
Demo lecture slides

• Although I will not usually give slides for
demo lectures, the first two demo lectures
involve practice with things which you
should really know from G51PRG

• Since I covered much of this in the G52CFJ
(C and C++) module in previous years, I
have included the slides from that module
here, to remind people who may not attend
the demo lectures, or forget what was said

Standard C Library Functions

• Part of the Standard C++ Library
• String functions : strcpy, strncpy, strcat, strcmp, …
• File access functions : fopen, fclose, fread, fwrite, …
• Dynamic memory allocation : malloc/realloc/free memory
• Mathematical functions : sin, cos, asin, sqrt, …
• Misc functions : e.g. random numbers

• You should know and use the standard library functions
• Documented in most C and C++ books
• Easy to find on the web, e.g.:

http://en.wikipedia.org/wiki/List_of_C_functions

http://www.cplusplus.com/reference/clibrary/

• There is no excuse for not finding out

strcpy
A function which uses pointers

The strcpy() function

char* strcpy(

char* destination,

char* source)

• Copy the characters from one string
into another
– Including the terminating zero

• ASSUMES that the destination is big
enough (problem if it isn’t!)

Valid destinations for strcpy?

• You can create char*s in many ways:
1) Just create a char* :

char* str1;

2) Pointing to string literals:
char* str2 = “Hello”;

3) From arrays:
char str3[6];

char str4[] = {‘H’,‘e’,‘l’,‘l’,‘o’,’\0’};

Question:
• Which of these (str1, str2, str3, str4) are good

destinations to copy a string to?
– E.g. strcpy(str1, “Test”);

Answer
1) Just create a char*:

char* str1;
– Where does str1 point? So where would the string go?

2) From string literals:
char* str2 = “Hello”;

– You should not write over a literal, see later
– str2 is your variable, but the thing it points to is not

3) From arrays:
char str3[6];
char str4[] = {‘H’,‘e’,‘l’,‘l’,‘o’,’\0’};

– This allocates enough memory to hold the array
– These are the best options, as long as the array is big enough!

4) Allocate dynamic memory (see lecture 7, later)
– Used if we don’t know the required size until runtime

Don’t get confused between these
– Only 3 and 4 are (good) valid destinations for a strcpy

Input/output

Console/command line input

• Text input is buffered to allow editing
– Only sent to program when you press ENTER
– Program can then process input stream, using

input functions
– EOF means End Of File (end of input)

• Get the next character (or EOF):
– int getchar()

• Get a string (up to newline character):
– gets(char* destination)

– Destination MUST be big enough! How?

The scanf() function : overview

• Provides the inverse (?) operation for printf
– Reads formatted input, instead of formatting output

• Parameters have the same format but:
– It needs to be able to set the values of the parameter

variables
– So you MUST pass pointers to the variables

• Examples:
printf(“%d %d %s”, int1, int2, string1);

scanf(“%d %d %s”, &int1, &int2, string1);

• Note: char* strings are already pointers
– You don’t pass the address of a char*

– From the char* the string itself can be changed

The control string
scanf(“Name: %s %d”, string1, &int1);

• Consists of three types of values:
– Whitespace: Match any whitespace
– Fields, labelled with %:

• The letter which follows specifies the type, e.g.:
• %sread a string up to whitespace character
• %dread a number
• %cread a character (or multiple chars)

– Other character: must be matched exactly, if
matching fails then the read operation fails

• Returns number of fields matched

The letters for scanf ()

%d or %i Decimal integer
%c Character
%s String, to whitespace (space/return/…)
%u Unsigned decimal integer
%x Unsigned hexadecimal number
%f Floating point number
%e Scientific notation

You should experiment with these
They are VERY similar to the printf() ones

There is more to scanf() and printf()
See the docs (and fscanf(), sscanf())

File access functions

File access

• The operating system provides methods for:
– Opening a file: read or read&write? binary/text?
– Reading from a file (binary or text?)
– Writing to a file (binary or text?)
– Moving around within a file (if appropriate)
– Closing an open file

• Different operating systems may allow file
access in different ways

• The C library functions wrap up the
operating system calls

The C libraries : File access

• Hides the implementation details
• Provides a platform independent way to

refer to files
• In a FILE structure

– fopen() : Gives you a pointer to a FILE
structure that it creates when file is opened

– You do NOT need to know the format of FILE

– Do NOT assume the format – it can vary
– Just pass back the pointer it gives you

• Adds buffering, so multiple writes happen
at once (usually much faster)

FILE* Functions
• Open a file: (returns a FILE* pointer to use)
FILE* pFile = fopen(“Filepath”, <type>)

• Close an open file:
int fclose(FILE* pFile)

• Flush the write buffer of a file:
fflush(FILE* pFile);

– Remember that files are buffered

• Read text: fgetc(), fgets(), fscanf()

• Write text: fputc(), fputs(), fprintf()

• Read binary: fread()

• Write binary: fwrite()

fopen()
• “Open a file for me and give me a way to refer to it”:

FILE* pFile = fopen(“Filepath”, <type>)

– Example types “r” read, “w” write, “a” append
FILE* pRead = fopen(“input.txt”, “r”);

FILE* pWrite = fopen(“output.txt”, “w”);

FILE* pAppend = fopen(“append.txt”, “a”);

– Other types:
“r+” read/write (must exist)
“w+” create empty file for read/write
“a+” append to and read from existing file

– Add ‘b’ to type for binary (avoids some conversions)

• See documentation for details, for example:
http://www.cplusplus.com/reference/clibrary/cstdio/fopen.html

Example : fopen()
FILE* pfileInput = fopen(pInputFileName,

iType == 0 ? "rb" : "r");
FILE* pfileOutput = fopen(pOutputFileName,

iType == 0 ? "wb" : "w");

if (pfileInput == NULL)
{

printf("Unable to open input file : %s\n",
pInputFileName);
return 2;

}

if (pfileOutput == NULL)
{

printf("Unable to open output file : %s\n",
pOutputFileName);
fclose(pfileInput);
return 3;

}

Types for sample:
0 = binary
1 = scanf/printf
2 = fgetc/fputc
3 = fgets, fputs

Example : fclose()

fclose(pfileOutput);

fclose(pfileInput);

Close the files at the end

Example : fread() , fwrite()

char buffer[1024];

while (!feof(pfileInput))

{

int iNumberRead = fread(buffer,

1, 1024, pfileInput) ;

fwrite(buffer, iNumberRead, 1,
pfileOutput);

}

Usually for reading binary data

Parameters:
Destination/source
Size of an element
Number of elements
FILE*

Example : fgetc() , fputc()

int iChar;

while (!feof(pfileInput))

{

iChar = fgetc(pfileInput) ;

if (iChar != EOF)

fputc(iChar, pfileOutput);

}

For control, read a character at a time

Example : fgets() , fputs()

char buffer[1024];

while (!feof(pfileInput))

{

if (fgets(buffer, 102 4,

pfileInput) != NULL)

fputs(buffer, pfileOutput);

}

Or read an entire line (up to and including \n)

Including final ‘\0’

Example : fscanf() , fprintf()

char buffer[1024];

while (!feof(pfileInput))
{

if (fscanf(pfileInput,
"%1023s", buffer) > 0)

fprintf(pfileOutput, "%s \n",
buffer);

}
Useful for reading multiple fields which are separated
by whitespace (tab/space?) or for reading numbers

Read a string, up to whitespace (not only \n!)

Note: it also adds
a zero at the end!
Buffer size 1024

Reads 1023 chars

Moving around in a file…

• int fseek (FILE* stream,
long offset, int origin)

– Move read/write position in file
origin is a constant meaning one of:

– ‘current position’, ‘start of file’ or ‘end of file’

• long ftell (FILE* stream)

– Ask where current read/write position is

• void rewind (FILE* rewind)

– Go to beginning of file

stdin , stdout and stderr

• Normal input and output can be accessed
using the file functions

• stdin is standard input stream
• stdout is standard output stream
• stderr is the error output stream
• Use these as a FILE* in file functions

– Just read/write, do not open/close them

• Defined in stdio.h

sscanf and sprintf
• More printf and scanf family members:
• sscanf() takes a string as first parameter

int sscanf(char* str, char* format, ...);

– Read from string instead of stream (stdin or a file)
sscanf(“Adam 34”, “%s %d”, pName, &iAge);

• sprintf() takes a string as first parameter
int sprintf(char* str, char* format, ...)

– Write to string instead of stream (stdout or a file)
– Ensure that it is big enough!
sprintf(string, “%s %d”, pName, iAge);

• sprintf() is useful for formatting text in a string

