
Compiling and running programs on the Computer
Science UNIX machines

Creating, compiling and executing your first C program

The purpose of this part of the lab work is to ensure that you understand the basics of compiling a C or C++
program, and of using the Unix command line. To simplify matters, your first program will be compiled
and executed under Unix. (And so will some of the informal courseworks so it is important that you know
these basics.)

The initial programs will be compiled and executed on the Computer Science Unix machines. You should
all be aware of how to login to the Unix machines, and how to use the command line to change directory,
create directories, etc, but a reminder follows for those who may have forgotten:

The following instructions take you step by step through creating and compiling various simple programs
so that people who are not so experienced with using the UNIX machines or the command line are not
disadvantaged. Sorry if some of this seems very basic to you, I was attempting to make it too obvious rather
than raise a lot of questions.

Step 1: Logging in

You must first login to bann and get a shell prompt. There are at least two ways to do this from the PCs in
the A32 lab, and you may have other programs installed on your own PC.

Note on server machines: I have written these instructions to use the Linux machine called bann, since
this is a level 2 module and that is the machine which is suggested for use by second year undergraduate
students. These instructions should work with any of the other Linux machines so please feel free to use
the one which you usually use.

Note on UNIX shell commands: You will be using simple UNIX/LINUX shell commands in the first part
of these notes. After typing a command you should press Enter/Return to execute it. Steps 2 to 4 give a
quick reminder of some of the basics of creating directories and changing the current directory. You can
feel free to skip to step 5 if you are happy with logging into the UNIX machines and the basics of the UNIX
shell.

Login method 1: SSH client

There are many ssh clients available. You can download a free ssh client called putty if you wish (see
www.putty.org) or can use any of the ssh clients which are installed on the computer science lab
computers.

On the school computers, run ssh secure shell client, or any other ssh client from the desktop.

When the window appears for the ssh secure shell client, press ENTER to bring up the login window.

Enter the hostname of bann and your username, then press ENTER and enter your password when prompted
to do so.

You should then have a window with a jaa@bann$ prompt.

1

Method 2: Exceed

This method will make the graphics editors available to you, so you can cut and paste into/out of them if
you so wish.

Run Exceed from the desktop.

Select the machine named bann from the list.

Type your username [then ENTER] and password [then ENTER] in the window which appears.

You should then have a window with a bann$ prompt.

Step 2: Check where you are:

At the bann$ prompt, type ‘pwd’ (print working directory) to see the directory name of the directory that
you are currently in.

jaa@bann$pwd
/stug/ug/<your_username>

Type ‘ls’ to get a list of files.

jaa@bann$ls
<A list of the files appears here>

Step 3: Create a directory

You have two options here. Either you can create your directory inside your private directory, or you need
to make the directory that you create private (readable by only you). If you do not make your directory
private, then anyone can read it. That isn’t a good idea when you will be creating your coursework on these
machines since anybody will be able to read and copy it.

Option 1: create your directory inside your private directory

First move to the Private directory (type ‘cd Private’) then create a directory for your g52cpp work:
type ‘mkdir cpp’

jaa@bann$cd Private
jaa@bann$mkdir cpp
jaa@bann$ls
<A list of the files appears here, including a directory called cpp>

Option 2: Make your directory private

First create a directory for your g52cpp work (type ‘mkdir cpp’) then use the chmod command to make
it accessible to only you:

jaa@bann$mkdir cpp
jaa@bann$chmod 700 cpp

2

jaa@bann$ls
<A list of the files appears here, including a directory called cpp>

Step 4: Move into the cpp directory

Enter the cpp directory:

jaa@bann$cd cpp
jaa@bann$pwd
/stug/ug/<your_username>/cpp

If you are using one of the Computer Science lab PCs then you should see that the directory that you have
created has also appeared in your home directory in windows explorer (under your h: drive, you may need
to refresh the display to make it appear).

In future, when you login (as in step 1 above), you can (of course) skip steps 2 and 3 and go straight to step
4.

Step 5: Create your source code file

You need to create text files with your source code in them. To create a text file you can either use one of the
text-only Unix editors or edit the files within windows using any text editor (even Notepad or Wordpad),
see below. There are a number of powerful source code editors available, but for the simple programs we
are using here a simple text editor will suffice. This allows us to concentrate on the language rather than the
editor.

Create a file called hello.cpp, with the following contents:

#include <cstdio>
int main(int argc, char* argv[])
{

printf("Hello world!");
return 0;

}

Note: For all of the example programs, you should be able to cut and paste straight from this pdf file, but if
you do so then you may need to ensure that the quotation marks are correct. Assuming that you are using
a UK keyboard, all double quotes should be the character gained by pressing shift-2, and single quotes the
character obtained from pressing the key with the @ symbol on it (without shift). You may find that you
learn better by typing the programs in yourself, however, since it may help you to understand the details.

Creating and editing files

You can use any text editor to edit the files. Under UNIX you can use one of the text-based editors (e.g. vi,
vim or emacs), or (if you ran Exceed to login) a graphical editor such as xedit.

Assuming that your files are in your home directory, your home directory on bann is also mapped as the
H: drive. This means that you can, if you prefer, create and edit your source code files under windows (you
may find this a lot easier). Either Notepad or Wordpad will be sufficient, however, since Visual Studio
2010 is installed on the lab PCs you may wish to use that as an editor (we will be using Visual Studio later
in the module so it may be worth getting to know it now). Visual Studio has the advantage that it will do
keyword colouring, and shows line numbers (unlike Notepad, for example). If you do so, then you need

3

to ensure that you use it only for editing (at the moment), not for compiling (otherwise you would have to
know about how to create Visual Studio projects). The Microsoft compiler has some non-standard features
and you can NOT guarantee that a program which will compile under it will also compile under gcc, or
vice versa. In many ways it is more relaxed than gcc, in that it will allow you to write non-standard C code
and will still compile it. In other ways it is more strict, and will (for example) sometimes complain about
the use of standard library functions if Microsoft have produced their own (non-standard) equivalent that
they think you should use instead.

Warning for Visual Studio

The following should not happen to you, but in case it does here are some instructions. If you do use
Visual Studio, and this is the first time that you have done so, then you MAY (but shouldn’t) be prompted
for a default environment to use. Select the C++ option if that happens. You may then have to wait for
quite a long time while it sets up its environment, and it may complain a few times that you don’t have
administrator access, but eventually it will open your file and will allow you to edit it. Subsequent uses of
Visual Studio should be much quicker. Note that you do NOT need to close the source file in the editor in
order to compile your program (step 6), so you can keep the file open, compile in the shell window, fix any
problems in the editor, or make any changes, and re-compile in the shell prompt.

Warning for Notepad

If you created your file under UNIX and try to open it in Notepad the file may all appear on one line.
The problem is that the end of line character differs between UNIX and Windows, and Notepad (unlike
Wordpad or Visual Studio) cannot cope with this. You will be fine opening any file which was created
using a windows text editor (including Notepad).

Warning for Wordpad

When you save your file you need to make sure that you save it as a text (only) file. i.e. choose ‘save as’
not ‘save’ and choose the ‘text document’ type. If you do not do this, your file will contain formatting
information and will not compile.

No warnings for the UNIX editors

I have no warnings for you for the UNIX editors. The only disadvantage with using them is that you may
not know how to yet. Maybe now is the time to learn?

Step 6: Compile your program

You can compile the file using the following command in the shell window using gcc. We want to use the
standard C++ libraries, so we will use the g++ rather than gcc command, as follows:

jaa@bann$g++ hello.cpp -o hello

This will compile the source file called ‘hello.cpp’ and write the output to a file called ‘hello’. The
‘-o’ command line option specifies the output filename. If you do not provide this a file called ‘a.out’
will be used. This will still contain your program, but will have a less useful name.

(Note: If you compile under Microsoft Windows you may instead get a default file called something else,
for example ‘a.exe’.)

Step 7: Execute your program

You can then execute the program as follows, where the ‘.’ refers to the current directory, so this means
execute the file called ‘hello’ in the current directory. :

4

jaa@bann$./hello

Congratulations, you have now successfully created, compiled and executed a C program.

5

