
Demo lecture slides

• Although I will not usually give slides for
demo lectures, the first two demo lectures
involve practice with things which you
should really know from G51PRG

• Since I covered much of this in the
G52CFJ (C and C++) module in previous
years, I have included the slides from that
module here, to remind people who may
not attend the demo lectures, or may
forget what was said

Variables and literals

#include <stdio.h>

int main(int argc, char* argv[])
{

int j = 0;

… do something spectacular …

return 0; // Success
}

A variable declaration/definition
Defines a variable of type int ,
with name j

A ‘literal’
A literal/actual value

Definition:
Defines what it does / creates one

Declaration:
Says it exists, but doesn’t create it
An important difference later for
functions, variables and classes

Comments

• Comments:
– /* For multi -line comments */

• Available in both C and C++

– // For single line comments

• In C++ but not officially in C89

• There is no official “Javadoc” for C/C++
– i.e. /** … */ for code documentation
– There are unofficial programs, e.g. doxygen

Braces: { }
• Braces {} are used in the same way as Java

– Create a compound statement from multiple
statements

– e.g. for an ‘if ’ or ‘for ’ statement

– Extra {} can be added to make execution blocks
• Local variables exist for the lifetime of the block

they are in (not the function)

int main(int argc, char* argv[])
{

int j = 0;
{ int k = 3; /* k exists now */ }
/* k no longer exists now */
return 0; // Success

}

Basic data types

Basic Data Types

• The types available are what you expect:
– Integer types: char , short , int , long

– Floating point: float , double , long double

– No string type in C! (treat char* as string)

• Signed/unsigned variants of integer types
– Unlike in Java where they are all signed
– Examples:

signed char sc; unsigned short us;

signed long sl; unsigned int ui;

– Default is signed
• If neither ‘signed ’ nor ‘unsigned ’ stated

Sizes of types…

• The size (in bits/bytes) can vary in C/C++
– For different compilers/operating systems
– In Java, sizes are standardised, across O/Ss

• Some guarantees are given:
– A minimum size (bits): char 8, short 16, long 32
– Relative sizes: char ≤ short ≤ int ≤ long

• C & C++ have an operator called sizeof() to ask how man
char s big a data type is (sometimes this matters)

• An int changes size more than other types!
– Used for speed (not portability)
– But VERY popular! (fast)
– Uses the most efficient size for the platform
– 16 bit operating systems usually use 16 bit int
– 32 bit operating systems usually use 32 bit int
– 64 bit operating systems usually use 64 bit int

Basic Data Types - Summary

Type Minimum
size (bits)

Minimum range of values
(Depends upon the size on your platform)

char 8 -128 to 127 (Java chars are 16 bit!)

short 16 -32768 to 32767

long 32 -2147483648 to 2147483647

float Often 32 Single precision (implementation defined)
e.g. 23 bit mantissa, 8 bit exponent

double Often 64 Double precision (implementation defined)
e.g. 52 bit mantissa, 11 bit exponent

long double ≥ double Extended precision, implementation defined

int ≥ short varies

Declaring/defining a variable
• Important: Variables will NOT be initialised

– No default values are given in C++!
– Nothing MUST be initialised

• Values are unknown! (whatever was in memory)
• In Java member variables get default values and

local variables MUST be initialised before use

– ALWAYS initialise your variables
• At worst, errors are then repeatable

• Examples:
float f1 = 1.0f; // A single float

int i1=4, i2=52; // Two ints

Integer literals
• Integer literals may be:

– Decimal (base 10) : default, no prefix needed
– Hexadecimal (base 16) : prefix ‘0x ’
– Octal (base 8) : prefix ‘0’ (Not available in Java)

• Examples:
int x = 19, y = 024, z = 0x15;

char c1 = 45, c2 = 67, c3 = 0;

unsigned short s = 0xff32;

• The compiler chooses a size based upon the size of an int
and the value of the literal (e.g. char , short , int , long)

• You can explicitly make a literal value long (add suffix L)
long l1 = 1000000000L;

long l2 = 1234567890L;

Character literals
• Character literals mean ‘the value of this character

using the standard character set for this computer’
(ASCII here)

char c1 = ‘h’, c2 = ‘e’, c3 = ‘l’, c4 = ‘l’, c5 = ‘o’;
• A ‘char ’ is a number (from -128 to +127)

– In output functions you specify whether to show ‘the
number’(%d) or ‘the ASCII character of that value’ (%c)

• Some character literals have special meanings
– ‘\t ’ is the character which, when printed, will display a

tab character
– ‘\n ’ is a character which will display as a newline

• Can be CR, CR+LF, depending on platform
• In Java \n and \r have fixed values

String literals
• You can have string literals:

char* s1 =

"This is a string literal \n";
– Actually: arrays of characters, with a 0 at the end

• Enclose the literal in double quotes
– Format is same as Java: String s1 = “Hello”;

• printf takes a char* as first parameter:
printf(" Hello World! \n");

printf(s1);

• Remember: character literals have single quotes
– ‘4’, ‘h’, ‘H’, ‘%’, ‘£’, ‘@’, ‘,’

• string literals have double quotes

Floating point literals

• Same as Java
• Double precision floating point (double):

– 1.0, 2.4, 1.23e -15, 9.5e4

– double d = 1.34283;

• Single precision floating point (float):
– 1.0f, 2.4f, 2.9e -3f

– float f = 5.634f ;
– (note the ‘f ’ to say ‘float ’ rather than the

default type of ‘double ’)

Converting between types
• Data can be converted between types
• Sometimes done implicitly

– If compiler knows how to safely change the type
– e.g. char to a short , short to a long , float to a

double , int to a double (same rules as Java)

• Sometimes it has to be done explicitly
– If conversion may lose data

– e.g. long to a short , short to a char , double to a
float , float to an int (same rules as Java)

– Or compiler needs to confirm that it isn’t an error:
“Are you sure?”

Type casts

• Can explicitly change the type via a cast
– C version is exactly the same as in Java
– Put the new type inside brackets ()

long l = 100L;

short s = (short)l;

– Includes signed <-> unsigned conversion
unsigned int ui = (unsigned int)i;

• C++ also adds new types of casts
– Safer and better
– We will return to these later

The void type

• The void type is used to mean:
– No return value,

• e.g. void foo(int a);

– No parameters, optional, (Not Java)
• e.g. int bar(void);

– Will also see later a void*

• You cannot create a variable of type ‘void ’
• Some (older) compilers will not accept void

– But they should do if they are C89/C90/C99

Operators (same as Java)

Operators

Operators will be familiar to you from Java:
• Arithmetic: a*b, a -b, a+b, a/b

• Integer division: a/b, a%b

• Logical AND/OR: a && b, a || b

• Comparison: a<b, a<=b, a>b, a>=b

• a==b, a!=b

• Increment a++, ++a

• Decrement a-- , -- a

• Shorthand: a+=b, a -=b, a*=b, a/=b

– e.g. a+=b is equivalent to a = a + b

Sample Operator Precedence List

• Operators are evaluated in a specific order
– Highest operator precedence applies first

• Examples (highest to lowest, not complete)
(), [], ++, -- Grouping, array access, post increment/decrement
++, --, *, & Pre-increment, dereference, address of (right to left)
*, /, % Multiplication, division, modulus
+ - Addition, subtraction
<, <=, >, >= Comparison
==, != Comparison: equal to, not equal to
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
? : Ternary conditional
=, +=, -= etc Assignment and ‘… and assign’ (right to left)

In
cr

ea
si

ng
 p

re
ce

de
nc

e

Operator precedence matters

&& has higher precedence than ||
if (a && b || c && d)

means
if ((a && b) || (c && d))

if (a || b && c || d)

means
if (a || (b && c) || d)

Operators and precedence

• Operator precedence matters!
• Many style guides state that operator

precedence should not be relied upon
– Makes code less readable
– Prone to reliability of programmer’s memory

• I will NOT mark you down for adding
unnecessary brackets (within reason)
– I do it where I think it aids clarity
– ‘Company’ coding standards often require them

• But you need to know the precedence rules
– To understand code written by others
– An exam question may rely on them

The printf() function

The printf function

• Reminder: printf is declared in ‘stdio.h ’
– #include <stdio.h> so compiler knows what it is

• printf will output formatted text
• It uses tags (starting with ‘%’) which are replaced

by the supplied parameter values, in order
• Examples:
int i = 50;

char* mystring = “Displayable string”;

printf(“Number: %d \n”, i);

printf(“String: %s \n”, mystring);

printf(“%d %s \n”, i, mystring);

More things (almost)
exactly the same

Conditionals

• Ternary conditional operator: (same as Java!)
char* str =

(x == 4) ? “X is 4\n” : “X is not 4\n”;
printf(str);

• Example ‘if’ statement: (same as Java!)
if (x == 4)

printf(“X is 4\n”);
else

printf(“X is not 4\n”);

• The switch statement (same as Java!)
switch(x)

{

case 4: printf(“X is 4\n”); break;

default: printf(“X is not 4\n”); break;

}

• Example for loop:
int x = 1;

for (x = 2; x < 10 ; x++)

{

printf(“X is %d\n”, x);

} • Example while statement:
int x = 12;
while (x > 4)
{

printf(“X is %d\n”, x);
x--;

}

Loops: same as Java

• Example do {…} while statement:
int x = 1;
do
{

printf(“X is %d\n”, x);
x++;

} while (x < 8);

break and continue
• break

– Already seen use in a switch
– Also used in loops : exit the loop

• continue
– Used in loops
– End this iteration of the loop
– i.e. Jump to the for/while control statement

int i = 0;
for (; i < 30 ; i++)
{

if (i==5) continue;
if (i==10) break;
printf("%d ", i);

}

What is the output:
?

break and continue
• break

– Already seen use in a switch
– Also used in loops : exit the loop

• continue
– Used in loops
– End this iteration of the loop
– i.e. Jump to the for/while control statement

int i = 0;
for (; i < 30 ; i++)
{

if (i==5) continue;
if (i==10) break;
printf("%d ", i);

}

Output:
0 1 2 3 4 6 7 8 9

Aside: Function Overloading

A C vs C++ difference
Here C++ is like Java

Function overloading
• In C++ a function is identified by the types of its

parameters as well as its name
– As it is in Java, but not in C

• This example is valid in C++ (not in C)
int multiply(int a, int b) {return 0;}

long multiply(long a, long b) {return 0;}

– i.e. can have multiple functions with the same name

• The compiler will check the parameter types
and try to find a matching function (like Java)

• Sometimes the types of the parameters may
need to be changed to find a function
– Will usually be performed automatically (implicitly) as

long as a conversion exists (see later)

