Demo lecture slides

« Although I will not usually give slides for
demo lectures, the first two demo lectures
Involve practice with things which you
should really know from G51PRG

e Since | covered much of this in the G52CFJ
(C and C++) module In previous years, |
have included the slides from that module
here, to remind people who may not attend
the demo lectures, or forget what was said



Standard C Library Functions

Part of the Standard C++ Library

String functions : strcpy, strncpy, strcat, strcmp, ...

File access functions : fopen, fclose, fread, fwrite, ...
Dynamic memory allocation : malloc/realloc/free memory
Mathematical functions : sin, cos, asin, sqrt, ...

Misc functions : e.g. random numbers

You should know and use the standard library functions
Documented in most C and C++ books

Easy to find on the web, e.g.:
http://en.wikipedia.org/wiki/List_of C_functions
http://www.cplusplus.com/reference/clibrary/

There is no excuse for not finding out



strcpy

A function which uses pointers




The strcpy() function

char* strcpy(
char* destination,
char* source)

* Copy the characters from one string
Into another

—Including the terminating zero

« ASSUMES that the destination Is big
enough (problem if it isn’t!)



Valid destinations for strcpy?

 You can create char*s In many ways:
1) Just create a char*
char* stri;
2) Pointing to string literals:
char* str2 = “Hello”;
3) From arrays:
char str3[6];
char str4[] = {'H’,’e’,l','I’,'0’,\0’};
Question:

« Which of these (strl, str2, str3, str4) are good
destinations to copy a string to?
— E.g. strepy( strl, “Test” ),



Answer

1) Just create a char*:

char* strl;

— Where does strl point? So where would the string go?
2) From string literals:

char* str2 = “Hello”;
— You should not write over a literal, see later
— str2 is your variable, but the thing it points to is not
3) From arrays:
char str3[6];
char str4[] = {'H’,’e’,’I','l','0’,'\0’};
— This allocates enough memory to hold the array
— These are the best options, as long as the array is big enough!

4) Allocate dynamic memory (see lecture 7, later)
— Used if we don’t know the required size until runtime

Don’t get confused between these
— Only 3 and 4 are (good) valid destinations for a strcpy






Console/command line input

« Text input Is buffered to allow editing
— Only sent to program when you press ENTER

— Program can then process input stream, using
iInput functions

— EOF means End Of File (end of input)
* Get the next character (or EOF):
— Int getchar()

e Get a string (up to newline character):
— gets( char* destination )

— Destination MUST be big enough! How?



The scanf() function : overview

* Provides the inverse (?) operation for printf
— Reads formatted input, instead of formatting output

e Parameters have the same format but:

— It needs to be able to set the values of the parameter
variables

— S0 you MUST pass pointers to the variables
 Examples:
printf( “%d %d %s”, intl, int2, stringl );
scanf( “%d %d %s”, &intl, &int2, stringl );
 Note: char* strings are already pointers

— You don’t pass the address of a char*
— From the char* the string itself can be changed



The control string

scanf( “Name: %s %d", stringl, &intl);

e Consists of three types of values:

— Whitespace: Match any whitespace

— Fields, labelled with %:
* The letter which follows specifies the type, e.q.:
* %sread a string up to whitespace character
e %dread a number
* %cread a character (or multiple chars)

— Other character: must be matched exactly, if
matching falls then the read operation fails

e Returns number of flelds matched



The letters for scanf ()

%d or %I |Decimal integer

%cC Character

%s String, to whitespace (space/return/...)
%u Unsigned decimal integer

%X Unsigned hexadecimal number

%f Floating point number

%e Scientific notation

You should experiment with these
They are VERY similar to the printf() ones

There

IS more to scanf() and printf()
See the docs (and fscanf(), sscanf() )




File access functions




File access

 The operating system provides methods for:
— Opening a file: read or read&write? binary/text?
— Reading from a file (binary or text?)
— Writing to a file (binary or text?)
— Moving around within a file (if appropriate)
— Closing an open file

 Different operating systems may allow file
access In different ways

e The C library functions wrap up the
operating system calls



The C libraries : File access

Hides the implementation detalls

Provides a platform independent way to
refer to files
In a FILE structure

—fopen() : Gives you a pointer to a FILE
structure that it creates when file is opened

—You do NOT need to know the format of FILE
— Do NOT assume the format — it can vary
— Just pass back the pointer it gives you

Adds buffering, so multiple writes happen
at once (usually much faster)



FILE* Functions

 Open afile: (returns a FILE* pointer to use)
FILE* pFile = fopen(“Filepath”, <type>)

e Close an open file:

Int fclose( FILE* pFile )

Flush the write buffer of a file:

fflush( FILE* pFile );

— Remember that files are buffered
Read text: fgetc(), fgets(), fscant()

Write text: fputc(), fputs(), fprintf()
Read binary: fread()
Write binary: fwrite()



fopen()

 “Open a file for me and give me a way to refer to it”:
FILE* pFile = fopen(“Filepath”, <type>)
— Example types “r’ read, “w” write, “a” append
FILE* pRead = fopen(“input.txt”, “r");
FILE* pWrite = fopen(“output.txt”, “w");
FILE* pAppend = fopen(“append.txt”, “a”);
— Other types:
“r+”  read/write (must exist)
“w+” create empty file for read/write
“a+” append to and read from existing file
— Add ‘b’ to type for binary (avoids some conversions)

e See documentation for detaills, for example:
http://www.cplusplus.com/reference/clibrary/cstdio/fopen.html




Example : fopen()

FILE* pfilelnput = fopen( pinputFileName,
iType ==07?"rb":"r");
FILE* pfileOutput = fopen( pOutputFileName,

iType == 0 ? "wb" : "w");

If ( pfilelnput == NULL )

{

printf( "Unable to open input file : %s\n",

pInputFileName );

return 2; Types for sample:
} 0 = binary

1 = scanf/printf

It ( phileOutput == NULL ) 2 = fgetc/fputc
{ 3 = fgets, fputs

printf( "Unable to open output file : %s\n",
pOutputFileName );

fclose(pfilelnput);
return 3;



Example : fclose()

Close the files at the end

fclose( pfileOutput );

fclose( pfilelnput );



Example : fread() , fwrite()

Usually for reading binary data

char buffer[1024]; Parameters:

Destination/source
Size of an element
Number of elements

while ( Ifeof(pfilelnput) ) FILE*

{

Int INumberRead = fread(  buffer,
1, 1024, pfilelnput ) ;

fwrite( buffer, INumberRead, 1,
pfileOutput );



Example : fgetc() , fputc()

For control, read a character at a time

Int IChar:

while ( Ifeof(pfilelnput) )
{
IChar =  fgetc(pfilelnput)
If (IChar !=EOF)
fputc(iChar, pfileOutput );



Example : fgets() , fputs()

Or read an entire line (up to and including \n)

char buffer[1024];

while ( !feof(pfilelnput) ) Including final \0
{ —
If ( fgets( buffer, 102 4,
pfilelnput ) 1= NULL )

fputs( buffer, pfileOutput );



Example : fscanf() , fprintf()

Read a string, up to whitespace (not only \n!)

char buffer[1024]; Note: it also adds
a zero at the end!

while ( !feof(pfilelnput) ) Buffer size 1024

{ Reads 1023 chars

If ( fscanf( pfilelnput,
"%1023s", buffer) >0)
fprintf( pfileOutput, "%s \n",
buffer );

Useful for reading multiple fields which are separated
by whitespace (tab/space?) or for reading numbers




Moving around in a file...

e Int fseek ( FILE* stream,
long offset, Int origin )

— Move read/write position in file

origin IS a constant meaning one of:

— ‘current position’, ‘start of file’ or ‘end of file’
 long ftell ( FILE* stream )

— Ask where current read/write position Is
e void rewind ( FILE* rewind )

— Go to beginning of file



stdin , stdout and stderr

Normal input and output can be accessed
using the file functions

stdin  Is standard input stream
stdout Is standard output stream
stderr Is the error output stream

Use these as a FILE* In file functions

— Just read/write, do not open/close them
Defined in stdio.h




sscanf and sprintf

 More printft  and scanf family members:

e sscanf() takes a string as first parameter

Int sscanf(char* str, char* format, ...);
— Read from string instead of stream (stdin  or a file)

sscanf( “Adam 347, “%s %d”, pName, &iAge );

o sprintf() takes a string as first parameter
Int sprintf(char* str, char* format, ... )
— Write to string instead of stream (stdout or a file)

— Ensure that it is big enough!
sprintf( string, “%s %d”, pName, i1Age );
o sprintf() IS useful for formatting text in a string




