java, Scala, and Python,
3. Table APl with a SQL-like expression language embedded in Java and Scala.

Flink also bundles libraries for domain-specific use cases:

1. CEP, a complex event processing library,
2. Machine Learning library, and
3. Gelly, a graph processing APl and library.

You can integrate Flink easily with other well-known open source systems both for data
input and output as well as deployment.

A Streaming First

High throughput and low latency stream processing with
exactly-once guarantees.

Throughput
150 APACHE

g B Flink = Storm STORM
o
@
a2
a=
@ E 5 I
: I
@
w

40 80 120

CPU Cores

4 Batch on Streaming

Batch processing applications run efficiently as special
cases of stream processing applications.

APIs, Libraries, and Ecosystem

DataSet, DataStream, and more. Integrategd with the
Apache Big Data stack.

2001-2010 Big Data: Technology M

2010-2017 and Chronology This paelis oiivare

2001
3V’s Gartner

SoHe R 2010-2017:

TU Berlin MapReduce

Flink Apache (Dec. Google Big Data
2014) Volker Analytics:

Jeffrey Dean Mahout, MLLib, ...

Hadoop
Ecosystem
2010 Spark

U Berckeley Hadoop Applications
New

|
Apache Spark Yahoo! Technology

Feb. 2014

Matei Zaharia

Doug Cutting

<
: % MEsos G
B I g Data ECOSySte m <(:uster management kubernetes

Cluster management

OO0 N cassandra
Data serialization
Sqoop NoSQL Database
Pig Hadoop to RDBMS
Scripting para
MapReduce

Flink

@ STO R M Streaming data

Streaming data

ZooKeeper
Coordinador

AP ACHE
FSASE
NoSQL on HDFS

Kafka \
HEERE Gestién de 3\
- P fuentes de datos
Zepelin Imbala
Web-based notebook Docker Log data P

Containers Interactive SQL

Big Data Landscape 2016 (Version 3.0)

Infrastructure Analytics Applications
2 z : 2 7 =1 4 NZ N
[if Hadoop Hadoop in Spark Cluster ServiceS\ (Analyst Analytics Dafat?ClenCE) (Visuanzatiop (" sales & Marketing E Customer Service Humar; Legal
On-Premise the Cloud Platforms Platforms Platforms ' G insi Capita
loudera €databricks e o) . g oceontext relevant iﬁ’ +ableau RADIUS Galr\SIth'} ‘ MEDALLIA Up HARIEL
cloudera i || =amazon wicrosoft Azure Lo QPalantir ||&% Microsoft]| connnuum & patarobet & o .obloomreacl:x Zeta ATTESTY @ || d
MAPR) orwor | | @ Googlc s|| 9@ AYASDI quAvUs || Alpine i .|| Qlik @ lodker | | Vi EversTrne livefyre & ol o |
Pivotal IBM InfoSphere | |CridGain/em ||, .50 &> docker Qnid nigme || 2 pstameer | [pog vone ;;‘r!”'y- ARIMO % @ Roati blueyonder “:Lattice || &2 cLickrFox [|connectifier
3 —— <) oam > =
IBM InfoSphere - | P Tusasune o %7 MESOSPHERE - N 4 dataiku @tonian - e /ﬁfer SAILTHRU QSTELLASewice & Everlaw
e, i . VERTON | @ i | | @Ry || Bottlense || o Gpsense || gy | | persado dserse (n0aTn foreact || enpelo || @Brevia
8 biuedata jethro || @ attiscale [{bole Ssooke) | EETIEER inter|ana ghat wsormis)\ cuagtzo) | Eouaniene ACTIONIG hiQ || evenmor
— .\ = \ fuse/machines izNGAGIO J\ @appuri Wiseio)\ PN 2
(" NoSQL Databases NewSQL Databases N (Biplatforms Statistical |[Log Analytics (Social) vz —— = T <\
P Clustrix Pivotal &) Power Bl s 3mazon Computing — Analytics Ad Optimization : Security Vertical Al
Dynamepg 4 *003\¢ tloud Farorm ; N servies™ Q Y ; q Hootsuite"| |5% AppNexus WEYLANCE Applications
3 ORACLE 0)7)paradlgm4)Sas @ sumologic s wal [] CounterTack cybereason
Microsoft Azure "MarkLogic © memsql nuo Wave Analytics NETBASE criteol s i r‘ facebook
. ; = P . reatMetri
.mongo DATASTAX. VOLTT)VB' §Pllce G GoodData *birst kibana o BATASIFT 'bpenx ~erocketfuel || AREA1 ("@fineione ¢
N . 4MoridDB . W cLoun tracx bitly | [@ integral ® theTradeDesk |[=% a2z Guardian || >
Couchb: tusdat ’ PHYSICS JnLeer po 872 Analytics ara
e e o ra Ttien Somemmrins | | 2 D 2 [| o || gy | S || i dstry || 2R l
\ 7 Sequoial3 redislabs @ influxdato P =) k@atm‘:\lv sis=ns= oggly BN reach) ;: Lwrelmem - X FORTSCALE “esiftscience KASIST@
N o g ' a
(" Graph MPP Cloud EDW Data . Rd Data_ N (Real-Time)(Machine Learning| [Speech & NLP Horizontal Al) \Data XU Oppier MOAT) k’KugLuﬁt feedzai #SCNFYD J{ ate)
Databases || Databases “"':i!laloﬂ Transformation | |Integration oSt az0n NarrativeScience 4 @51/ Watson (" Publisher) (Govt/ Regulation\ - Finance N
. || TERADATA e e alteryx informatica e g i Cortana. €p sentient H o &
®neoy © Google ery H.OGi . Tools » Affirm zELendingClub
B VERTICA Microsoft Azure stalend Fut potesiicl o wod amazn 2 NUANCE yigram VIV ®utbrai @Socrata OnDed .
?‘ R Pivotal) Mutesoft Dato K || < semantic e S dutbrain nDec<> .Kreditech
.3 (N)neTEZZA Ivota @ TRIFACTA SKYTREE % noro M £ Numenta @ OPENGOV U B Kabhace
‘ £ i snoplogic @ onidmion s A Sapial || @), oo] Tabla finance Lendlp &7 Kabt
OrientDB ?cho:‘l el tamr gy =5 BadrockD: AR VD?IA:?: L Qoo * °"“"“cl5rifai quantcast @FiscalNote tidemark W INSIKT
b 5 kognitio o & Streamse! Ll % ssnselo L maluub MindMeld 5 enigm
(v | (gs0r] | | fomortes i) gy) | cotonrtsans [\ wrcicinio gy s) M s B | ZChrtoeat (| =y, 78 Z Uora ®Dataminr ¥ Lenddo
— avyieldbot’ mark43 Hadiie o
. " : '3 : KENSHC iSENTIUM
(" Management Security Storage App Dev | Crowd- | [Search)(Data Services)(For Business)(Web /Mobile) OpenDataSoft - Quamm’:r:mm € sentient
/ Monitoring @ TANIUM™ .,.:%&,amn upigee sourcing @ sty ORACLE @ OPERA Analysts / Commerce _ VYieldmo J\ U ntient
. [: . Services™ ENDECA on
o Nf'f'p%e\}'ﬁ,\wcg (] Sumio © Coogl sruazon meciericak 75 ExALenD Musigma %" OrigamiL.ogi G?\:\’ﬁk(snéi ‘ (Education/\ € Life Sciences Y4 Industries E
wfamazon o ofio [o] cooenz. Microsoft Azure ® \% Lucidworks & XEXL ClearStor o Xp Learning 23andMe ﬁg&m& OP@WER © Harmony'
e tiDataGravity || panasas CASK Q] - Y RJMetrics @ suecore| |- B Counsyl ®g “¢ Retail\
. : > & elasiic [mousso 2 b : o 7
-3 spll.mllgemy gc;pnevctom & nimblestor LB Typesafe -l ‘e? elastic] $: ascacands 6"%;\0 Az aveuTupe €7 granify P KNEYTON X Recombine genom e s d@
oATADOG) ”y‘VECTRA COHO \\\ MAANA @ swiftype kéggle sumAll ™ airtable Clever x¥rous FLATIRON S?T\JTEFH FIXO
Q,ocmo onven 0 || N 4 Biction Q s DRI:/EN) \?\NorkFusion) Algetia sieous) i import@ || retention custora @eclara || 2@@8zymergen HealthTop® s I:rYUUSSIon
= — e SN J/ & ZEPHYR Se
i fpmemaBioTA BEL T TH) Swiftkey “22@ FarmLogs
Cross-Infrastructure/Analytics PANORAMA 1 Gingerio == transcriptic Glow || #Howood @ Hime

know@ || @enitic @aicure Y, “omie)| umistatmuse BEXEVER
EXY 6sas JM () s VERTICH vmware TIBC TerADATA ORACLE Il Netape | s 5 S‘ ——\ /
: i pen Source

Nons
s C | L VT
w'amazon Google ¥ Microsoft

(Framework Query / Data Flow Data Access Coordination Real-Time Stat Tools Machine Learning Search Security
- accurmuLo
ColiEphEm (O TEDGED peacue 7 5 I @ Apache @SINGA PP Apache Ranger
MEPLEERE ﬁ ﬂ Ly i . mongo) talendgw STORMSpOrK Aerosolve @ = mnihb' .‘~ &'efasmsmrch
Py B i ! Apache -»-' 2 —_—
YARNJ\Z P 14508 a5 el | 17 a{& A §€ kafka lxlookeeper aFI' K Scalalab .Qﬂ Caffe CNTK' ensorrs % |(Visualization
Spark TEZ® "SLAMDATA xbn‘u Y SciDB A\ g n s ek FeatureFu - Solr- =
[#*+=s¢ @piink @CDAP orenTaon & O soncre s || B TACHYON) dirtid || @y scipy)| VELES“® = pimsum o’ DL |\ ucens e i,
Data Sources & APIs Incubators & Schools
[Health N 10T Financial & Economic Data Air / Space / Sea Location / People / Entities Other @)
JAWBONE GARMIN. hingWerx Bloomberg [| pow JoNnEs A Spire acxi®m. :f.3:Experian #InsideView’ m PLURALSIOHT
orX THOMSON REUTERS sep PLANET lin A : INSIGHT
%o Practicefusion fltblt I " @ samsara || Y@ DLEE J PREMISE l’ CAPITALIQ DO . winowarp [} GARMIN. STREET"LIWN.EQ Oesrl » a'DataCamD a
Withings ¥ vatipic pelatmo /_\/ “ > [#1quandl xignite EECBiscHTs s SK‘":H 38 Crimson Hexagon *cmmue %% factual. Place[® panjiva «4 Datatlite
_ Qkinsa () Human API Aucuey g s mattermark StockTwits @estimize E8ptam || = Airware (3) pronedepioy () CRCULATE (@ placemeter BASIS @59"59 == DATA.GOV Q The Data Incubator =)

Last Updated 3/23/2016 © Matt Turck (@mattturck), Jim Hao (@jimrhao), & FirstMark Capital (@firstmarkcap) FIRSTMARK

Outline

J Introduction to Big Data
. Big Data Analytics

. Evolutionary algorithms in the big data
context

J A demo with MLlib
] Conclusions

Big Data Analytics

Potential scenarios

Real Time Analytics/
Big Data Streams

9 0
o@ o

BIG

(3 DATA ()
0 00°

Social Media Mining
Social Big Data

Recommendation
Systems 42

Generation

Examples

Scalability

Algorithms

Available

Algorithms
Not Available

Fault-
Tolerance

Big Data Analytics:
A 3 generational view

1st Generation

SAS, R, Weka,
SPSS, KEEL

2nd Generation

Mahout, Pentaho, Cascading

3rd Generation

Spark, Haloop, GraphLab, Pregel,
Giraph, ML over Storm

Vertical

Horizontal (over Hadoop)

Horizontal (Beyond Hadoop)

Huge collection
of algorithms

Small subset: sequential
logistic regression, linear
SVMs, Stochastic Gradient
Descendent, k-means

clustering, Random forest, etc.

Much wider: CGD, ALS,
collaborative filtering, kernel SVM,
matrix factorization, Gibbs
sampling, etc.

Practically
nothing

Vast no.: Kernel SVMs,
Multivariate Logistic
Regression, Conjugate

Gradient Descendent, ALS, etc.

Multivariate logistic regression in
general form, k-means clustering,
etc. — Work in progress to expand
the set of available algorithms

Single point of
failure

Most tools are FT, as they are
built on top of Hadoop

FT: Haloop, Spark
Not FT: Pregel, GraphLab, Giraph

Mahout (Samsara)

* First ML library initially based on Hadoop MapReduce.

 Abandoned MapReduce implementations from version 0.9.

* Nowadays it is focused on a new math environment called
Samsara.

* Itisintegrated with Spark, Flink and H20
* Main algorithms:

Stochastic Singular Value Decomposition (ssvd, dssvd)
Stochastic Principal Component Analysis (spca, dspca)
Distributed Cholesky QR (thinQR)

Distributed regularized Alternating Least Squares (dals)
Collaborative Filtering: Item and Row Similarity

Naive Bayes Classification

http://mahout.apache.org/

Spark Libraries

Kafka

Flume

e[Sooik’ [>—
Kinesis Streaming Dashboards |

Twitter
input data batches of batches of
stream spark input data Spark processed data

Streaming Engine |1

MLIib types, algorithms and utilities

This lists functionality included in spark. . ml11b, the main MLIib API.

® Data types

Basic statistics
© summary statistics
© correlations

© stratified sampling
@ hypothesis testing
© random data generation

Spoﬁ’(\z

MLlib

® Classification and regression
O linear models (SVMs, logistic regression, linear regrassion)
© naive Bayes
O decision trees
@ ensembles of trees (Random Forests and Gradient-Boosted Trees)
© isotonic regression

® Collaborative filtering

© alternating least squares (ALS)

https://spark.apache.org/mllib/

GraphX

Clusterning
O k-means
© Gaussian mixture
© power iteration clustering (PIC)
O latent Dirichlet allocation (LDA)
O streaming k-means
® Dimensionality reduction
© singular value decomposition (SVD)
© principal component analysis (PCA)
® Feature extraction and transformation
® Frequent pattern mining
© FP-growth
® Optimization (developer)
© stochastic gradient descent
O limited-memory BFGS (ﬁEFGS)

PMML model export

https://spark.apache.org/mllib/
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218

FlinkML
@ Flink

aFl' K Documentation 1.1 Quickstart ~ Setup ~ Programming Guides ~ Libraries - Internals - Search all pages Search
in

DataSet API)) ' . ! .
Important: Maven artifacts which depend on Scala are now suffixed with the Scala major version, e.g. "2.10" ar "2.11". Please

Transformations consult the migration guide on the project Wiki.

Zipping Elements

Fault Tolerance Batch Guide / Libraries / Machine Learning

Iterations

Connectors FlinkML - Machine Learning for Flink
Python API

FlinkML is the Machine Learning (ML) library for Flink. It is a new effort in the Flink community, with a growing list of algorithms and
Examples contributors. With FlinkML we aim to provide scalable ML algorithms, an intuitive API. and tools that help minimize glue code in end-
to-end ML systems. You can see more details about our goals and where the library is headed in our vision and roadmap here.

Libraries
Gelly Supported Algorithms
» Machine Learning Supervised Learning
Table Data Preprocessing

Hadoop Compatibility Recommendation
Utilities

Getting Started

Pipelines

How to contribute

https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/

46

Scalability

Speed-up (m cores)

— How much faster can the same data be processed
with m cores instead of 1 core

runtime on 1 core

* Speedup(m) =

runtime on m cores
— The data size is kept constant and the number of cores
is increased

— |ldeal speed-up is linear

e Speedup(m) =
— In practice “r e

 Difficult to obtain due to communlcatlon
and synchronization overhead

B SESE N

Scalability

e Size-up (data, m)
— How much time does it take to execute m times larger

data

. runtime for processing m-data
e Sizeup(data,m) =
p(’) runtime for processing data

— The number of cores is kept constant and the data size
is increased

30 T T T

— ldeal size-up is linear ——T
 Sizeup(data, m)=m o mappers

-@- 5 mappers

. 201 - & 16 mappers

— In practice = [e

* Few algorithms are linear with

respect to the data o}

~ 10 20 10

Size of data (percentage)

Scalability

e Scale-up (data, m)

— Measures the ability of the system to run a m-times
greater job with a m-times larger system

runtime for processing on 1 core

e Sizeup(data,m) =
p(’) runtime for processing m-data on m cores

— Both the number of cores and the data are increased

— |ldeal scale-upis 1
e Scale-up(data, m) =1
— In practice .

* Few algorithms achieve a)
Scale'up Of 1 8.4 ELASTH H—i \%4“&@@!1] .

ELASTF ——
ELASTH

1 el

efficienc

Machine Learning in Big Data:
Global vs. Local

Two main ways for learning a model in Big Data:
— Locally

A model is created for each partition of the data
(only using the data of that partition)

* All the models are combined when predicting the
class of a new example = Ensemble

— Globally
* A single model is created using all the available data

* They try to obtain the same model as the one that
would be obtained if the method could be executed in
a single node

Machine Learning in Big Data:
Global vs. Local

Local model

— Advantages
e Usually faster
* Gets faster as the number of partitions is increased
* Any existing model can be applied
* Only the aggregation phase has to be designed

— Disadvantages
* Slow in test phase, too many models have to be executed

* Loss of accuracy as the number of partitions increases

— With few partitions, accuracy can improve due to the ensemble
effect

— With too many partitions, the accuracy tends to drop, since there
are not enough examples in each partition

* They do not take advantage of the data as a whole

Machine Learning in Big Data:
Global vs. Local

Global model

— Advantages
e Greater accuracy is expected (not proved)
* All the examples are used to learn a single model
* Anyway, a global ensemble can also be built
* The model is independent of the number of partitions
* Faster in test phase

— Disadvantages
* More complex design and implementation

 Distributed nature of Big Data processing has to be taken
into account (computation/communication)

Decision Trees for Big Data

e Decision Trees in Spark

— Differences with respect to classical models

e All the nodes in a level are learned with a single pass
through the whole dataset

e Numeric attributes are discretized into bins in order to
reduce the computational cost

Broadcast model Broadcast model

‘\ e

5
EpE EJ}L
[:\ =

Aggregate stats Aggregate stats Aggregate stats

Decision Trees for Big Data

* Decision Trees in Spark

with respect to classical models

e All the nodes in a level are learned with a single pass
through the whole dataset

Decision Trees for Big Data

* Decision Trees in Spark

with respect to classical models

e Numeric attributes are discretized into bins in order to
reduce the computational cost

Continuous feature: x; < (value)

Outline

[Introduction to Big Data
] Big Data Analytics

. Evolutionary algorithms in the big data
context

J A demo with MLlib
] Conclusions

56

Data Preprocessing for Big Data

Data Preprocessing: Tasks to discover quality data
prior to use knowledge extraction algorithms.

Y
N

data

N

Target
data_~

<8

Knowledge

Patterns
Processed /
data .

Interpretatlon

Data Mining Evaluation

Preprocessing

Selectlon

g

Evolutionary algorithms for data
preprocessing

 Many preprocessing stages can be modelled as optimisation
processes. For example:

— Feature selection/weighting
— Instance selection/Generation

* Evolutionary algorithms have excelled in this task in data with
a moderate size.

* However, their practical application is limited to problems
with no more than tens of thousands of instances because of:

— Excessive chromosome size
— Runtime requirements

Evolutionary algorithms for instance
reduction in Big data

| 1. Triguero, D. Peralta, J. Bacardit, S.Garcia, F. Herrera. MRPR: A MapReduce solution for prototype reduction in :
|
|

| big data classification. Neurocomputing 150 (2015) 331-345

| 1. Triguero, D. Peralta, J. Bacardit, S.Garcia, F. Herrera. A Combined MapReduce-Windowing Two-Level Parallel :
| Scheme for Evolutionary Prototype Generation. Evolutionary Computation (CEC), 2014 IEEE Congress on, 3036- |
|

|

59

Instance Reduction

Objective: reduce the number of samples
to find better decision boundaries
between classes, by selecting relevant
samples or artificially generating new
ones.

We focused on Prototype Generation
(PG) models, which are based on the
Nearest Neighbour (NN) classifier.

Advantages:

v' Reduce Storage Requirements
v' Remove noisy samples
v' Speed up learning process

Evolutionary Prototype Generation (EPG)

EPG algorithms adjust the positioning of the —
Each individual encodes a single prototype or a

complete generated set with real codification. Difference-vector

The fitness function is computed as the s
classification performance in the training set using
the Generated Set. Crossover

Currently, best performing approaches use
Differential Evolution.

Known issues:
Dealing with big data becomes impractical

Selection

I. Triguero, S. Garcia, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification.
IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

61

Evolutionary Prototype Generation for
Big Data sets

Objectives

The design of a scalable EPG
approach that embraces the
huge storage and processing
capacity of cloud platforms.

To do so, we rely on the success
of Hadoop MapReduce in
combination with a windowing
scheme for evolutionary models.

Parallelising EPG with windowing

Initialize Population ‘

Generate new prototypes

: aE . =i 3 (Wu Mutation/Crossover
Training set m]
Training Set g Wz NN-Ieavie-one-out
--------------------------- — l Selection Operator
Iterations - L W, |
0 Iter o @

T

/G enerate d\‘-.|

\u Set -f//,f"

Main properties:
v'Avoids a (potentially biased) static prototype
selection/generation

v'This mechanism also introduces some generalization pressure

63

Parallelising EPG with windowing

Properties:

Within this scheme, the algorithm disposes of the whole
information although it is accessed in successive iterations.

This model itself aims to improve the runtime requirements
of EPG models. But it does not deal with the memory
consumption problem.

This is why we use this strategy as a second level
parallelization scheme after a previous distribution of the
processing in a cluster of computing elements.

MRPR: Evolutionary Prototype
Generation for Big Data sets

e Mappery _ _ _ _ _ _ _ _ _ _
® ’ Training data ‘ /) Windowing |
S S W P |
g —l L 7 o y |
o Randomize , / | ‘ W, Y & S |
= # y, | TRj . ._ W, Step | |
Get Get Get Get | | /- |
RS, RS, | ‘ N |
| \
- RS ar eobla ed rancom or de . RS) |
pe ndin g n their compu l.atD time ~ |_ S _l_]
/Reduce / Rs
L / method/
o | /Reduce / /oot
g_ / method/ 7| RS, o | |
@ /Reduce P ReduceMethod ‘RS
2 7 method/ - | ___ >/ |
o] | . /Reduce / - —
o " method/ - - ¢ — |
- |/ Current) Next |
X ~ _ RS __'——-* .]om/Fusmn —Ir RS |
RS ~ T
o Lo - J

Evolutionary Prototype Generation for
Big Data sets

Experimental Study

* 4 big data sets: Poker (1M), KddCup (4.8M), Susy (5M),
RLCP(5.7M).

e Performance measures: Accuracy, reduction rate, runtime, test
classification time and speed up.

e 3x5 fold-cross validation

 Number of mappers = 64/128/256/512/1024.

 Number of reducers=1

* PG techniques tested: SSMA-SFLSDE, LVQ3, RSP3

* PS techniques tested: DROP3, FCNN

Evolutionary Prototype Generation
for Big Data sets

Table : Results obtained for the PokerHand problem.

Reduce type ' #Mappers Training | Test Runtime | Reduction rate Classification

‘ Avg. | Std. | Avg.| Std. | Avg. | Std. Avg. | Std. time (7S)
Join 64 0.5158 | 0.0007 | 0.5102 | 0.0008 | 13236.6012 | 147.8684 | 97.5585 | 0.0496 1065.1558
Filtering 64 0.5212 | 0.0008 || 0.5171 | 0.0014 | 13292.8996 | 222.3406 | 98.0714 | 0.0386 848.0034
Fusion 64 0.5201 | 0.0011 | 0.5181 | 0.0015 | 14419.3926 | 209.9481 | 99.1413 | 0.0217 374.8814
Join 128 0.5111 | 0.0005 | 0.5084 | 0.0011 | 3943.3628 | 161.4213 | 97.2044 | 0.0234 1183.6378
Filtering 128 0.5165 0.0007! 0.5140 | 0.0007 | 3949.2838 | 135.4213 | 97.7955 | 0.0254 920.8190
Fusion 128 0.5157 | 0.0012 || 0.5139 | 0.0006 | 4301.2796 | 180.5472 | 99.0250 | 0.0119 419.6914
Join 256 0.5012 | 0.0010 || 0.4989 | 0.0010 | 2081.0662 | 23.6610 | 96.5655 | 0.0283 1451.1200
Filtering 256 0.5045 | 0.0010 | 0.5024 | 0.0006 | 2074.0048 | 25.4510 | 97.2681 | 0.0155 1135.2452
' Fusion | 256 0.5161 | 0.0004 || 0.5151 | 0.0007 | 2231.4050 | 14.3391 | 98.8963 | 0.0045 | 478.8326
Join 512 0.5066 | 0.0007 | 0.5035 [0.0009 | 1101.8868 | 16.6405 | 96.2849 | 0.0487 1545.4300
Filtering 512 0.5114 | 0.0010 | 0.5091 | 0.0005 | 1101.2614 | 13.0263 | 97.1122 | 0.0370 1472.6066
Fusion 512 0.5088 | 0.0008 | 0.5081 | 0.0009 | 1144.8080 | 18.3065 | 98.7355 | 0.0158 925.1834
" Join | 1024 0.4685 ' 0.0008 | 0.4672 | 0.0008 | 598.2918 | 11.6175 | 95.2033 | 0.0202 ~ 2132.7362
Filtering 1024 0.4649 | 0.0009 | 0.4641 | 0.0010 | 5854320 | 8.4529 | 96.2073 | 0.0113 1662.5460
Fusion 1024 0.5052 | 0.0003 || 0.5050 | 0.0009 | 601.0838 | 7.4914 | 98.6249 | 0.0157 1345.6998
NN [- | 0.5003 | 0.0007 || 0.5001 | 0.0011 - | - -] - | 48760.8242

67

Accuracy Test

Evolutionary Prototype Generation
for Big Data sets

PokerHand PokerHand
0.52 - 160040 -

.

— . .
A ey,

: |

E

0.50 :: 10000 k
ReduceType E Reduce Type
— Join ,.E' — Joan
- - Filterin 2 - - Filtering
: Fl.lsicmg E Fussion
4
< 5000 -
0.48
-_Lu-‘_‘-u.h._‘_.u_u__u___'
Ck .
64 128 256 512 1024 64 128 256 817 1024

Mumber of magpers
Number of mappers ¥

Evolutionary Prototype Generation

for Big Data sets

#Windows nw | #Mappers Training Test Runtime

Avg. Std. Avg, Std. Avg. Std.
1 16 0.5121 | 0.0028 | 0.5120 | 0.0031 || 15058.4740 | 1824.6586
2 16 0.5115 | 0.0035 || 0.5113 | 0.0036 8813.7134 | 678.1335
3 16 0.5038 | 0.0032 || 0.5039 | 0.0033 4666.5424 | 412.5351
4 16 0.5052 | 0.0060 || 0.5055 | 0.0057 4095.8610 | 941.5737
5 16 0.5041 | 0.0024 || 0.5034 | 0.0022 32440716 534.8720
6 16 0.5031 | 0.0042 || 0.5028 | 0.0041 2639.4266 360.3121
7 16 0.5000 | 0.0067 | 0.4998 | 0.0069 2099.5182 339.7356
1 32 0.5089 | 0.0031 || 0.5086 | 0.0029 6963.5734 | 294.3580
2 32 0.5084 | 0.0045 || 0.5080 | 0.0041 4092.5484 855.7351
3 32 0.5067 | 0.0025 || 0.5065 | 0.0024 2343.1542 104.7222
4 32 0.5012 | 0.0045 || 0.5012 | 0.0039 1639.0032 335.6036
5 32 0.5012 | 0.0045 || 0.5012 | 0.0039 1639.0032 335.6036
6 32 0.4824 | 0.0104 || 0.4820 | 0.0101 1083.1116 143.9288
7 32 0.4838 | 0.0072 || 0.4835 | 0.0065 1129.8838 173.9482

‘Speedup N

PokerHand (16 mappers)

ReduceType
— Join

- = lterativeFusion

Number of windows

69

Evolutionary Prototype Generation
for Big Data sets

Evolutionary algorithms continue to be the best performing
models for Instance reduction in the big data context.

Great synergy between the windowing and MapReduce
approaches. They complement themselves in the proposed two-
level scheme.

Without windowing, EPG could not be applied to datasets larger
than approximately ten thousands instances.

The application of this model has resulted in a very big reduction
of storage requirements and classification time for the NN rule.

o https://github.com/triguero/MRPR

Evolutionary algorithms for
imbalanced Big data sets

I

1 | Triguero, M Galar et. al. Evolutionary undersampling for imbalanced big data classification. :
1 |IEEE Congress on Evolutionary Computation (CEC), 2015. :
: | Triguero, M Galar et. al. Evolutionary Undersampling for Extremely Imbalanced Big Data Classification under :
1 Apache Spark. IEEE Congress on Evolutionary Computation (CEC), 2016. I

I | Triguero, M Galar et. al. A First Attempt on Global Evolutionary Undersampling for Imbalanced Big Data. :
1 IEEE Congress on Evolutionary Computation (CEC), 2017. I

71

Feature 2

Class imbalance problem

T I
® Majority (negative) class
’,“ B Minority (positive) class
20 x x % i
X % x o X
® " ®
18 " * " x
R x xX b 1
x x x x
LRI S 2 - S
® ®
6L x x = XX i%.x,‘ xx . % . x -
ped
b % x* *&xx§ ® b xx x
* xR g X . % ¥ x
14 % = ® .
B ol Ty o * 4 x
12} x *""*‘x‘g‘ xx 0p v X =t
x at’:“xx,‘ x, %% gfx ;z,’g‘ x x x
* e i B x B RERn gl X %y x
x x x x TR
10k * BRI e B0 % -
P LS XXX ¥ "
x xR Ry % x 8} x
8k x x % b _
® 2o % g
x X
% * x *®
x x
6L x i
x
4 1 | 1 | 1 1 1 1
4 6 8 10 12 14 16 18 20

Feature 1

An example of an imbalanced data-set

22

72

Class imbalance problem

® Majority (negative) class

”“ B Minority (positive) class
20 X o® % x
x
b 4 xy X w
18 :* * *x x
3 XX 5 » x
® x x
x kX % % Ry R <5 %
*® 8 x
x x ¥ O R ke Kok x| X X
x R *6 & x b VR S %
14| x Yo o R X o X
o x w» x5 %
o x % x . 25 e
2 X x g 3o o
3 X x ’3 " X %
x o x x ¥x X X x
x '3 ®
x « TRk % x ¥ St W L x
® ® x
xRS o B .
L e T ol
x » % %% ®
” *x % % %xx ®a¢
8 x 2 % % o x
x
x %
% x
. - x x
® Accuracy of 97.09%
4
4) 8 10 12 14 16 18 20 22
Feature 1

Standard classifiers 2 models biased in favour of the majority class

Class imbalance problem

Skewed data distribution by itself is not
harmful

But... a series of difficulties usually turn up
Small sample size

Overlapping or class separability
Small disjuncts

0] Q-0
%oo:...o ::' .0.0.0.: *335:
o @ 9/
o’ o'.ozo:o:.:‘g 2 .:.‘%?‘E.?f‘.' Co
iy £iciay Poo B
0 P¢ x0,0,5507 o x1
o 0.0 % Q0o ¥, ¥V,
og_._.?’. 4 *:.\ilﬂ{_!ﬁ ’/'

(a) Class overlapping (b) Small disjuncts

74

Class imbalance problem

Two main approaches to tackle this
problem:

Data sampling
Undersampling
Oversampling
Hybrid approaches

Algorithmic modifications

Cost-sensitive approaches

Ensemble models

V. Lopez et al, An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics, Information Sciences 250 (2013)

- M. Galar et al, A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42 (4) (2012)

Evolutionary Undersampling

Evolutionary undersampling (EUS) aims to select the best
subset of negative instances from the original training set.

EUS not only intends to balance the training set, but also to
increase the overall performance on both classes of the

problem.

To do so, a genetic algorithm is used to search for an optimal
subset of instances.

This resulting set can be used by any standard classification
model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy”, Evolutlonary
Computation, 17 (3) (2009). 275-306 i

Evolutionary Undersampling in the big data
context

EUS does not generate more data, as opposed to
oversampling methods.

However, the increasing number of instances would lead to
obtain an excessive chromosome size that can limit their
application.

The required runtime increases not only with the number
of examples but also with the imbalance ratio (IR).

Evolutionary undersampling

Representation of the solution

V = (Uxy, Uxys Uxgy Uxgs - » Ux, =), Uy, €140,1} for all i=1,...,n"

Performance: g-mean, 1NN hold-one-out
g-mean = \/ TPrate - TNyate

Fitness Function
g-mean — ‘1 — Q—__ P it N =0

ﬁt-ll(.‘hh‘EUS =
g-mean — P if N— =0,

We use the CHC algorithm and GM as performance measure.

L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, in Foundations of
Genetic Algorithms, G. J. E. Rawlins, Ed. San Francisco, CA: Morgan Kaufmann, 265-283, 1991. {

EUS-BD: A two-level parallelisation model
for EUS

A two-level parallelisation scheme:

The MapReduce phase will allow us to divide the
computational effort over different machines.

Goal: Memory limitations and runtime.

The windowing scheme will be applied to reduce the
computational time required by EUS.

Goal: Runtime.

Windowing for Class Imbalance

Disjoint windows with equal class distribution may lead to
information loss of the positive class.

The minority class set will be always used to evaluate a
chromosome.

The majority class set is divided into several disjoint
strata. The size of each subset will correspond to the
number of minority class instances.

It means: Fixed number of strata.

The EUS-BD scheme

Map phase

4 Mapl

Training data

1 Map M

Map phase

4 Map1

Test data

Map M

Evolutionary Building
undersampling | a model
+ windowing |
Wo oy ‘ /\l\—/kl\J
w, Eus / } RS, Y
k=)= &
Wns ij"t' ‘
\
w, = ‘ I—/V\A
W, [/eus/) mmp RS, Yy £y
L RE=) T T 6 e e e
W ‘
Map Phase
Load Model Predict
[yE3) Predicted class
_ YZ:{ . redicted class
Predicted class
WK
L)
H[jf{ Predicted class
edicted cl.
il la g

'V

Aggregation

4
P3N
o2y

4
:ZI W
e 33

Reduce phase

>§‘.

Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class

Predicted class
Predicted class
Predicted class
Predicted class

81

EUS-BD known issues

.. Too small
This is a local model! amount of
. ositive
Extremely imbalanced cases: lack Zata

of density from the minority

class. ﬁ

We used Spark to alleviate that
issue splitting training data into
positive and negative sets. The
positive set was accessible in all
the maps (via broadcast)

Or even
-
minority-
class
elements!

82

EUS-BD for Extremely Imbalanced
datasets

] Predict Mapper 1
i Use the model to
. predict the class
Testing
data

N
A

Predicted class
Predicted class
Predicted class
""" P> predicted class

N
&

\ /0

. T EUS 4+ X Mapper 2
sl A A
“— s Predicted class Predicted class
| v ‘ ; M::Z B predicted class Predicted class
{ { All the nodes get access) Predicted class 3 \ Predicted class
I to the ensemble Predicted class Predicted class
b Predicted class
k Collect coadcast .
g [| | Positive instances P MB ades f:sm Evolutionary Fedicted cléss
Training § 10 all positive instances. undersampling Predicted class
d ata Filter Instances by class 3 Predicted class
\ \ . Sampling Build ecision tree model
o J
required number ofinstances (ngach mepper) Predicted class

Predicted class
Predicted class
Predicted class

Predicted class
Predicted class
Predicted class
Predicted class

-k E T E o R o R R m RN o R oM R s s w o R R R W RN E M SR A M N TR oo

83

EUS-BD for Extremely Imbalanced
datasets

Data set #features #negative #positive IR
ECBDL’14 (50%) 631 17101086 344333 49
ECBDL’14 (25%) 631 8550324 172386 49

Kddcup DOS vs. PRB 41 3883370 41102 94,48
Kddcup DOS vs. R2L 41 3883370 1126 3448.82
Kddcup DOS vs. U2R 41 3883370 52 74680.25

TABLE III: Running times obtained by the Hadoop and Spark implementations of EUS-ImbBD and EUS-ExtImbBD.

Hadoop-based Spark-based Spark improvement

Dataset No. of maps | Build time (s) Classif. time (s) | Build time(s) Classif. time (s) | Build time Classif. time
Kddcup DOS vs. PRB 128 422.4786 34.264 297.5048 0.2942 29.58% 99.14%
256 240.4662 36.7934 143.3428 0.3566 40.39% 99.03%

512 156.4354 48.424 87.0195 0.2739 44.37% 99.43%

Kddcup DOS vs. R2L 128 4447252 31.7255 320.8192 0.0876 27.86% 99.72%
256 266.2424 36.1147 187.4562 0.1024 29.59% 99.72%

512 178.8536 42.0057 148.319 0.1371 17.07% 99.67%

Kddcup DOS vs. U2R 128 459.6002 31.8436 340.2297 0.0986 25.97% 99.69%
256 248.1038 35.5862 193.0784 0.1081 22.18% 99.70%

512 152.3752 46.6194 101.683 0.1275 33.27% 99.73%

84

EUS-BD for Extremely Imbalanced

datasets

TABLE V: Results obtained in ECBLD’14 (50%)

Method #Maps | Build time(s) Classif. time(s) | AUC GM
EUS-S-ImbBD 8192 497.0958 0.4999 | 0.5556 0.3572
4096 775.2016 0.5531 | 0.4821 0.4276
2048 1476.3512 0.7878 | 0.6674 0.6645
EUS-S-ExtImbBD | 8192 2181.5089 3.5404 | 0.6641 0.6640
4096 3456.5938 6.0428 | 0.6662 0.6657
2048 6433.8072 9.4064 | 0.6731 0.6704
RUS-S-ImbBD 8192 557.4869 0.5540 | 0.6319 0.6066
4096 518.1471 1.0960 | 0.4659 0.4339
2048 483.7361 1.0960 | 0.6651 0.6622

85

Can we develop a Global
Evolutionary model?

ldeally, EUS should have access to all the data as a whole.
Can we do that with the current technology?

A binary representation of the selected instances implies
a chromosome size equal to the number of negative
Instances.

However, the resulting selected dataset tends to be
fairly small, and balanced.

Assumption: The number of positive instance is SO
reduced that it perfectly fits in main memory of a single
computer.

Global Evolutionary Undersampling

HDFS side

Repeat until
Stopping criteria

are reached

Data Distribution

Initialisation

Evaluate Initial
Population

Filter(chromosome)
! and collect()

Combine

Evaluate
new Chromomes

.Y

Re-initialise
population

Evaluate
population

! S

Driver node

broadcast(model)

Evaluate function

e —
PosTrainDriver

e —
negativeSetSelected
ReducedSet

Learn a Model
74N
F\

ISNA!

Classify Window
of Training Set

Driver node

87

Outline

J What is Big data?

J How to deal with Data Intensive applications?
] Big Data Analytics

J A demo with MLIib

J Conclusions

Demo

* |n this demo we will show two ways of
working with Apache Spark:

— Interactive mode with Spark Notebook.
— Standalone mode with IntelliJ.

* All the code used in this presentation is
available at:

http://www.cs.nott.ac.uk/~pszit/BigDataCEC201
7.html

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

DEMO with Spark Notebook in local

SPARK NOTEBOOK
http://spark-notebook.io/

% spark-notebook == Star
ﬁ";ﬁ‘j, Created by andypetrella

Interactive and Reactive Data Science using Scala
and Spark. spark-notebook.io

347 Forrs 15K sTARS

90

http://spark-notebook.io/

DEMO with Spark Notebook in local

Advantages:
v’ Interactive.
v' Automatic plots. SPARK NOTEBOOK
v' It allows connection with a cluster.

v’ Tab completion

Disadvantages:
] Built-in for specific spark versions.
1 Difficult to integrate your own code.

91

DEMO with IntelliJ IDE

https://www.jetbrains.com/idea/

92

MapReduce in a cluster

* Hadoop V2

MapReduce in a cluster

 Hadoop V2

Master

Worker 1
Resource Manager Py

: 8x8
vcores: 6400 Node Manager

RAM: 12800 GB veores:64 RAM
RAM: 128GB 128 GB

Worker 100

cPU
8x8
RAM

Node Manager
veores:64
RAM: 128 GB 128 GB

MapReduce in a cluster

 Hadoop V2

— Container

* A subset of the resources of the cluster (part of a node)
— Number of cores
— Quantity of RAM memory

* A hold request is made

* Once granted, a process (task) can be run in the
container

Container
vcore request: 1
memory request: 8 GB

Container
vcore request: 1
memory request: 8 GB

PROCESS

'e

MapReduce in a cluster

 Hadoop V2

— ApplicationMaster
* New concept
* Responsible for the processing

* Responsible for negotiating with the ResourceManager
and working with the NodeManagers

* In charge of the fault tolerance

— ResourceManager is no longer used for this task

MapReduce in a cluster

* Hadoop V2

— Execution of a MapReduce process

1. The client launches the process (connection with the
ResourceManager)

Client Master

Application Resource

Process Manager

MapReduce in a cluster

* Hadoop V2

— Execution of a MapReduce process

2. The ResourceManager requests a container where the
ApplicationMaster is executed

Client

Application

Process

MapReduce in a cluster

Hadoop V2

— Execution of a MapReduce process

3. The ApplicationMaster request the containers to
execute all the tasks (in different nodes)

MapReduce in a cluster

 Hadoop V2

— Execution of a MapReduce process
4. All the tasks are executed in the containers
— Containers are released once its tasks are finished

5. The ApplicationMaster ends when all the tasks have
been executed. Then, its container is released

Spark: Execution in a cluster

- SparkContext (sc) is created in the driver

— Using the sc a connection with the cluster
manager is established

— Once connected, executors are requested

* The processes that perform the computation and store
the data

Worker Node

— The driver sends the code and tasks to the | ="

executors e /’/_; Task || Task

SparkContext Cluster Manager

Worker Node

¥ Executor | Cache
Task Task

Outline

J Introduction to Big Data
] Big Data Analytics

. Evolutionary algorithms in the big data
context

J A demo with MLlib
] Conclusions

Conclusions

* We need new strategies to deal with big datasets

— Choosing the right technology is like choosing the
right data structure in a program.

 The world of big data is rapidly changing. Being up-
to-date is difficult but necessary.

* Evolutionary models are powerful tools in data

mining. They need to be adapted and redesigned to
take the maximum advantages of their promising
properties.

IEEE Congress on Evolutionary Computation 2017

Donostia - San Sebastian, Spain

June 5-8, 2017/

Big Data Learning with Evolutionary Algorithms

Isaac Triguero Mikel Galar
School of Computer Science Dept. Automatic and Computation
University of Nottingham Public University of Navarre
United Kingdom Spain
Isaac.Triguero@nottingham.ac.uk mikel.galar@unavarra.es

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

vty
l.

upna

ASAP

r
UNITED KINGDOM - CHINA - MALAYSIA ..’Esia."i’g'":“ﬁ_ 1987-2017

Research
Institutes

5th June 2017

mailto:Isaac.Triguero@nottingham.ac.uk
mailto:Mikel.galar@unavarra.es

Extra slides

Evolutionary algorithms for Feature
Selection/Weighting in Big Data

' D. Peralta,et al. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach. Mathematical :
' Problems in Engineering, 2015 :

Ll Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely :
| imbalanced big data bioinformatics problem. Knowledge-Based Systems (2015) !

106

Feature Selection —

RIOIO|OIN

R|o|o|o|k
o|r|o|o|w
R||oloA
o|o|r|o|n
R|o|k|o|o
N i le)let

[
~lololr|a

O|kR|r|O|N
O|0|0|r|©

|—\
A=l

|_\
o|r|o|r|R
|_\
Olo|R |k |5
I_\
Rlo|kkR
I—\
olr|Rk|r|5
[
B[RRI

00| >

The outcome of FS would be:
¢ Less data > algorithms could learn quicker
¢ Higher accuracy = the algorithm generalizes better

** Simpler results = easier to understand them

Evolutionary Feature Selection

Each individual represents a set
of selected features (binary

Parents Offsprlng New population
vector). . -
. . e E | Rwﬁ@;.z
The individuals are crossed and E@ I
mutated to generate new = [N = S —
candidate sets of features. Ezpé%iﬁfm y N SE
. . . E Select best ‘\\\
Fitness function: m AU | S SM
Classification performance in .fnooﬁspé.ng&genemted
the training dataset usingonly

the features in the
corresponding set.

L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search when engaging in nontraditional genetic
recombination, in: G. J. E. Rawlins (Ed.), Foundations of Genetic Algorithms, 1991, pp. 265--283.

108

Evolutionary Feature Weighting

Initialization of
Vectors

Difference-vector

Each individual represents the
importance of the features in the range
0,1 (real vector).

The individuals are crossed and mutated based mutation
to generate new candidate importances.
Fitness function: S

Classification performance in the
training dataset using taking into
consideration the weights of the Selection
features.

Neri, F., Tirronen, V., Scale factor local search in differential evolution. Memetic Computing 1:2 (2009) 153-171

109

Evolutionary Feature
Selection/Weighting for Big Data

MapReduce EFS process

Initial Map Reduce Final

- =C
== =<
8]
B :
9]
== =<
== =C

A
\, H_>| 0110.. |
n — |5

- =c
== =c
0
== =c
- =C

=
BS =¢
8]
‘ I LI I
(9]
E= =c
S

The vector of weights
Mappers train set iS binarized W|th a
threshold

Evolutionary Feature
Selection/Weighting for Big Data

Dataset reduction

Initial Map Final

/‘8 No reduce phase

. Reduced dataset
Original train/test *
dataset 011 0.
8 \
B

Mappers train/test set

o
=
"
=]

Y

/7777,
7777
4

o
=
=
-]

7777,
7777
4

H

Y
7777
77777,
4

EECETITTE The maps
e J remove the
[oazo- discarded
features

111

Evolutionary Feature Selection

Experimental Study: EFS scalability in MapReduce

Table 3: Execution times (in seconds) over the epsilon subsets

Instances Sequential CHC MR-EFS Splits
1000 391 419 1
2000 1352 409 2
3000 8667 413 3

10 000 39 576 431 10
15 000 91 272 445 15
20 000 159 315 455 20
400 000 — 6531 512

Time (seconds)

50000 100000 150000

0

_|—— Sequential CHC

-o- MR-EFS
- MR-EFS (full dataset)

0 5000 10000 15000

Number of instances

CHC is quadratic w.r.t. the number of instances
Splitting the dataset yields nearly quadratic acceleration

Evolutionary Feature Selection

Experimental Study: Classification

Three classifiers in Spark
Two datasets

epsilon VM
P _ Logistic Regression
ECBDL14, after applying Naive Bayes

Random Oversampling

The reduction rate is controlled Performance measures
TPR + TNR

with the weight threshold AUC = 2
Training runtime

Dataset Training instances Test instances Features Splits Instances per split

epsilon 400 000 100 000 2000 512 ~T80
ECBDL 14 31 992 921 2 897917 631 — —
ECBDL14-ROS 65 003 913 2 897917 631 32768 ~1984

Evolutionary Feature Selection

Experimental Study: results

Table 4: AUC results for the Spark classifiers using epsilon

Logistic Regression Naive Bayes SVM (4= 0.0) SVM (1 =0.5)
Threshold Features | Training Test | Training Test | Training Test | Training Test
0.00 2000 0.6786 0.6784 0.7038 0.7008 0.6440 0.6433 0.6440 0.6433
0.55 721 0.6985 0.7000 0.7154 0.7127 0.6855 (0.6865 0.6855 0.6865
0.60 337 0.6873 0.6867 0.7054 0.7030 0.6805 0.6799 0.6805 0.6799
0.65 110 0.6496 0.6497 0.6803 0.6794 0.6492 0.6493 0.6492 0.6493
0.70 - Classifier

-@- LogisticRegression
NaiveBayes

o -@ SVM-0.0
> 0.68- -@ SVM-0.5
<C
Set
@ Training
0.66 - A Test
0.64 - .

1 1 1
500 1000 1500 2000
Features

Evolutionary Feature Weighting at
GECCO-2014

* Details of the training data:

d 32 million training samples (56.7GB of disk space)
d 2.9 million of test samples (5.1GB of disk space)
631 features (539 real & 92 nominal values)

d 2 labels; 98% non-contact samples

Learning a Random
Forest

Oversampling 2 Feature Selection > | Classifying the test set

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
bioinformatics problem. Knowledge-Based Systems (2015)

Results

Team TPR TNR TPR * TNR
Efdamis 0.73043 0.73018 0.53335
ICOS 0.70321 0.73016 0.51345
UNSW 0.69916 0.72763 0.50873

Efdamis-

Without FS 0.7041 0.7103 0.500175
HyperEns 0.64003 0.76338 0.48858
PUC-Rio_ICA 0.65709 0.71460 0.46956

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
- bioinformatics problem. Knowledge-Based Systems (2015)

116

Evolutionary Feature
Selection/Weighting

The proposed MapReduce processes provide several advantages:
It enables tackling Big Data problems
The feature weight vector is more flexible than a binary vector

The data reduction process in MapReduce provides a scalable and
flexible way to apply the feature selection/weighting,

Both the accuracy and the runtime of the classification were
improved after the preprocessing.

o https://github.com/triguero/MR-EFS

