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Abstract This paper tackles a Nurse Scheduling Problem which consists of generating work
schedules for a set of nurses while considering their shift preferences and other require-
ments. The objective is to maximize the satisfaction of nurses’ preferences and minimize
the violation of soft constraints. This paper presents a new deterministic heuristic algorithm,
called MAPA (multi-assignment problem-based algorithm), which is based on successive
resolutions of the assignment problem. The algorithm has two phases: a constructive phase
and an improvement phase. The constructive phase builds a full schedule by solving succes-
sive assignment problems, one for each day in the planning period. The improvement phase
uses a couple of procedures that re-solve assignment problems to produce a better sched-
ule. Given the deterministic nature of this algorithm, the same schedule is obtained each
time that the algorithm is applied to the same problem instance. The performance of MAPA
is benchmarked against published results for almost 250,000 instances from the NSPLib
dataset. In most cases, particularly on large instances of the problem, the results produced
by MAPA are better when compared to best-known solutions from the literature. The ex-
periments reported here also show that the MAPA algorithm finds more feasible solutions
compared with other algorithms in the literature, which suggest that this proposed approach
is effective and robust.
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1 Introduction

In this paper, we tackle a Nurse Scheduling Problem (NSP) which consists of assigning
work shift patterns to a team of nurses over a pre-defined scheduling period in such a way
that nurses’ preferences (soft constraints) for what type of shift to work in each day are
best satisfied while additional requirements (hard constraints) are met. A penalty cost is
associated to the non-satisfaction of nurses’ preferences and also to the non-satisfaction
of the additional requirements. Thus, the objective is to generate feasible nurse schedules
with a minimum total penalty cost. The general nurse scheduling problem was classified by
Osogami and Imai (2000) as NP-hard. In the literature, we find many different descriptions
and models for nurse scheduling due to the different characteristics and policies that arise
in each hospital. Similarly, we can find a wide variety of solution procedures to tackle the
nurse scheduling problems and a fair comparison between the many proposed algorithms
seems to be impractical as discussed by Maenhout and Vanhoucke (2007).

Cheang et al. (2003) and Burke et al. (2004) provide surveys of nurse scheduling prob-
lems and solution approaches. These surveys reveal that most of the heuristic algorithms
for nurse scheduling algorithms in the literature are based on local search procedures. Even
recent works tackling nurse scheduling in a multi-objective fashion (e.g. Burke et al. 2012)
are still largely based on local search. The distinctive feature of the heuristic algorithm
proposed here is that it is based on exact resolution of successive assignment problems in-
stead of local search. The surveys by Cheang et al. (2003) and Burke et al. (2004) also
identify the need for a set of benchmark problem instances to facilitate the comparison of
the many proposed algorithms for the problem. Towards this, Maenhout and Vanhoucke
(2005) proposed a large dataset called NSPLib, which also includes a problem instance
generator. NSPLib has 248,640 nurse scheduling problem instances randomly generated
and they are classified according to their size and complexity. A subset of these instances
is called the ‘realistic’ set which includes instances with a scheduling period of 28 days.
The other set is called the ‘diverse’ set which includes instances with a scheduling pe-
riod of 7 days. Instances of both types are used in the experiments of this paper. As
mentioned above, NSPLib includes a program for generating different tests instances by
changing the type of contract (full-time or part-time), skill sets, etc. For a detailed descrip-
tion, see Maenhout and Vanhoucke (2005). The NSPLib problem instances are available at:
http://www.projectmanagement.ugent.be/nsp.php. In their work on nurse scheduling using
the NSPLib dataset, Maenhout and Vanhoucke (2006, 2007, 2008) have proposed several
algorithms and reported a range of results.

Other benchmark datasets for nurse scheduling problems have been made available
more recently. For example, the First International Nurse Rostering Competition 2010
(see Haspeslagh et al. 2012 and http://www.kuleuven-kulak.be/nrpcompetition for de-
tails) includes 60 problem instances classified in three groups according to the expected
computational difficulty. Also, Tim Curtois at the University of Nottingham maintains a
large collection of employee scheduling benchmark problem instances including nurse
scheduling (see http://www.cs.nott.ac.uk/~tec/NRP/ for details). In addition De Caus-
maecker and Vanden Berghe (2011) proposed a classification system for nurse roster-
ing problems, comparing three datasets: http://www.cs.nott.ac.uk/~tec/NRP/ (Burke et al.
2008), http://allserv.kahosl.be/~burak/project.html (Bilgin et al. 2008) and NSPLib at
http://www.projectmanagement.ugent.be/nsp.php (Maenhout and Vanhoucke 2005). In their
attempt to classify and compare the problem instances in these tree datasets, they proposed
and discussed several notations and categories. According to the authors, the advantage of
NSPLib is its large size, which facilitates statistical analysis of different solution approaches.

http://www.projectmanagement.ugent.be/nsp.php
http://www.kuleuven-kulak.be/nrpcompetition
http://www.cs.nott.ac.uk/~tec/NRP/
http://www.cs.nott.ac.uk/~tec/NRP/
http://allserv.kahosl.be/~burak/project.html
http://www.projectmanagement.ugent.be/nsp.php
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Developing formal models for the many specific objectives and constraints in nurse
scheduling problems and applying optimization methods to solve them are very difficult
tasks. Then, developing heuristic algorithms to tackle these problems is a common and effec-
tive approach. In fact, Maenhout and Vanhoucke (2005) suggest that the purpose of NSPLib
is to be a benchmark dataset for evaluating heuristic approaches to solve nurse schedul-
ing problems. The best results for the NSPLib instances have been obtained with different
meta-heuristic approaches including the Electromagnetic method by Maenhout and Van-
houcke (2007), Scatter Search by Maenhout and Vanhoucke (2006) and Genetic Algorithms
by Maenhout and Vanhoucke (2008). The present paper presents a new deterministic heuris-
tic algorithm called MAPA (multi-assignment problem-based algorithm), which produces
new best solutions for some instances in NSPLib.

According to Cordeau et al. (2002) a good heuristic must satisfy some criteria such as
simplicity, flexibility, accuracy and speed. They also state that “algorithms that contain too
many parameters are difficult to understand and unlikely to be used”. The MAPA algorithm
proposed here is simple because it does not require parameter tuning and it uses the well-
known linear assignment problem that is solvable in polynomial time. It is flexible because
it is well suited to tackle different constraints (hard and soft) by only adapting the procedure
to calculate the matrix of costs (see Sect. 4.1). It also has reasonable accuracy and speed
which is illustrated by the experiments described in the next sections.

The remainder of this paper is as follows. The problem description is given in Sect. 2.
A high-level description of the proposed MAPA algorithm is given in Sect. 3 and then a
detailed description is provided in Sect. 4. Experimental results are presented and discussed
in Sect. 5. The final Sect. 6 draws overall conclusions and suggestions for future research.

2 Description of the nurse scheduling problem

The nurse scheduling problem addressed in this paper is the same as stated by Maenhout
and Vanhoucke (2007) with test instances from the NSPLib. The problem involves require-
ments that must be met (hard constraints) and requirements that are desirable to meet (soft
constraints) when constructing the schedule. Hard constraints in this problem are the prohi-
bition of certain successive shift assignments to nurses (for example a night shift followed
by an early or a day shift), maximum number of consecutive assignments of the same type
(i.e. identical shift assignments), minimum and maximum number of overall working as-
signments for a nurse and minimum number of consecutive assignments of the same type
(i.e. identical shift assignments). Soft constraints in this problem are the minimum coverage
requirement (to satisfy the workload demand of each day) and the nurses’ preferences.

Nurses express their preferences for the shifts that they want to work in each day. A cost
is associated to every shift and this cost is inversely proportional to the expressed preference,
i.e. less preferred shifts carry a higher cost. The cost of violating hard constraints is added
to the cost of violating soft constraints to obtain the total solution cost which should be min-
imized. Full details of the costs calculation are given in Sect. 4 when the MAPA algorithm
is described.

More formally, the Nurse Scheduling Problem tackled here can be stated as follows. A set
of nurses N needs to be scheduled within a scheduling period of dmax days (d = 1, . . . , dmax).
Each nurse needs to be assigned to a set of shifts in the scheduling period while minimizing
the cost of violating hard and soft constraints. Thus, we have:

N : set of nurses, index n (n = 1, . . . , nmax), nmax = |N |;
D: set of days within the scheduling period, thus dmax = |D|;
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Sd : set of required shifts for day d , index s (s = 1, . . . , sd), sd = |Sd |.
The term shift refers to a given working period (early, day or night shift) or a rest period

(free shift), although the starting/ending times of each shift are not defined in the NSPLib
instances. Note that Sd represents the minimum coverage requirement, i.e. |Sd | is the min-
imum number of nurses required on day d , then |Sd | ≤ |N |. A duty roster, or roster, is a
sequence of shifts assigned to one nurse during the scheduling period of dmax days. A solu-
tion or nurse schedule is a collection of nmax duty rosters.

3 A multipartite model for nurse scheduling

In this paper we represent the above nurse scheduling problem as an acyclic multipartite
graph with dmax + 1 partitions, where the first partition of vertices corresponds to the set
of nurses and the remaining partitions correspond to the sets of shifts (i.e. one partition per
day in the scheduling period). Figure 2 shows a sample of this representation in the case
where nmax = 4 nurses. An edge represents a possible assignment of a shift to a nurse in a
particular day (according to the partition number). There are no edges connecting vertices in
the same partition. Instead, a sequence of edges connecting vertex n from the first partition
(corresponding to nurse n) to a vertex in the last partition indicates the sequence of shifts
that are assigned to nurse n. The weight associated to an edge is the cost of assigning a
particular shift to nurse n according to the nurse’s preferences.

More formally, let’s have a graph G = (T ,A), where T is the set of vertices and
A is the set of edges as described above. The set T is composed by the partitions
To,T1, T2, . . . , Tdmax, where To is the set of vertices representing the nurses and Td (d from
1 to dmax) is the set of vertices representing the shifts on day d . Thus, we have a multipartite
graph representation. The objective is to find nmax paths from the first to the last partition
while minimizing the total cost. Each path represents a duty roster for one nurse, i.e. the
sequence of shifts assigned to a nurse for each day of the scheduling period. In order to
find these paths we propose a heuristic algorithm that solves successive assignment prob-
lems, each one corresponding to a matching problem between two consecutive partitions
(bipartite graph). This assignment problem is formulated as follows:

Minimize
nmax∑

i=1

nmax∑

j=1

cd
ij .x

d
ij (5)

Subject to:
nmax∑

i=1

xd
ij = 1, j = 1, . . . , nmax (6)

nmax∑

j=1

xd
ij = 1, i = 1, . . . , nmax (7)

xd
ij ∈ {0,1}, i = 1, . . . , nmax; j = 1, . . . , nmax (8)

The cost matrix [cd
ij ] is always a square matrix of size n2

max and has different interpre-
tation and structure depending on the algorithm phase, as explained in the next section. In
some cases, the cost cd

ij in (5) is the cost of edge (i, j) connecting partitions Td−1 and Td ,
where index i corresponds to a nurse or roster, while the index j can be a shift or a roster. In
other cases, the cost cd

ij is the cost of replacing a shift j in the duty roster of nurse i. Note that
cd
ij = ∞ if there is no edge (i, j). The binary decision variable xd

ij indicates an assignment or
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Fig. 1 The cost matrix structure
for the assignment of shifts to
nurses, Block I ensures the cover
requirement and Block II
contains the spare shifts needed
to form a square cost matrix

not of vertex i to vertex (nurse) j . Constraints (6) and (7) indicate a one-to-one assignment
between two partitions. This means that each nurse (partition T0) will be assigned exactly
one (working or free) shift for each partition (day). The main idea is to find the minimal cost
matching for each bipartite graph so that we find the nmax paths (each path corresponds to
an individual nurse roster). The main advantage of tackling the nurse scheduling problem
in this way is that the assignment problem can then be solved in polynomial time using the
algorithm proposed by Carpaneto and Toth (1987) which has a polynomial running time
complexity of O(n3

max). Also, the heuristic procedure is deterministic producing the same
solution every time is applied to the same problem instance. However, note that in our ap-
proach we need to solve the assignment problem many times in order to obtain a full nurse
schedule.

4 The proposed heuristic algorithm

We propose a multi-assignment problem-based algorithm (MAPA) which consists of two
phases, both based on successive resolutions of an assignment problem between two con-
secutive partitions in the multipartite graph described above. In the first phase, an initial
solution (set of duty rosters) is built. In the second phase, two procedures are employed to
improve the initial solution by modifying the previous assignments between the partitions.

4.1 Construction phase

The construction phase starts by generating the multipartite graph as defined in Sect. 3. An
initial solution is obtained by solving dmax successive assignment problems from the first to
the last day of the scheduling period.

As stated above, the square matrix of costs [cd
ij ] has different interpretations in each

phase of the algorithm. In this first phase cd
ij is the cost of assigning shift j to nurse i on

day d . We note that in the nurse scheduling problem instances tackled here, the number of
nurses available to work on a day is usually greater than or equal to the number of required
working shifts on that day (covering requirement), i.e. |Sd | ≤ |N | as stated in Sect. 2. Then,
we complete the cost matrix with spare shifts in order to get a square matrix [cd

ij ] where
a spare shift is a type of shift considered in the problem (early, late, night or free shift).
This means that the algorithm can assign more working shifts than needed in day d (further
discussion below on how we deal with this). In this first phase, the matrix [cd

ij ] is divided
into two blocks as shown in Fig. 1.

Block I contains the shifts that satisfy the required coverage on day d and Block II con-
tains the spare shifts added to form a square matrix [cd

ij ] where the number of available
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Fig. 2 Example of a multipartite graph for 4 nurses and 7-days scheduling period, showing a duty roster with
a cut before day 2 and possible recombinations (dashed lines) of partial rosters. Letters E, D, N , F mean an
Early, Day, Night and Free shift, respectively; ∗ means a spare shift

nurses on day d is greater or equal than the number of nurses required in the coverage.
Since the minimum coverage requirement is guaranteed by the shifts in Block I, any as-
signment of spare shifts in Block II to nurses is permitted, including the assignment of free
shifts. The function for calculating the costs in Block I is defined as follows:

f (i, j, d) = pc(i, j, d) + Ph.nHCV + Ps.nSCV (9)

where pc(i, j, d) is the penalty cost (related to the nurse’s preferences) for assigning shift j

to nurse i on day d ; nHCV is the number of hard constraint violations due to this assignment;
Ph is the penalty for the violation of a hard constraint; nSCV is the number of soft constraint
violations due to this assignment and Ps is the penalty for the violation of a soft constraint.
This cost function is as proposed by Maenhout and Vanhoucke (2007).

Let S∗
d be all the required shifts in Sd including free shifts, then S∗

d = Sd ∪ {free shifts}.
Therefore, the equation cd

ij = min∀s∈Sd∗ f (i, s, d) in Block II gives the following informa-
tion: the penalty cost of assigning spare shift j to nurse i and the shift type in S∗

d that will
be assigned to this nurse i as a spare shift. Note that the value of cd

ij in Block II is the same
for nurse i. Each cost cd

ij in Block II is taken as the minimum cost among the cd
ij costs in

Block I for the corresponding nurse, also considering the assignments of free shifts to that
nurse. This means that for nurse i, each of the costs in Block I corresponds to an assignment
(early, day, night or free shift) towards a covering of the required shifts in the workload while
the corresponding costs in Block II are equal to the minimum of the costs in Block I for that
same nurse. Since the assignments in Block II correspond to spare (not required shifts) our
approach produces schedules that definitely meet the minimum coverage requirements and
possibly exceed that requirement for some days in the scheduling period. Hence, the associ-
ated constraint violation costs are set accordingly to complete the overall multi-assignment
problem.

An assignment problem is constructed and solved for each day of the scheduling period.
Note (see Fig. 2) that in the first assignment of shifts (day 1) from partition 1 to partition 2
there is no previous assigned shift. However, from the second assignment (day 2) onwards,
the previous assignments must be considered when calculating the cost matrix. That is, when
calculating the cd

ij cost for nurse i on day d , the shifts assigned to that nurse in previous
days are taken into account. In order to calculate cd

ij a simple procedure (called constraints
update) checks the sequence of shifts assigned to nurse i in the previous days to day d .
The procedure checks the constraints, e.g. if the minimum/maximum number of working
assignments is satisfied or not. The time spent in calculating cd

ij depends on the length of
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Fig. 3 Example of reassignment after the cut (Fig. 2 and then solving the new assignment problem) with the
cutting and recombination procedure (CRP), resulting in a reassignment of working and spare shifts. Note
that on day 5 a spare shift was changed (updated) for reducing the cost corresponding to nurse 2 individual
roster (assuming that nurse 2 prefers shift D to shift E)

that sequence of shifts which is known to be not greater than dmax. This process is repeated
for each day in the scheduling period. Then, at the end of this multi-assignment process,
we have constructed an initial solution, i.e. a duty roster for each nurse. The construction
phase just explained is expressed in the following pseudo-code (AP stands for assignment
problem).

Procedure Construction
Begin
For d = 1 to dmax do:
Construct the cost matrix [cd

ij
] for day d ;

Solve the AP corresponding to the cost matrix [cd
ij

];
Assign the shifts to the nurse according to the AP solution;

End.

4.2 Improvement phase

The improvement phase is composed of two procedures that aim to improve the initial so-
lution obtained in the construction phase. The first procedure, called Cutting and Recombi-
nation Procedure (CRP), performs successive ‘cuts’ in the multipartite graph before each
day d . This means dividing the duty roster in two parts (left- and right-hand sides) and then
constructing another assignment in the cut made, as it is shown in Fig. 3. Therefore, a new
assignment problem is formulated with new square costs matrix [cd

ij ] and then solved af-
ter each cut. An important difference when solving this new assignment problem is that cd

ij

represents the cost of assigning to nurse i on day d , the left-hand side of schedule j to the
right-hand side of the same schedule which takes into account the shifts already assigned
before and after the cut. In order to calculate this cost, the algorithm explores which spare
shifts (those with the minimum cost) can be updated (reassigned) for the nurse in such a
way that the new reassignment has a reduced cost. Such updates in the assignment of spare
shifts after the cut are possible due to the degree of flexibility in the nurse’ preferences. The
satisfaction of such preferences takes into account the left and right-hand sides of the cut
schedule, which might be different from the construction of the initial schedule when there
is no assignment to the right of the given partition.

The pseudo code of the CRP improving procedure is given below (AP stands for assign-
ment problem).



Ann Oper Res

Fig. 4 Example of reassignment in the shift redistribution procedure (SRP). New possibilities of shift asso-
ciation on day 4 are represented by dashed arrows

Algorithm CRP
Begin
For d = 1 to dmax do:
Construct the matrix [cd

ij
] after performing a cut before day d ;

Solve the AP corresponding to the cost matrix [cd
ij

];
Reassign left- and right-hand sides of the schedule according
to the AP solution;

Update the spare shifts for each nurse roster to reduce the
overall solution cost;

End.

The second improvement procedure, called Shift Redistribution Procedure (SRP), aims
to decrease the total cost of the solution by redistributing shifts among nurses in each day
as shown in Fig. 4. Since the solution cost is associated to the nurses’ preferences, the
same shift assigned to different nurses may contribute with different costs to the overall
schedule cost. Then, this SRP improving procedure consists of selecting a day (partition) in
the schedule and then reassigning the nmax shifts on this day to the nmax rosters. The cost
of each association is an element of the matrix [cd

ij ], where cd
ij is the cost of replacing shift

j in day d of the schedule for nurse i. This calculation of the costs is analogous to the one
performed in the CRP procedure and involves the minimum cost of the spare shifts as well
as the constraints update procedure described in Sect. 4.1.

Once the cost matrix is generated and the related assignment problem is solved, the
current solution is altered through shift exchanges and some spare shifts may be replaced.
Figure 5 shows an example of such alteration.

This SRP improving procedure is repeated for all partitions (all days) according to the
pseudo-code shown below (AP stands for assignment problem).

Algorithm SRP
Begin
For d = 1 to dmax do:
Construct the matrix [cd

ij
] to replace the shifts on day d ;

Solve AP corresponding to cost matrix [cd
ij

];
Replace the shifts in the rosters according to AP solution;
Update the spare shifts for each nurse roster to reduce the
overall solution cost;

End.
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Fig. 5 Example of shift exchange. Individual rosters after shift redistribution on day 4 including the change
(update) of a spare shift on day 1 for nurse 3 (from shift D to shift F )

The two improving procedures CRP and SRP described above are performed in a sequen-
tial fashion in both directions covering the dmax partitions: forward (d = 1 to dmax) and back-
ward (d = dmax downto 1). The procedures are performed until there is no improvement for a
certain number of iterations (NumIt). Therefore, we defined four variants: RCP_Forward(s),
SRP_ Forward(s), RCP_Backward(s) and SRP_Backward(s), where s represents a solution
(full schedule). Let Val(s) be the cost of solution s, which is equal to the objective function
value of the last assignment problem solved, then the overall proposed improvement phase
in our algorithm works as shown in the pseudo-code below (the fixed execution order of
the improvement procedure variants was decided by preliminary experimentation). The pa-
rameter NumIt is the predefined number of times that the whole improvement procedure is
attempted without an improvement in the current solution.

Procedure Improvement(s)
Begin
count:=0;
Repeat
s’:= s;
s’:=RCP_Forward(s’);
s’:=SRP_Forward(s’);
s’:=RCP_Backward(s’);
s’:=SRP_Backward(s’);
if Val(s′) = Val(s) then

count:=count +1
else

count:= 0;
until count= NumIt;

end.

5 Performance analysis of MAPA

5.1 Experimental setting

The proposed MAPA algorithm was implemented in Pascal programming language and the
tests were performed on a PC with two 3.2 GHz quad-core Xeon processors and 16 GB of
RAM running Windows XP. The problem instances were obtained from the NSPLib library
(Maenhout and Vanhoucke 2005).
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We tested MAPA on 248,640 problem instances split in two groups: Group 1 with
233,280 instances involving 1-week schedules and Group 2 with 15,360 problem instances
involving 4-week schedules. In the Group 1 we find 29,160 requirement-costs problem in-
stances involving a scheduling period of 7 days (1-week schedule). These instances are
divided by problem size: 25, 50, 75, and 100 nurses, each subset containing 7,290 instances.
Each problem instance has a different set of requirements per day and different preference
costs. Furthermore, there are also 8 cases with different preferences and coverage con-
straints. Then, each of these 8 preferences-coverage cases may be combined with each of
the 29,160 requirements-costs problem instances, forming a total of 233,280 1-week sched-
ule problem instances. In the Group 2 we find 1,920 requirement-costs problem instances
involving a scheduling period of 28 days (4-week schedule). These instances are divided by
problem size: 30 and 60 nurses, each subset containing 960 instances. Again, we combine
the 8 preference-coverage cases with each of the 1,920 requirement-costs problem instances
forming a total of 15,360 4-week schedule instances. There are two important issues we
must discuss about the use of NSPLib. The first issue is that the results we obtained for
38 of these instances (33 instances with 30 nurses and 5 instances with 60 nurses) could
not be compared to existing results. We believe that the solution costs are misreported in
the NSPLib because in some cases the reported cost is less than zero, which is not possi-
ble considering the given definition of penalty costs. The penalty values for soft constraint
violations used here are the same as the ones used by Maenhout and Vanhoucke (2006)
and Maenhout and Vanhoucke (2007), i.e. Ph = Ps = 100. Also, we fixed NumIt = 3 in the
improvement phase.

The second issue in using NSPLib is that the minimum coverage constraint (working
shifts required in each day) is always satisfied by our algorithm (as explained in Sect. 4.1),
but this is not the case in some of the (infeasible) solutions reported in the NSPLib. In other
words, our MAPA procedure satisfies the minimum coverage hard constraint, while some
of the solutions reported in NSPLib satisfy some of the constraints but not necessarily the
coverage constraint. We followed exactly the same definition stated by Maenhout and Van-
houcke (2007), i.e. “a nurse schedule is said to be feasible if the coverage constraints and all
other case-specific constraints are satisfied”. Then, given this issue with feasibility in some
solutions reported in NSPLib, in order to compare our results to those NSPLib infeasible
solutions, we made the following adjustments. At the end of the improvement phase, if a
solution is infeasible we apply a procedure that changes shifts to attempt satisfying all hard
constraints except the coverage constraints. Then, if a required working shift is not assigned,
a penalty is added to the solution cost. However, if another hard constraint is satisfied, then
a penalty is deducted from the solution cost. For example, if a nurse works more than the
maximum allowed number of working days, this constraint violation can be satisfied by re-
placing a working shift with a free shift (in case of a spare shift). Anyway, the solution stays
infeasible, but is more comparable to the solutions reported in NSPLib.

5.2 Results and discussion

We compare the results obtained by MAPA to the results reported in NSPLib. These results
are split in two groups, one for the 1-week instances and the other for the 4-week instances.
Each group is then split according to the problem size, i.e. the number of nurses.

The top four sections of Table 1 show the results reported by NSPLib and the results
obtained by MAPA for the 233,280 1-week instances involving 25, 50, 75 and 100 nurses.



Ann Oper Res

Table 1 Comparing the results (solution cost and number of soft constraint violations) obtained by MAPA
to the results reported in NSPLib

|N | Case #Inst NSPLib MAPA %GAP %BestSol

AvgCost AvgVl AvgCost AvgVl GpCost GpVl NSPLib %both MAPA

25 1 7,290 305.11 0.530 306.25 0.530 0.37 0.00 46.28 47.94 5.78

2 7,290 293.82 0.530 294.34 0.530 0.18 0.00 25.93 69.66 4.42

3 7,290 321.99 0.538 323.48 0.538 0.46 0.03 58.26 32.28 9.47

4 7,290 303.26 0.530 303.97 0.530 0.24 0.00 33.51 59.66 6.83

5 7,290 336.89 0.711 339.37 0.715 0.74 0.52 65.79 29.70 4.51

6 7,290 294.81 0.530 295.32 0.530 0.17 0.00 25.45 69.77 4.79

7 7,290 408.74 1.250 441.59 1.548 8.04 23.84 83.40 13.59 3.00

8 7,290 330.90 0.719 335.69 0.753 1.45 4.77 52.47 39.03 8.50

50 1 7,290 587.07 0.848 587.44 0.848 0.06 0.00 27.52 51.22 21.26

2 7,290 565.07 0.848 565.24 0.848 0.03 0.00 13.66 68.57 17.76

3 7,290 615.58 0.868 615.53 0.869 −0.01 0.03 27.72 36.32 35.95

4 7,290 583.68 0.848 583.84 0.848 0.03 0.00 18.74 58.93 22.33

5 7,290 670.28 1.429 672.91 1.443 0.39 1.04 42.15 36.90 20.95

6 7,290 567.41 0.848 567.43 0.848 0.00 0.00 12.15 65.17 22.67

7 7,290 829.02 2.730 870.87 3.125 5.05 14.49 64.72 20.34 14.94

8 7,290 652.73 1.400 660.34 1.473 1.16 5.19 26.80 39.45 33.74

75 1 7,290 912.86 1.503 912.15 1.503 −0.08 −0.01 16.45 40.69 42.87

2 7,290 888.31 1.503 888.07 1.503 −0.03 −0.01 9.47 58.33 32.21

3 7,290 954.41 1.524 952.80 1.521 −0.17 −0.18 17.34 32.41 50.25

4 7,290 902.16 1.503 901.68 1.503 −0.05 0.00 11.33 50.27 38.40

5 7,290 1,004.27 2.029 1,005.13 2.037 0.09 0.39 28.38 33.06 38.56

6 7,290 889.69 1.503 889.44 1.503 −0.03 0.00 9.67 58.05 32.28

7 7,290 1,214.34 3.671 1,284.07 4.362 5.74 18.82 55.24 21.59 23.17

8 7,290 993.65 2.067 997.98 2.119 0.44 2.52 16.05 31.43 52.52

100 1 7,290 1,389.23 1.665 1,387.28 1.663 −0.14 −0.11 10.08 32.55 57.37

2 7,290 1,346.80 1.663 1,346.01 1.663 −0.06 −0.02 6.79 43.48 49.73

3 7,290 1,468.56 1.704 1,464.12 1.691 −0.30 −0.75 9.90 23.50 66.60

4 7,290 1,375.60 1.664 1,373.98 1.663 −0.12 −0.09 7.04 34.50 58.46

5 7,290 1,540.01 2.602 1,541.29 2.618 0.08 0.61 21.80 25.24 52.96

6 7,290 1,349.82 1.663 1,348.84 1.663 −0.07 −0.03 6.61 41.54 51.85

7 7,290 1,870.16 5.172 1,938.01 5.825 3.63 12.63 50.07 17.53 32.40

8 7,290 1,513.95 2.569 1,520.31 2.646 0.42 3.00 13.83 21.69 64.49

30 9 959 1,911.806 4.024 1,861.785 3.923 −2.62 −2.51 1.04 0.31 98.64

10 960 1,821.199 3.924 1,806.778 3.919 −0.79 −0.13 4.79 1.15 94.06

11 957 2,016.964 4.134 1,938.501 3.931 −3.89 −4.90 0.52 0.10 99.37

12 960 1,857.499 3.924 1,837.518 3.919 −1.08 −0.13 1.67 0.73 97.60

13 959 2,030.919 4.668 1,930.881 4.217 −4.93 −9.67 1.98 0.00 98.02

14 960 1,837.875 3.942 1,822.353 3.931 −0.84 −0.26 4.27 0.94 94.79

15 951 2,473.512 8.231 2,208.909 5.839 −10.70 −29.06 7.68 0.00 92.32

16 941 2,022.393 5.149 2,010.258 4.964 −0.60 −3.59 14.03 0.53 85.44
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Table 1 (Continued)

|N | Case #Inst NSPLib MAPA %GAP %BestSol

AvgCost AvgVl AvgCost AvgVl GpCost GpVl NSPLib %both MAPA

60 9 960 3,786.042 7.020 3,675.269 6.741 −2.93 −3.98 1.15 0.00 98.85

10 960 3,610.247 6.769 3,567.293 6.741 −1.19 −0.42 1.15 0.10 98.75

11 960 3,984.298 7.217 3,819.042 6.741 −4.15 −6.60 1.04 0.00 98.96

12 960 3,681.692 6.765 3,627.718 6.741 −1.47 −0.35 0.31 0.21 99.48

13 960 4,015.435 8.190 3,799.254 7.243 −5.38 −11.56 0.83 0.00 99.17

14 960 3,644.343 6.814 3,596.639 6.758 −1.31 −0.81 0.94 0.10 98.96

15 960 4,875.376 14.758 4,280.155 9.976 −12.21 −32.40 3.85 0.00 96.15

16 955 4,003.423 8.825 3,917.626 8.422 −1.99 −4.57 10.83 0.00 89.17

The two sections of Table 1 below the line report results for the 15,322 (not 15,360)1 4-week
instances involving 30 and 60 nurses. The best results are highlighted in bold and the data
given in each column is as follows. Column one gives the number of nurses |N |. Column two
gives a label for each case (instances of the same type). Column three gives the total number
of solved instances (#Inst) for each case. Columns four and six give the average solution cost
(AvgCost) reported in NSPLib and obtained by MAPA respectively. Columns five and seven
give the average number of constraints violations (AvgVl) reported in NSPLib and obtained
by MAPA respectively. Columns eight and nine give the relative difference between the
NSPLib results and MAPA results with respect to the average solution cost (GpCost) and
the number of constraint violations (GpVI) respectively. The last three columns give the
percentage of times in which the best solution cost is reported in NSPLib (column ten),
obtained by MAPA (column twelve) or there is a tie (column %both).

The %GAP value is calculated as follows:

%GAP = (
Val(MAPA) − Val(NSPLib)/Val(NSPLib)

) × 100 (10)

where Val() is the solution cost value obtained by the given method.
The results shown in Table 1 indicate that MAPA performed poorly on the 1-week small

instances (with 25 nurses), performed better on the 1-week larger instances (with 50, 75 and
100 nurses), but performed very well on the 4-week instances (with 30 and 60 nurses). In the
4-week instances MAPA always reached better results than those reported in NSPLib. Look-
ing at the overall performance of MAPA compared to the solution costs reported in NSPLib
across all 1-week schedules, we can report that MAPA obtained solutions with better av-
erage cost on 7.26 % of the instances. However, when considering all 4-week schedules,
MAPA obtained solutions with better average cost on 99.48 % of the instances. We high-
light case 15 with 60 nurses where MAPA showed its best performance, that is, a 12.21 %
lower average cost solutions with 32.40 % fewer constraint violations. Case 15 for 30 nurses
is also a case where MAPA performed very well.

Table 2 shows the average solution cost for those instances in which NSPLib reports
feasible solutions (recall that NSPLib reports infeasible solutions for some instances). This
table shows the number of instances for which a feasible solution is reported both by MAPA
and NSPLib (#BothFeas), the number of instances for which a feasible solution is reported

1We excluded 33 cases involving 30 nurses and 5 cases involving 60 nurses for which NSPLib reports infea-
sible solutions.
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Table 2 Comparing the results (solution cost and number of feasible solutions) obtained by MAPA to the
results reported in NSPLib

|N | Case #Inst #BothFeas NSPLib MAPA

AvgCost # Feas AvgCost # Feas

25 1 7,290 6,435 250.553 6,435 251.394 6,435

2 7,290 6,435 239.395 6,435 239.689 6,435

3 7,290 6,421 266.482 6,421 267.677 6,422

4 7,290 6,435 248.629 6,435 249.094 6,435

5 7,290 6,261 263.472 6,261 265.228 6,261

6 7,290 6,435 240.368 6,435 240.637 6,435

7 7,290 5,642 279.050 5,839 282.044 5,642

8 7,290 6,228 256.453 6,241 257.495 6,232

50 1 7,290 6,563 499.941 6,563 500.020 6,563

2 7,290 6,563 478.054 6,563 477.905 6,563

3 7,290 6,534 526.071 6,537 525.694 6,544

4 7,290 6,563 496.466 6,563 496.306 6,563

5 7,290 6,215 523.088 6,215 523.641 6,221

6 7,290 6,563 480.358 6,563 480.069 6,563

7 7,290 5,570 547.861 5,707 549.278 5,574

8 7,290 6,217 508.347 6,233 508.060 6,225

75 1 7,290 6,466 757.929 6,466 756.830 6,466

2 7,290 6,466 733.380 6,466 732.795 6,466

3 7,290 6,442 797.099 6,442 795.464 6,454

4 7,290 6,466 746.826 6,466 746.000 6,466

5 7,290 6,274 795.008 6,274 794.510 6,276

6 7,290 6,466 734.754 6,466 734.133 6,466

7 7,290 5,648 834.904 5,795 835.540 5,654

8 7,290 6,244 779.549 6,253 778.138 6,252

100 1 7,290 6,597 1,217.768 6,597 1,215.337 6,600

2 7,290 6,599 1,175.595 6,599 1,174.085 6,600

3 7,290 6,563 1,292.882 6,563 1,289.106 6,588

4 7,290 6,597 1,203.919 6,597 1,201.737 6,600

5 7,290 6,290 1,269.268 6,290 1,267.558 6,309

6 7,290 6,598 1,178.512 6,598 1,176.831 6,600

7 7,290 5,706 1,334.991 5,797 1,335.186 5,729

8 7,290 6,299 1,246.684 6,309 1,243.779 6,323

30 9 959 659 1,476.656 659 1,443.880 668

10 960 669 1,404.157 669 1,390.821 669

11 957 653 1,576.562 653 1,524.534 666

12 960 667 1,439.109 667 1,420.769 669

13 959 638 1,524.378 638 1,477.876 657

14 960 668 1,418.090 668 1,403.674 669

15 951 590 1,613.158 592 1,579.397 631

16 941 621 1,488.361 621 1,477.105 628
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Table 2 (Continued)

|N | Case #Inst #BothFeas NSPLib MAPA

AvgCost # Feas AvgCost # Feas

60 9 960 664 3,015.901 664 2,948.224 675

10 960 673 2,875.618 673 2,838.235 675

11 960 658 3,199.853 658 3,098.603 675

12 960 673 2,945.602 673 2,897.960 675

13 960 653 3,117.025 653 3,011.757 670

14 960 670 2,902.136 670 2,862.655 674

15 960 634 3,321.891 634 3,197.087 657

16 955 646 3,048.249 646 2,999.334 656

Table 3 Computation time consumed by MAPA and computational time reported in NSPLib

|N | |D| Case #Inst Average time (seconds) %GAP of time

NSPLib MAPA

25 7 1 to 8 58,320 2.162 0.718 −66.780

50 7 1 to 8 58,320 5.212 2.825 −45.809

75 7 1 to 8 58,320 11.641 6.834 −41.291

10 7 1 to 8 58,320 21.623 13.629 −36.970

30 28 9 to 16 7,647 22.102 92.246 317.368

60 28 9 to 16 7,675 61.906 447.035 622.119

by MAPA or by NSPLib (#Feas). Note that MAPA and NSPLib do not always report feasible
solutions for the same number of problem instances.

The results shown in Table 2 indicate that MAPA reached better solutions and also more
feasible solutions on larger instances, mainly 1-week schedules with 100 nurses and 4-week
schedules with 30 and 60 nurses. We highlight that on the 4-week schedules MAPA obtained
more feasible solutions in all cases.

The results shown in Tables 1 and 2 give us some evidence that the multiple resolutions of
the assignment problems in each step of the improvement procedures constitute an effective
approach to build larger schedules. Also, these results indicate that the improvement phase
is particularly useful when making reassignments of shifts for nurses by targeting existing
costly assignments.

5.3 Computational time

Table 3 shows the average computational time taken by MAPA and the corresponding com-
putational time reported in NSPLib. Without taking into account that the machines used were
different, the last column in the table gives an indication of the difference in computation
time between MAPA and NSPLib.

Note that for smaller instances the average execution time of MAPA is shorter than the
time reported in NSPLib. As the size of the instance grows, the running time of the proposed
MAPA method becomes larger compared to the time reported in NSPLib. This also indicates
that although the proposed multi-assignment approach is very effective in finding low-cost
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Table 4 Contribution of CRP and SRP improvement procedures to the overall cost reduction in the improve-
ment phase

|N | |D| File InitCost Experiment 1 Experiment 2 Experiment 3

CRP-Cost %CRP SRP-Cost %SRP CRP&SRP %CRP&SRP

25 7 1 343 309 9.91 313 8.74 307 10.49

50 7 1 1,123 580 48.35 584 47.99 580 48.35

75 7 1 939 880 6.28 882 6.07 880 6.28

100 7 1 2,476 1,289 47.94 1,292 47.81 1,289 47.94

30 28 1 3,998 1,583 60.40 2,149 46.24 1,573 60.65

60 28 1 6,267 3,186 49.16 3,364 46.32 3,184 49.19

feasible solutions for large instances, the computational efficiency of MAPA is an aspect
that could be improved. The resolution of each assignment problem is done in polynomial
time, but the number of assignment problems solved together with the improvement phase,
slow down the method on larger instances.

5.4 Performance of the improvement procedures

Now we assess the contribution of the CRP and SRP improvement procedures to the per-
formance of MAPA. Table 4 presents results from additional tests with some instances in-
volving 1-week and 4-week schedules. We conducted three independent experiments on the
same set of initial solutions: (1) applying CRP only, (2) applying SRP only and (3) applying
both CRP and SRP. Table 4 presents the results of these experiments as follows. The initial
solution cost is shown in column (InitCost), the cost obtained after applying CRP only to the
initial solution is shown in column (CRP-Cost), the percentage cost reduction achieved by
CRP is shown in column (%CRP), the cost obtained after applying SRP only to the initial
solution is shown in column (SRP-Cost), the percentage cost reduction achieved by SRP is
shown in column (%SRP), the cost obtained by applying both CRP and SRP to the initial
solution is shown in column (CRP&SRP) and the percentage cost reduction achieved by
applying both CRP and SRT is shown in column (%CRP&SRP).

Table 4 shows that CRP obtained more cost reductions over the initial cost than SRP.
On some instances, CRP alone achieved the same improvement as when applying both pro-
cedures. However, Table 4 shows that overall, applying the two procedures achieves better
results than applying either CRP or SRP alone.

5.5 Performance of MAPA

MAPA has shown to perform better on problem instances of larger size. Figure 6 shows
a curve of %GAP for cost reduction and a curve of %GAP for soft constraint violations
reduction for different problem instance sizes. Each point in the curves corresponds to the
percentage of the average difference between the results obtained by MAPA and those re-
ported in NSPLib. For example, the first point to the left in Fig. 6(a) indicates that on the
problem instances with 7-days scheduling period and 25 nurses, MAPA obtained an aver-
age solution cost 0.37 % higher. The last point to the right on Fig. 6(a) indicates that on
the problem instances with 28-days scheduling period and 60 nurses, MAPA obtained an
average solution cost 2.93 % lower. Figure 6(b) shows similar information but with respect
to the difference in soft constraints violations. For example, the two first points to the left
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Fig. 6 Comparing (a) average cost reduction and (b) average constraints violations difference between re-
sults obtained by MAPA and reported in NSPLib. A point below 0 indicates MAPA achieves better average
results on that problem instance

Fig. 7 Percentage number of
times that the best solutions are
reported by MAPA and NSPLib

indicate that on the problem instance with 7-days scheduling period and 25 or 50 nurses,
MAPA obtained an average solution with the same penalty violations as those reported in
NSPLib. The last point to the right of Fig. 6(b) indicates that on the problem instances with
28-days scheduling period and 60 nurses, MAPA obtained an average solution with 3.98 %
less soft constraints violations.

Figure 7 shows the percentage number of times that the best solution cost is reported in
NSPLib, is obtained by MAPA or both. It can be seen that MAPA performs better as the size
of instances grows.

Figure 7 shows that for instances with 7-days scheduling period and 50 nurses, the best
results percentage achieved by MAPA and those reported in NSPLib are very close, 21.26 %
and 27.52 %, respectively. However, MAPA overcomes the results reported in the NSPLib
for instances with 7-days scheduling period and 75 nurses.

These results show again that, as the size of instances grows with respect to the length
of the scheduling period or the number of nurses, the performance of MAPA with respect
to the solution quality improves considerably producing better results than those reported in
NSPLib.

Although MAPA uses some more computational time compared to the results reported in
NSPLib, the proposed algorithm can still be considered efficient for large instances. For ex-
ample, producing a high-quality schedule for a problem with 4-week scheduling period and
60 nurses takes MAPA around 450 seconds (around 7.5 minutes) which can be considered
practical.
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5.6 Usability of MAPA

We should note that while it is common for heuristic algorithms (particularly meta-
heuristics) to use randomization, MAPA is deterministic and hence multiple executions al-
ways generate the same results for the same input. In hospitals it is usually the case that nurse
re-scheduling is required due to changes in demand, staff availability, etc. Another interest-
ing aspect of MAPA is the possibility of using it for re-scheduling when facing unforeseen
changes. Such re-scheduling is possible by applying the algorithm from the day in which
the change happened onwards, while the previous days (left-hand side of the multipartite
graph) are treated as historical records. Then, the multipartite model and multi-assignment
procedure in MAPA is a suitable re-scheduling approach. The above features can be seen as
very valuable for a heuristic approach to be accepted by human decision-makers (Cordeau
et al. 2002) and particularly in the context of real-world healthcare environments (Petrovic
and Vanden Berghe 2012).

6 Conclusions

In this work we proposed MAPA (multi-assignment problem algorithm) as a deterministic
and effective heuristic algorithm for tackling a nurse scheduling problem. The proposed
algorithm is based on an exact solution procedure with polynomial time complexity that
solves a series of sub-problems (assignment problems). Each sub-problem corresponds to
the assignment of shifts to all nurses on a particular day, while considering the assignments
already made on other days of the scheduling period.

We believe that MAPA satisfies the various desirable criteria defined by Cordeau et al.
(2002) for heuristic methods. The simplicity criterion is met because the proposed algorithm
does not require parameter tuning and it uses a classical well-known assignment problem
which is easily solved. The flexibility criterion is also observed when incorporating new
constraints which can be achieved by just introducing new values on the cost matrix (through
Eq. (9)) and modifying the appropriate constraints update procedure in the improvement
stage of the algorithm. Reasonable accuracy and speed criteria are also observed in MAPA,
particularly for larger problem instances, as it was shown in the experimental results of
Sect. 5.

We also believe that MAPA satisfies several of the seven criteria proposed by Petrovic
and Vanden Berghe (2012) for nurse scheduling methods. MAPA has good expressive power
given its ability to tackle a wide variety of constraints by only modifying the procedure to
construct the cost matrix. MAPA has good flexibility because the multi-assignment proce-
dure can be easily adapted to different nurse scheduling scenarios. The results presented here
also show that MAPA has good algorithmic power in terms of effectiveness and efficiency.
MAPA has good rescheduling capability (as discussed in Sect. 5.6) given the underlying
multipartite model and associated multi-assignment procedure. MAPA is also good on pa-
rameter tuning because its performance does not depend on such process. MAPA meets
the maintenance criterion because updating the domain knowledge about the specific nurse
rostering problem being solved can be done easily by having a procedure to check each
constraint (hard or soft) in order to construct the cost matrix. The only criterion of those
proposed by Petrovic and Vanden Berghe that is not fully met by MAPA is the learning
capability since the method is not capable of self-improving its performance over time.

In general, the solutions obtained by MAPA are better than the solutions reported in
the NSPLib dataset. Taking into account all 248,602 solutions, MAPA obtained better so-
lutions in 34.70 % of the instances. On the opposite, NSPLib reports better solutions than
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those obtained by MAPA in 27.03 % of the instances. Also, MAPA produced more feasible
solutions than those reported in NSPLib. Therefore, we believe that this paper contributes
with the introduction of a new deterministic and effective heuristic algorithm to tackle the
nurse scheduling problems in NSPLib. The paper also contributes by reporting new best
results on some NSPLib instances compared to those by Maenhout and Vanhoucke (2007)
obtained with different meta-heuristic approaches including the Electromagnetic method,
Scatter Search and Genetic Algorithms.

As future research work, we suggest to investigate extensions to MAPA by considering
new improvement procedures in addition to those described here. Also, it would be interest-
ing to investigate the applicability of MAPA to other nurse scheduling benchmark datasets.
Another suggestion is to combine the improvement procedures (CRP, SRP and perhaps oth-
ers) with some meta-heuristic techniques to develop a hybrid approach. Having more im-
provement procedures, could allow using them as neighbourhood search routines and possi-
bly to combine them into a VNS (variable neighbourhood search) style meta-heuristic. Also,
the improvement of the computational time used by MAPA in larger problem instances is
subject of future investigation.
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