
Big Data Learning with Evolutionary Algorithms

5th June 2017

Isaac Triguero

School of Computer Science

University of Nottingham

United Kingdom

Isaac.Triguero@nottingham.ac.uk

Mikel Galar

Dept. Automatic and Computation

Public University of Navarre

Spain

mikel.galar@unavarra.es

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

mailto:Isaac.Triguero@nottingham.ac.uk
mailto:Mikel.galar@unavarra.es

Outline

 Introduction to Big Data

 Big Data Analytics

 Evolutionary algorithms in the big data
context

 A demo with MLlib

 Conclusions

2

There is no a standard definition!

“Big Data” involves data whose volume, diversity and

complexity requires new techniques, algorithms and

analyses to extract valuable knowledge (hidden) .

What is Big Data?

Data Intensive
applications

3

What is Big Data? The 5V’s definition

4

Big data has many faces

5

How to deal with data intensive
applications? Scale-up vs. Scale-out

Traditional HPC way of doing things

worker
nodes

(lots of them)

…

central
storage

Communication network (Infiniband)

Network for I/O

OS OS OS OS OS

iiiiii

Limited I/O

c cc cc

input data
(relatively small)

Lots of
computations

Lots of
communication

Source: Jan Fostier. Introduction to MapReduce and its Application to Post-Sequencing Analysis

Data-intensive jobs

Low compute
intensity…

Fast communication network (Infiniband)

Network for I/O

OS OS OS OS OS

a

Limited
communication

central
storage

input data (lots of it)

b c d e

f g h i j

a b c d e

f g h i j

Lots of I/O

doesn’t
scale

Data-intensive jobs

Low compute
intensity

…

Communication network

Limited
communication

input data
(lots of it)

e j

b c

g j

a c

h i

b e

g i

d f

f h

a d

Solution: store data on local disks of the nodes that perform
computations on that data (“data locality”)

Distributed systems in Big Data

• Objective: To apply an operation to all data
– One machine cannot process or store all data

• Data is distributed in a cluster of computing nodes

• It does not matter which machine executes the
operation

• It does not matter if it is run twice in different nodes
(due to failures or stalled nodes)

• We look for an abstraction of the complexity behind
distributed systems

– DATA LOCALITY is crucial
• Avoid data transfers between machines as much as

possible

Distributed systems in Big Data

New programming model: MapReduce

– “Moving computation is cheaper than moving
computation and data at the same time”

– Idea

• Data is distributed among nodes (distributed file
system)

• Functions/operations to process data are distributed to
all the computing nodes

• Each computing node works with the data stored in it

• Only the necessary data is moved across the network

MapReduce

• Parallel Programming model

• Divide & conquer strategy

 divide: partition dataset into smaller, independent
chunks to be processed in parallel (map)

 conquer: combine, merge or otherwise aggregate
the results from the previous step (reduce)

• Based on simplicity and transparency to the
programmers, and assumes data locality

• Becomes popular thanks to the open-source project
Hadoop! (Used by Google, Facebook, Amazon, …)

12

MapReduce: How it works

Mapper Reducer

MapReduce: Example

• WordCount

Hadoop

• Open source framework for Big Data processing

– Based on two Works published by Google

• Google File System (GFS)[Ghe03]

• MapReduce algorithm[Dea04]

– Composed of

• Hadoop Distributed File System (HDFS)  Storage

• Implementation of the MapReduce algorithm 
Processing

[Ghe03] S. Ghemawat, H. Gobioff, S.-T. Leung. The Google file system. In Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP ’03). ACM, New York, NY, USA, 29-43. 2003
[Dea04] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (OSDI’04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10. 2004.

Hadoop

http://hadoop.apache.org/

• Hadoop is:

– An open-source framework written in Java

– Distributed storage of very large data sets (Big Data)

– Distributed processing of very large data sets

• This framework consists of a number of modules

– Hadoop Common

– Hadoop Distributed File System (HDFS)

– Hadoop YARN – resource manager

– Hadoop MapReduce – programming model

16

– Master: NameNode, JobTracker
– Slave: {DataNode, TaskTraker}, ..., {DataNode,

TaskTraker}

Namenode JobTracker
Secondary
Namenode

Single Box Single Box Single Box

Optional to have in Two Box In Separate Box

M
as

te
r

TaskTraker

Datanode 1

… … …

TaskTraker

Datanode 2

… … …

TaskTraker

Datanode 3

… … …

TaskTraker

Datanode N

… … …

……

Sl
av

e
Hadoop: A master/slave architecture

17

Distributed File System: HDFS

• HDFS – Hadoop Distributed File System
– Distributed File System written in Java
– Scales to clusters with thousands of computing nodes

• Each node stores part of the data in the system

– Fault tolerant due to data replication
– Designed for big files and low-cost hardware

• GBs, TBs, PBs

– Efficient for read and append operations (random
updates are rare)

– High throughput (for bulk data) more important than
low latency

• Automatic parallelization:

– Depending on the size of the input data  there will be
multiple MAP tasks!

– Depending on the number of Keys <k, value>  there
will be multiple REDUCE tasks!

• Scalability:

– It may work over every data center or cluster of
computers.

• Transparent for the programmer

– Fault-tolerant mechanism.

– Automatic communications among computers

Hadoop MapReduce: Main
Characteristics

19

Data Sharing in Hadoop MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO

20

Paradigms that do not fit with Hadoop
MapReduce

• Directed Acyclic Graph (DAG) model:

– The DAG defines the dataflow of the application, and the
vertices of the graph defines the operations on the data

• Graph model:

– More complex graph models that better represent the
dataflow of the application

– Cyclic models -> Iterativity.

• Iterative MapReduce model:

– An extented programming model that supports iterative
MapReduce computations efficiently

21

GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Iterative graph processing

GPS - A Graph Processing System,
(Stanford)
http://infolab.stanford.edu/gps/
Amazon's EC2

Distributed GraphLab
(Carnegie Mellon Univ.)
https://github.com/graphlab-
code/graphlab
Amazon's EC2

HaLoop
(University of Washington)

http://clue.cs.washington.edu/node/14
http://code.google.com/p/haloop/
Amazon’s EC2

Twister (Indiana University)
http://www.iterativemapreduce.org/
Private Clusters

PrIter (University of Massachusetts
Amherst, Northeastern University-
China)
http://code.google.com/p/priter/
Private cluster and Amazon EC2 cloud

GPU based platforms
Mars
Grex

Spark (UC
Berkeley)http://spark.incubator.apache.org/rese
arch.html

New platforms to overcome Hadoop’s
limitations

22

http://giraph.apache.org/
http://infolab.stanford.edu/gps/
https://github.com/graphlab-code/graphlab
http://www.iterativemapreduce.org/
http://code.google.com/p/priter/

Big data technologies

23

What is Spark?

Efficient

• General execution graphs

• In-memory storage

Usable

• Rich APIs in Java, Scala,
Python

• Interactive shell

Fast and Expressive Cluster Computing

Engine Compatible with Apache Hadoop

24

What is Spark?

• Data processing engine (only)

• Without a distributed file system

– Uses other existing DFS

• HDFS, NoSQL…

• Hadoop is not a prerequisite

• Works with different cluster management tools

– Hadoop (YARN)

– Mesos

– Standalone mode (included in Spark)

What is Spark?

Spark Goal

• Provide distributed memory abstractions for clusters
to support apps with working sets

• Retain the attractive properties of MapReduce:

– Fault tolerance (for crashes & stragglers)

– Data locality

– Scalability

Initial Solution: augment data flow model with “resilient
distributed datasets” (RDDs)

27

RDDs in Detail

• An RDD is a fault-tolerant collection of elements that
can be operated on in parallel.

• There are two ways to create RDDs:

– Parallelizing an existing collection in your driver
program

– Referencing a dataset in an external storage
system, such as a shared filesystem, HDFS, Hbase.

• Can be cached for future reuse

28

Operations with RDDs

• Transformations (e.g. map, filter, groupBy, join)

– Lazy operations to build RDDs from other RDDs

• Actions (e.g. count, collect, save)

– Return a result or write it to storage

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

29

• RDDs – Simple example

• Simple wordCount in Spark

>>> lines = sc.textFile("README.md") # Creates an RDD

>>> lines.count() # Counts the number of elements in the RDD

127

>>> lines.first() # First element of the RDD -> 1st line of

README.md

u'# Apache Spark‘

Operations with RDDs

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" "))

\

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

Spark vs. hadoop

31

2
7
4

1
5
7

1
0

6

1
9
7

1
2
1

8
7

1
4
3

6
1

3
3

0

50

100

150

200

250

300

25 50 100

It
e

ra
ti

o
n

 t
im

e
 (

s
)

Number of machines

Hadoop

HadoopBinMem

Spark

K-Means

[Zaharia et. al, NSDI’12]

Lines of code for K-

Means

Spark ~ 90 lines –

Hadoop ~ 4 files, >

300 lines

Spark

• Driver and Workers

– A Spark program is composed
of two programs

• Driver program

• Workers program
– Executed in the computing nodes

– Or in local threads

– RDDs are distributed across
the whole cluster

SparkSQL: Datasets y DataFrames

• Structured APIs
– DataFrames (>= Spark 1.3)

• Idea: RDDs of rows with columns that can be accessed
by their names

• Similar to Pandas in Python (dataframes in R)

• Avoid Java serialization performed by RDDs

• API natural for developers familiar with building query
plans (SQL)

• Introduced as a part of Tungsten project
– Efficient memory management

• Concept of schema to describe data

SparkSQL: Datasets y DataFrames

• Structured APIs
– Datasets (>= Spark 1.6)

• Idea: Strongly typed RDDs

• Functional transformations (map, flatMap, filter)

• Best of both RDDs and DataFrames

– Object-oriented programming

– Compile-time type safety

– Catalyst optimization

– Tungsten off-heap memory optimization

• Only for Scala and Java

SparkSQL: Datasets y DataFrames

• Structured APIs
– DataFrames and Datasets

– Fused in Spark 2.0 (November 2016)

• A DataFrame is just a Dataset of Rows: Dataset[Row]

– Both make us of Catalyst and Tungsten projects

SparkSQL: Datasets y DataFrames

• Structured APIs in Spark

– Analysis of the reported errors before a job is
executed

https://flink.apache.org/

Flink

37

Big Data: Technology
and Chronology

2001-2010

2010-2017

2010-2017:

Big Data
Analytics:
Mahout, MLLib, …

Hadoop
Ecosystem

Applications
New

Technology

38

Big
Data

2001

3V’s Gartner

Doug Laney
2004

MapReduce
Google

Jeffrey Dean

2008

Hadoop

Yahoo!

Doug Cutting

2010 Spark

U Berckeley

Apache Spark
Feb. 2014

Matei Zaharia

2009-2013 Flink

TU Berlin

Flink Apache (Dec.
2014) Volker

Markl

Big Data Ecosystem

Log data
Zepelin

Web-based notebook

ZooKeeper
Coordinador

Streaming data

Kafka
Gestión de

fuentes de datos

Pig
Scripting para
MapReduce

SQL

NoSQL DatabaseSqoop
Hadoop to RDBMS

Impala
Interactive SQL

DAG execution

NoSQL on HDFS

Data serialization

Streaming data

Docker
Containers

Cluster management
Cluster management

Outline

 Introduction to Big Data

 Big Data Analytics

 Evolutionary algorithms in the big data
context

 A demo with MLlib

 Conclusions

41

Clustering

Recommendation

Systems

Classification

Association

Potential scenarios

Real Time Analytics/

Big Data Streams

Social Media Mining
Social Big Data

Big Data Analytics

42

Big Data Analytics:
A 3 generational view

43

Mahout (Samsara)

44
http://mahout.apache.org/

• First ML library initially based on Hadoop MapReduce.

• Abandoned MapReduce implementations from version 0.9.

• Nowadays it is focused on a new math environment called
Samsara.

• It is integrated with Spark, Flink and H2O

• Main algorithms:
– Stochastic Singular Value Decomposition (ssvd, dssvd)

– Stochastic Principal Component Analysis (spca, dspca)

– Distributed Cholesky QR (thinQR)

– Distributed regularized Alternating Least Squares (dals)

– Collaborative Filtering: Item and Row Similarity

– Naive Bayes Classification

https://spark.apache.org/mllib/

Spark Libraries

45

https://spark.apache.org/mllib/
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://kodcu.com/2014/06/apache-spark-ile-naive-bayes-siniflandirma/&ei=PNwbVcDGCMfwaJ60gcgH&bvm=bv.89744112,d.d2s&psig=AFQjCNFb86KMs80EiH6pyWePpb-ts1X-_A&ust=1427975570287218

https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/

FlinkML

46

Scalability

• Speed-up (m cores)
– How much faster can the same data be processed

with m cores instead of 1 core

• 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑛 1 𝑐𝑜𝑟𝑒

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑛𝑚 𝑐𝑜𝑟𝑒𝑠

– The data size is kept constant and the number of cores
is increased

– Ideal speed-up is linear
• Speedup(m) = m

– In practice
• Difficult to obtain due to communication

and synchronization overhead

Scalability

• Size-up (data, m)
– How much time does it take to execute m times larger

data

• 𝑆𝑖𝑧𝑒𝑢𝑝 𝑑𝑎𝑡𝑎,𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚·𝑑𝑎𝑡𝑎

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

– The number of cores is kept constant and the data size
is increased

– Ideal size-up is linear
• Sizeup(data, m) = m

– In practice
• Few algorithms are linear with

respect to the data

Scalability

• Scale-up (data, m)
– Measures the ability of the system to run a m-times

greater job with a m-times larger system

• 𝑆𝑖𝑧𝑒𝑢𝑝 𝑑𝑎𝑡𝑎,𝑚 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑜𝑛 1 𝑐𝑜𝑟𝑒

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚·𝑑𝑎𝑡𝑎 𝑜𝑛𝑚 𝑐𝑜𝑟𝑒𝑠

– Both the number of cores and the data are increased

– Ideal scale-up is 1
• Scale-up(data, m) = 1

– In practice
• Few algorithms achieve a

scale-up of 1

Machine Learning in Big Data:
Global vs. Local

Two main ways for learning a model in Big Data:

– Locally

• A model is created for each partition of the data
(only using the data of that partition)

• All the models are combined when predicting the
class of a new example  Ensemble

– Globally

• A single model is created using all the available data

• They try to obtain the same model as the one that
would be obtained if the method could be executed in
a single node

Machine Learning in Big Data:
Global vs. Local

Local model
– Advantages

• Usually faster
• Gets faster as the number of partitions is increased
• Any existing model can be applied
• Only the aggregation phase has to be designed

– Disadvantages
• Slow in test phase, too many models have to be executed
• Loss of accuracy as the number of partitions increases

– With few partitions, accuracy can improve due to the ensemble
effect

– With too many partitions, the accuracy tends to drop, since there
are not enough examples in each partition

• They do not take advantage of the data as a whole

Machine Learning in Big Data:
Global vs. Local

Global model
– Advantages

• Greater accuracy is expected (not proved)

• All the examples are used to learn a single model

• Anyway, a global ensemble can also be built

• The model is independent of the number of partitions

• Faster in test phase

– Disadvantages
• More complex design and implementation

• Distributed nature of Big Data processing has to be taken
into account (computation/communication)

Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• All the nodes in a level are learned with a single pass
through the whole dataset

• Numeric attributes are discretized into bins in order to
reduce the computational cost

Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• All the nodes in a level are learned with a single pass
through the whole dataset

Decision Trees for Big Data

• Decision Trees in Spark

– Differences with respect to classical models

• Numeric attributes are discretized into bins in order to
reduce the computational cost

Outline

 Introduction to Big Data

 Big Data Analytics

 Evolutionary algorithms in the big data
context

 A demo with MLlib

 Conclusions

56

Data Preprocessing: Tasks to discover quality data
prior to use knowledge extraction algorithms.

Data Preprocessing for Big Data

57

data

Target
data

Processed
data

Patterns

Knowledge

Selection

Preprocessing

Data Mining

Interpretation
Evaluation

Evolutionary algorithms for data
preprocessing

• Many preprocessing stages can be modelled as optimisation
processes. For example:

– Feature selection/weighting

– Instance selection/Generation

• Evolutionary algorithms have excelled in this task in data with
a moderate size.

• However, their practical application is limited to problems
with no more than tens of thousands of instances because of:

– Excessive chromosome size

– Runtime requirements

58

Evolutionary algorithms for instance
reduction in Big data

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. A Combined MapReduce-Windowing Two-Level Parallel
Scheme for Evolutionary Prototype Generation. Evolutionary Computation (CEC), 2014 IEEE Congress on, 3036-
3043

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. MRPR: A MapReduce solution for prototype reduction in
big data classification. Neurocomputing 150 (2015) 331–345

59

 Objective: reduce the number of samples
to find better decision boundaries
between classes, by selecting relevant
samples or artificially generating new
ones.

 We focused on Prototype Generation
(PG) models, which are based on the
Nearest Neighbour (NN) classifier.

 Advantages:

Instance Reduction

 Reduce Storage Requirements
 Remove noisy samples
 Speed up learning process

60

I. Triguero, S. García, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification.

IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

 EPG algorithms adjust the positioning of the
prototypes.

 Each individual encodes a single prototype or a
complete generated set with real codification.

 The fitness function is computed as the
classification performance in the training set using
the Generated Set.

 Currently, best performing approaches use
Differential Evolution.

 Known issues:

 Dealing with big data becomes impractical

Evolutionary Prototype Generation (EPG)

61

Evolutionary Prototype Generation for
Big Data sets

Objectives

 The design of a scalable EPG
approach that embraces the
huge storage and processing
capacity of cloud platforms.

 To do so, we rely on the success
of Hadoop MapReduce in
combination with a windowing
scheme for evolutionary models.

.

62

Parallelising EPG with windowing

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations
0 Iter

Main properties:
Avoids a (potentially biased) static prototype
selection/generation
This mechanism also introduces some generalization pressure

63

Properties:

 Within this scheme, the algorithm disposes of the whole
information although it is accessed in successive iterations.

 This model itself aims to improve the runtime requirements
of EPG models. But it does not deal with the memory
consumption problem.

 This is why we use this strategy as a second level
parallelization scheme after a previous distribution of the
processing in a cluster of computing elements.

64

Parallelising EPG with windowing

MRPR: Evolutionary Prototype
Generation for Big Data sets

65

Experimental Study

• 4 big data sets: Poker (1M), KddCup (4.8M), Susy (5M),
RLCP(5.7M).

• Performance measures: Accuracy, reduction rate, runtime, test
classification time and speed up.

• 3x5 fold-cross validation
• Number of mappers = 64/128/256/512/1024.
• Number of reducers=1
• PG techniques tested: SSMA-SFLSDE, LVQ3, RSP3
• PS techniques tested: DROP3, FCNN

Evolutionary Prototype Generation for
Big Data sets

66

Evolutionary Prototype Generation
for Big Data sets

67

68

Evolutionary Prototype Generation
for Big Data sets

69

Evolutionary Prototype Generation
for Big Data sets

 Evolutionary algorithms continue to be the best performing
models for Instance reduction in the big data context.

 Great synergy between the windowing and MapReduce
approaches. They complement themselves in the proposed two-
level scheme.

 Without windowing, EPG could not be applied to datasets larger
than approximately ten thousands instances.

 The application of this model has resulted in a very big reduction
of storage requirements and classification time for the NN rule.

70

https://github.com/triguero/MRPR

Evolutionary Prototype Generation
for Big Data sets

Evolutionary algorithms for
imbalanced Big data sets

I Triguero, M Galar et. al. Evolutionary Undersampling for Extremely Imbalanced Big Data Classification under
Apache Spark. IEEE Congress on Evolutionary Computation (CEC), 2016.

71

I Triguero, M Galar et. al. Evolutionary undersampling for imbalanced big data classification.
IEEE Congress on Evolutionary Computation (CEC), 2015.

I Triguero, M Galar et. al. A First Attempt on Global Evolutionary Undersampling for Imbalanced Big Data.
IEEE Congress on Evolutionary Computation (CEC), 2017.

Class imbalance problem

72

An example of an imbalanced data-set

Class imbalance problem

73

Standard classifiersmodels biased in favour of the majority class

Class imbalance problem

 Skewed data distribution by itself is not
harmful

 But… a series of difficulties usually turn up

 Small sample size

 Overlapping or class separability

 Small disjuncts

74

(a) Class overlapping (b) Small disjuncts

Class imbalance problem

 Two main approaches to tackle this
problem:

 Data sampling

 Undersampling

 Oversampling

 Hybrid approaches

 Algorithmic modifications

 Cost-sensitive approaches

 Ensemble models

-
-

-- -
-
--

- -

-
--

--
--

-- -- -
- -

- --

-
- -

-

+
+ +

+
+

V. López et al, An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics, Information Sciences 250 (2013)
M. Galar et al, A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42 (4) (2012)

75

Evolutionary Undersampling

 Evolutionary undersampling (EUS) aims to select the best
subset of negative instances from the original training set.

 EUS not only intends to balance the training set, but also to
increase the overall performance on both classes of the
problem.

 To do so, a genetic algorithm is used to search for an optimal
subset of instances.

 This resulting set can be used by any standard classification
model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy”, Evolutionary
Computation, 17 (3) (2009). 275–306

76

Evolutionary Undersampling in the big data
context

 EUS does not generate more data, as opposed to
oversampling methods.

 However, the increasing number of instances would lead to
obtain an excessive chromosome size that can limit their
application.

 The required runtime increases not only with the number
of examples but also with the imbalance ratio (IR).

77

L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, in Foundations of
Genetic Algorithms, G. J. E. Rawlins, Ed. San Francisco, CA: Morgan Kaufmann, 265-283, 1991.

Evolutionary undersampling

 Representation of the solution

 Performance: g-mean, 1NN hold-one-out

 Fitness Function

 We use the CHC algorithm and GM as performance measure.

78

EUS-BD: A two-level parallelisation model
for EUS

 A two-level parallelisation scheme:

 The MapReduce phase will allow us to divide the
computational effort over different machines.

Goal: Memory limitations and runtime.

 The windowing scheme will be applied to reduce the
computational time required by EUS.

Goal: Runtime.

79

Windowing for Class Imbalance

 Disjoint windows with equal class distribution may lead to
information loss of the positive class.

 The minority class set will be always used to evaluate a
chromosome.

 The majority class set is divided into several disjoint
strata. The size of each subset will correspond to the
number of minority class instances.

 It means: Fixed number of strata.

80

The EUS-BD scheme

81

EUS-BD known issues

82

Too small
amount of
positive
data.

Or even
no
minority-
class
elements!

 This is a local model!

 Extremely imbalanced cases: lack
of density from the minority
class.

 We used Spark to alleviate that
issue splitting training data into
positive and negative sets. The
positive set was accessible in all
the maps (via broadcast)

EUS-BD for Extremely Imbalanced
datasets

83

EUS-BD for Extremely Imbalanced
datasets

84

EUS-BD for Extremely Imbalanced
datasets

85

86

Can we develop a Global
Evolutionary model?

 Ideally, EUS should have access to all the data as a whole.
Can we do that with the current technology?

 A binary representation of the selected instances implies
a chromosome size equal to the number of negative
instances.

 However, the resulting selected dataset tends to be
fairly small, and balanced.

 Assumption: The number of positive instance is so
reduced that it perfectly fits in main memory of a single
computer.

Global Evolutionary Undersampling

87

Outline

What is Big data?

 How to deal with Data Intensive applications?

 Big Data Analytics

 A demo with MLlib

 Conclusions

88

Demo

• In this demo we will show two ways of
working with Apache Spark:
– Interactive mode with Spark Notebook.

– Standalone mode with IntelliJ.

• All the code used in this presentation is
available at:

http://www.cs.nott.ac.uk/~pszit/BigDataCEC201
7.html

89

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

DEMO with Spark Notebook in local

http://spark-notebook.io/

90

http://spark-notebook.io/

DEMO with Spark Notebook in local

Advantages:
 Interactive.
 Automatic plots.
 It allows connection with a cluster.
 Tab completion

Disadvantages:
 Built-in for specific spark versions.
 Difficult to integrate your own code.

91

DEMO with IntelliJ IDE

92

https://www.jetbrains.com/idea/

MapReduce in a cluster

• Hadoop V2

– YARN

MapReduce in a cluster

• Hadoop V2

MapReduce in a cluster

• Hadoop V2
– Container

• A subset of the resources of the cluster (part of a node)
– Number of cores

– Quantity of RAM memory

• A hold request is made

• Once granted, a process (task) can be run in the
container

MapReduce in a cluster

• Hadoop V2

– ApplicationMaster

• New concept

• Responsible for the processing

• Responsible for negotiating with the ResourceManager
and working with the NodeManagers

• In charge of the fault tolerance
– ResourceManager is no longer used for this task

MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

1. The client launches the process (connection with the
ResourceManager)

MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

2. The ResourceManager requests a container where the
ApplicationMaster is executed

MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

3. The ApplicationMaster request the containers to
execute all the tasks (in different nodes)

MapReduce in a cluster

• Hadoop V2

– Execution of a MapReduce process

4. All the tasks are executed in the containers
– Containers are released once its tasks are finished

5. The ApplicationMaster ends when all the tasks have
been executed. Then, its container is released

Spark: Execution in a cluster

• SparkContext (sc) is created in the driver

– Using the sc a connection with the cluster
manager is established

– Once connected, executors are requested

• The processes that perform the computation and store
the data

– The driver sends the code and tasks to the
executors

Outline

 Introduction to Big Data

 Big Data Analytics

 Evolutionary algorithms in the big data
context

 A demo with MLlib

 Conclusions

102

Conclusions

• We need new strategies to deal with big datasets

– Choosing the right technology is like choosing the
right data structure in a program.

• The world of big data is rapidly changing. Being up-
to-date is difficult but necessary.

• Evolutionary models are powerful tools in data
mining. They need to be adapted and redesigned to
take the maximum advantages of their promising
properties.

103

Big Data Learning with Evolutionary Algorithms

5th June 2017

Isaac Triguero

School of Computer Science

University of Nottingham

United Kingdom

Isaac.Triguero@nottingham.ac.uk

Mikel Galar

Dept. Automatic and Computation

Public University of Navarre

Spain

mikel.galar@unavarra.es

http://www.cs.nott.ac.uk/~pszit/BigDataCEC2017.html

mailto:Isaac.Triguero@nottingham.ac.uk
mailto:Mikel.galar@unavarra.es

Extra slides

105

Evolutionary algorithms for Feature
Selection/Weighting in Big Data

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely
imbalanced big data bioinformatics problem. Knowledge-Based Systems (2015)

D. Peralta,et al. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach. Mathematical
Problems in Engineering, 2015

106

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Var. 5Var. 1. Var. 13

Feature Selection

107

The outcome of FS would be:

 Less data  algorithms could learn quicker

 Higher accuracy the algorithm generalizes better

 Simpler results easier to understand them

 Each individual represents a set
of selected features (binary
vector).

 The individuals are crossed and
mutated to generate new
candidate sets of features.

 Fitness function:

 Classification performance in
the training dataset using only
the features in the
corresponding set.

Evolutionary Feature Selection

108

L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search when engaging in nontraditional genetic

recombination, in: G. J. E. Rawlins (Ed.), Foundations of Genetic Algorithms, 1991, pp. 265--283.

Evolutionary Feature Weighting

109

 Each individual represents the
importance of the features in the range
0,1 (real vector).

 The individuals are crossed and mutated
to generate new candidate importances.

 Fitness function:

 Classification performance in the
training dataset using taking into
consideration the weights of the
features.

Neri, F., Tirronen, V., Scale factor local search in differential evolution. Memetic Computing 1:2 (2009) 153-171

MapReduce EFS process

The vector of weights

is binarized with a

threshold

110

Evolutionary Feature
Selection/Weighting for Big Data

Dataset reduction

The maps

remove the

discarded

features

No reduce phase

111

Evolutionary Feature
Selection/Weighting for Big Data

Experimental Study: EFS scalability in MapReduce

 CHC is quadratic w.r.t. the number of instances

 Splitting the dataset yields nearly quadratic acceleration

112

Evolutionary Feature Selection

Experimental Study: Classification

 Two datasets

 epsilon

 ECBDL14, after applying
Random Oversampling

 The reduction rate is controlled
with the weight threshold

 Three classifiers in Spark

 SVM

 Logistic Regression

 Naïve Bayes

 Performance measures



 Training runtime

113

Evolutionary Feature Selection

Experimental Study: results

114

Evolutionary Feature Selection

Evolutionary Feature Weighting at
GECCO-2014

Oversampling Feature Selection
Learning a Random

Forest
Classifying the test set

115

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
bioinformatics problem. Knowledge-Based Systems (2015)

• Details of the training data:

 32 million training samples (56.7GB of disk space)

 2.9 million of test samples (5.1GB of disk space)

 631 features (539 real & 92 nominal values)

 2 labels; 98% non-contact samples

Results

Team TPR TNR TPR * TNR

Efdamis 0.73043 0.73018 0.53335

ICOS 0.70321 0.73016 0.51345

UNSW 0.69916 0.72763 0.50873

Efdamis-
Without FS 0.7041 0.7103 0.500175
HyperEns 0.64003 0.76338 0.48858

PUC-Rio_ICA 0.65709 0.71460 0.46956

I. Triguero, et al. ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An extremely imbalanced big data
bioinformatics problem. Knowledge-Based Systems (2015)

116

 The proposed MapReduce processes provide several advantages:

 It enables tackling Big Data problems

 The feature weight vector is more flexible than a binary vector

 The data reduction process in MapReduce provides a scalable and
flexible way to apply the feature selection/weighting,

 Both the accuracy and the runtime of the classification were
improved after the preprocessing.

https://github.com/triguero/MR-EFS

117

Evolutionary Feature
Selection/Weighting

