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Abstract. This paper proposes a dynamic lexicographic approach to
tackle multi-objective optimization problems. In this method, the order-
ing of objectives, which reflects their relative preferences, is changed in a
dynamic fashion during the search. This approach eliminates the need for
the decision-maker to establish fixed preferences among the competing
objectives, which is often difficult. At the same time, the approach offers
more flexibility to navigate constrained combinatorial search spaces than
Pareto dominance, which treats all objectives with the same importance.
The proposed dynamic lexicographic ordering is tested within a multi-
objective particle swarm optimization algorithm and experiments are
carried out on a number of instances of the vehicle routing problem with
time windows. Our current results show that dynamic lexicographic or-
dering produces better results than Pareto dominance on instances with
clustered sets of customers.

1 Introduction

Multi-objective optimization consists of optimizing a number objectives that are
usually in conflict [4]. One way to tackle multi-objective optimization problems
is the lexicographic method. Here, a pre-defined ordering is established between
the competing objectives and then, each objective is optimized one at a time. An
important difficulty of the lexicographic method is that the decision-maker must
express preferences in order to establish the ordering and this is not always
easy. Another way to tackle multi-objective problems is Pareto optimization.
Here, all objectives are given the same importance and then, a vector containing
the values of all objectives is subject to optimization. An important limitation of
conventional Pareto optimization is that since all objectives are subject to simul-
taneous optimization because of their equal set preferences, there is no flexibility
to trade-off between improvements and perhaps detriments to different objec-
tive values during the search process. In recent years, Pareto optimization has
received considerable attention from researchers [6, 11]. An important reason for
this is the belief that it is more convenient to offer a set of compromise solu-
tions for the decision-maker to select the most appropriate one, than asking the
decision-maker to establish preferences a priori for the various objectives. How-
ever, recent works take into account the preference of the decision-maker using
Pareto dominance. For example, Branke [1] presents a number of approaches
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that require the decision-maker to reveal partial preferences a priori. However,
these preferences are fixed and as a result, the search focuses on certain regions
of the Pareto Front.

In this paper we explore a dynamic lexicographic approach in which pref-
erences between objectives are modified during the optimization process. The
rationale for this is to have some flexibility with respect to preferences during
the search. That is, no fixed preference ordering between objectives is required,
but at the same time, improvements on one objective might be regarded as more
important than improvements on another objective. This degree of flexibility can
be perceived as middle ground between traditional lexicographic ordering and
Pareto optimization. We incorporate the proposed dynamic lexicographic ap-
proach into a multi-objective particle search optimization (MOPSO) algorithm
and apply it to solve some well known instances of the vehicle routing problem
with time windows (VRPTW). Our experimental results show that the pro-
posed dynamic ordering helps to produce better results on some instances of
this difficult problem. Section 2 provides the basic necessary background for the
rest of the paper. Section 3 gives details of the proposed dynamic lexicographic
method. Then, Section 4 describes the search algorithm (multi-objective particle
swarm optimization) and the benchmark problem (vehicle routing problem with
time windows) used to test the proposed approach. Experiments and results are
presented in Section 5 while Section 6 concludes the paper.

2 Background

A k-objective optimization problem can be formally described as:

minimize f(x) = f1(x), f2(x), ..., fk(x) (1)

subject to:

gi(x) ≤ 0, i = 1, 2, ...,m (2)

where x = [x1, x2, ..., xn]T is the vector of n decision variables and gi(x) repre-
sent a set of m inequality constraints.

Pareto Optimization

One way to tackle multiple objectives is Pareto optimization, a technique in
which all objectives are optimized simultaneously [4]. A vector u is said to dom-
inate v, iif ∀i ∈ (1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi. Also, u is said to
be non-dominated with respect to a set U of feasible solutions iff !∃v ∈ U such
that v dominates u. If U is the set of all feasible solutions then u is said to be
Pareto optimal. The aim in Pareto multi-objective optimization is to find the set
of all Pareto optimal solutions, or at least a set of non-dominated solutions that
represent a good approximation to the Pareto optimal set.
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Lexicographic Ordering

Another way to tackle multiple objectives is by lexicographic ordering, a tech-
nique that requires the decision-maker to establish a priority for each objec-
tive [4]. Then, two solutions are compared with respect to the most important
objective. If this results in a tie, the algorithm proceeds to compare the solutions
but now with respect to the second most important objective. This tie-breaking
process is repeated until no objectives are left to be examined, in which case,
both solutions have the same objective values. Formally, we can define the i− th

problem as:
minimize fi(x) (3)

subject to:
gj(x) ≤ 0, j = 1, 2, ...,m (4)

fl(x) = fl∗, l = 1, 2, ..., i − 1 (5)

The lexicographic approach is usually useful when dealing with few objec-
tives (two or three). It should also be noted that sometimes its performance is
tightly subject to the ordering given by the set priorities [4].

3 Dynamic Lexicographic Ordering

In the traditional lexicographic method, each objective is assigned a fixed priority
based on the decision-maker preferences. The approach proposed here assigns
initial priorities to the objectives but these priorities are changed dynamically
during the optimization. This scheme avoids the need for having pre-defined fixed
priorities and explores the search space in a more flexible way by allowing the
relative importance of the objectives to adapt during the search. The proposed
dynamic lexicographic ordering works as follows.

We use the exponential function given by Eq. 6 to define the probability mass
function (pmf) and then randomly choose the sequence of objectives. This func-
tion assigns a decreasing probability to each objective depending on its priority:
higher priority objectives are given a much higher probability with respect to
lower priority objectives.

ρ(x) =
1

K
e−

δ

N
q, q = 1, 2, . . . , N (6)

Eq. 6 assigns a different probability to each priority q, N is the number
of objectives, δ is its degree of curvature and K is a normalization constant
that makes the sum of all probabilities equal to 1. An example of the shape of
this function for N = 5 and δ = 2.5 is depicted in Figure 1. The cumulative
probability is used to create a number of divisions in a segment spanning the
interval [0, 1] on which to apply the Roulette Wheel Selection mechanism. This
mechanism simply generates a random number r (from an uniform distribution
U [0, 1]) and then selects the objective whose sub-segment spans r.



4 Juan Castro-Gutiérrez, Dario Landa-Silva and José Moreno-Pérez

Fig. 1. On the right hand side, a plot of the priority and cumulative probabilities for
the set of five priorities using the fmp given by Eq. 6. On the left hand side, the Roulette

Wheel for this distribution of probabilities.

The algorithm that generates the precedence vector starts by initializing the
vector v which holds the sequence to be used in the lexicographic ordering.
Then, a vector P is generated with the function generateCPFVector(pmf, N),
where pmf is the probability mass function and N the number of objectives as
explained above. Then, for the different established priorities, we perform four
steps N times.

Step 1. Generate a random number r with uniform distribution in [0, 1].
Step 2. The value of r is passed to a function that selects a random priority p

according to the cumulative probability contained in the vector P .
Step 3. The candidate p is assigned a position in the precedence vector.
Step 4. The value of P is re-scaled as follows. A procedure modifies P sub-

tracting the interval p, now in v, and re-scaling the rest of probabilities. The
re-scaling process takes place calculating the length of p (the interval to be
removed) as Λp. Then, p is taken out and other elements in P are divided
by 1 - Λp.

After N runs of the above four steps, the final precedence vector is stored in
v and ready to be used by a lexicographic ranking scheme.

Following the example from Fig. 1, let P = (0.49, 0.26, 0.14, 0.07, 0.04) cor-
respond to the amplitude of the intervals where to apply the Roulette Wheel
Selection. The algorithm begins generating a random number r. Suppose r

takes the value 0.51. According to P , r falls in the second interval, that is,
r ∈ (0.49, 0.49 + 0.26]. Thus, the first position v0 in the final precedence vector
v will be the objective whose priority is p = 2. As this priority has been already
selected, now P will be re-scaled taking out this sub-interval. To do this, the
interval associated to p = 2 will be removed and all the reminder elements in
P will be divided by 1 − Λp, in this case Λp = 0.26. After these operations, P

changes to P = (0.66, 0.19, 0.10, 0.05). Since P is not empty, this process will
start over generating another random r and repeating the same operations.
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4 Multi-objective PSO and the VRPTW

4.1 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem is a well-known NP-hard combinatorial optimiza-
tion problem. The goal is to find a set of optimal routes to serve a number of
costumers. The Vehicle Routing Problem with Time Windows (VRPTW) is an
extension of the VRP that incorporates additional constraints that require to
serve costumers within a given time period [2]. Since the time windows are usu-
ally hard constraints, it is allowed to arrive at a costumer’s location before the
period starts but not later than the period ends. In case of an early arrival, the
costumer will still be supplied until the time window opens, which is considered
as a waiting time. Besides the time window constraint, the VRPTW also consid-
ers the time it takes to actually provide goods to a costumer, once the delivery
vehicle has arrived at the given location. This space of time is called service time.
A solution is feasible if it satisfies all the following constraints: (1) all routes must
start and end at the depot, (2) each costumer must be visited exactly once and
by one vehicle, (3) the total demand on a route must not exceed the vehicle ca-
pacity, and (4) all costumers must be served within their time window. Common
objectives used the VRPTW are: to minimize the size of the fleet, to minimize
the total distance traveled and/or to minimize the total elapsed time. Our work
focuses on a multi-objective approach to the VRPTW. A number of objectives
are considered which include the capacity and time windows constraints. Addi-
tionally, we consider the minimization of the traveled distance, elapsed time and
waiting time. These objectives are then prioritized using the proposed ranking
scheme described above.

4.2 Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic swarm intelligence-based
technique developed by Kennedy and Eberhart [7]. The original version of PSO
was designed to work on a continuous space. However, in 1997 Kennedy and
Eberhart proposed a Discrete Particle Swarm Optimization (DPSO) [8]. An in-
depth analysis of recent publications on PSO can be found in the paper by Poli [9]
while the paper by Reyes-Sierra and Coello Coello [10] surveys multi-objective
variants of the PSO algorithm.

In our previous work [3], we proposed a multi-objective PSO (MOPSO) ap-
proach adapted for search in combinatorial landscapes and applied it to solve
instances of the VRPTW in a multi-objective fashion. In that algorithm, each
particle moves or jumps from one position to another in the discrete search space
using a follower-attractor system. When a particle (follower) wants to move to a
new better position, it uses a better positioned particle (attractor) as a reference.
Particles in the swarm can perform four types of moves depending on which par-
ticle acts as the attractor in each iteration. If no attracting action takes place,
the algorithm triggers an inertial move. It is worth noting that, unlike most other
MOPSO algorithms in the literature, ours does not use specialized mechanisms
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to maintain diversity of the swarm, select the leader or even maintain feasibility.
We decided to let particles to move freely in the search space in order to ex-
plore both feasible and infeasible regions. Our MOPSO algorithm initializes the
population with random solutions and encourages the particles to move towards
feasible regions by treating constraints as objectives. The pseudo-code of the
algorithm is depicted in Figure 2, please refer to [3] for further details.

do{
forEach(p in swarm) {

n = rand();
case (n) {

n is in c1: newPosition = exchangeToNodes(currentPosition) // Inertial Move

n is in c2: g(iter) = getBestPosInNeighborhood() // Cognitive Move
newPosition = subRouteCopy(bestPositionInNeighborhoodAtThisIter,currentPosition)

n is in c3: // Social Move
newPosition = subRouteCopy(bestPositionFoundByThisParticle,currentPosition)

n is in c4: // Local Move
newPosition = subRouteCopy(bestPositionFoundBySwarm,currentPosition)

}
localSearch(newPosition)
computeFitness(newPosition)
currentPosition = newPosition
if (firstIsParetoCompatibleOrBetter(newPosition,bestPositionFoundByThisParticle) {

update(bestPositionFoundByThisParticle)
if (firstIsParetoCompatibleOrBetter(newPosition, bestPositionFoundBySwarm)

update(bestPositionFoundBySwarm)
}

}
} while (!stopCriterion)

Legend:

getBestPosInNeighborhood() selects the best solution communicated by its neighbor-
hood. This is the procedure that incorporates the proposed dynamic lexicographic
ordering.
subRouteCopy(source, dest) in a VRPTW context, copies an entire sub-route from
‘source’ to ‘dest’. All costumers placed in the new sub-route are previously deleted
from ‘dest’.

Fig. 2. Pseudo-code of the MOPSO algorithm used in this paper.

As Figure 2 shows, we apply the dynamic lexicographic ordering method
to select the leader from neighbouring solutions in the MOPSO algorithm. In
our previous work [3] the selection of the leader was carried out using Pareto
dominance. Our experiments will show that using the dynamic lexicographic
ordering instead is very useful as it allows the search to focus on the main
objectives while still keeping an eye on the others and this encourages diversity
and also allows flexibility to achieve feasibility. Our goal is to find a good set of
solutions that represent a good approximation to the Pareto-optimal set.
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5 Experiments and Results

At the current point in our investigation, the algorithm we are developing is
not intended to find the best solutions for the problem in hand. Instead, our
research aims to achieve a deep understanding about the components that can
improve the method. In our algorithm, the swarm starts with very poor random
solutions, it does not use special operators and the particles are not limited to
explore only the feasible region. The present paper explores a change in the
scheme to compare solutions when selecting the leader. We now present results
that clearly illustrate the difference between using Pareto dominance and the
proposed dynamic lexicographic ordering approach.

We conducted computational experiments to compare the proposed dynamic
lexicographic method to the traditional Pareto dominance when selecting the
appropriate neighboring attractor for the particles in the above MOPSO. That
is, the dynamic lexicographic approach is used when a cognitive movement is
triggered to select the leader among the neighbors (See Figure 2). A number of
repetitions were carried out for 2000 generations using the same seeds for both
Pareto dominance and dynamic lexicographic ordering. In the case of Pareto
dominance, we chose to work with 4 objectives (Number of Vehicles, Distance
Traveled, Number of Time Windows Violations, Capacity Violations). The dy-
namic lexicographic approach used the initial preferences given by (Number of
Time Window Violations, Capacity Violations, Number of Vehicles, Distance
Traveled, Waiting Time, Elapsed Time, Time Window Violation, Number of
Capacity Violations). Four objectives are used for Pareto dominance because
for a larger number of objectives convergence becomes more difficult to achieve.
Moreover, in order to provide more flexibility to the swarm, we use weak Pareto
dominance [4]. The dynamic lexicographic scheme however can deal with all ob-
jectives separatedly to encourage a wider exploration of the search space without
incurring in extra overhead. It should be noted that the Number of Vehicles ap-
pears in both ranking schemes but in fact this objective is fixed a priori to the
known value for the instances used in our experiments [5]. That is, to avoid the
need for specialized operators to add/remove routes, the MOPSO algorithm runs
with the optimal number of vehicles for each instance. Both approaches, Pareto
dominance and dynamic lexicographic ordering, were tested using the Solomon’s
100 problems instances [5]. These instances are divided in three groups depending
on their geographic distribution: cxxx (if the costumers are distributed clusters),
rxxx (if they are randomly spread) and rcxxx (if we have both types mixed).

As a sample of our results, Figure 3 shows the performance of both ap-
proaches in terms of the minimization of Number of Time Window Violations
on the vertical axis and Distance Traveled on the horizontal axis. Results indi-
cate that the dynamic lexicographic approach is superior in intensification and
diversification. Intensification is good because the algorithm is not only able to
find feasible solutions but it achieved the best result reported in the literature [5].
The good diversification is easily observed in the plot by looking at the number
of solutions that dynamic lexicographic ordering is able to find when compared
to Pareto dominance using the same number of iterations.
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Pareto Optimization Dynamic Lexicographic Best Known [5]
Problem O1 O2 R2 O2 R2 O2

c101 10 1122.79 6 828.94 0 828.94
c102 10 1499.88 0 898.15 1 827.3
c103 10 1450.93 0 988.50 0 826.3
c104 10 1516.88 0 845.19 0 822.9
c105 10 1124.06 2 828.94 0 827.2
c106 10 1256.41 4 859.48 4 827.3
c107 10 1321.52 2 1054.52 2 827.3
c108 10 1509.31 0 828.94 0 827.3
c109 10 1285.88 0 858.43 0 827.3

r101 20 1818.06 0 1515.76 12 1637.7
r102 18 1700.57 0 1458.89 8 1466.6
r103 14 1392.1 1 1246.32 5 1208.7
r104 10 1105.16 3 1052.83 6 982.01
r105 15 1556.27 0 1371.71 15 1355.3
r106 13 1437.74 0 1244.05 11 1234.6
r107 11 1202.53 0 1102.67 6 1064.6
r108 9 1146.48 6 983.24 7 960.88
r109 13 1377.66 0 1290.22 6 1146.9
r110 12 1227.27 0 1179.00 6 1068
r111 12 1203.08 0 1188.95 4 1048.7
r112 9 1203.4 9 1093.54 13 982.14

rc101 15 1783.69 2 1530.33 16 1619.8
rc102 14 1684.05 0 1498.51 9 1457.4
rc103 11 1433.04 3 1274.7 10 1258
rc104 10 1230.06 2 1153.65 5 1135.48
rc105 15 1685.27 1 1455.24 12 1513.7
rc106 11 1461.78 6 1334.51 15 1424.73
rc107 11 1334.39 1 1240.77 10 1230.48
rc108 10 1216.88 3 1140.33 4 1139.82

O1: Number of Vehicles
O2: Distance Traveled
R2: Number of Time Windows Violations

Table 1. Results selection scheme (Pareto Vs Dynamic Lexicographic)
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Fig. 3. Solutions found by the Dynamic Lexicographic (left) and the Pareto Dominance
(right) approaches with respect to the Traveled Distance in the route-plan and the
Number of Time Window Violations.

Table 1 shows our results in more detail. The first column gives the name
of the instances grouped by their type (c1xx, r1xx, rc1xx). The second column
gives the optimum known fleet size (Number of Vehicles) for each instance.
The third and fourth columns show the performance of the Pareto dominance
approach in terms of Distance Traveled and Number of Time Windows Violations
respectively. Columns five and six show the corresponding results for the dynamic
lexicographic approach. Finally, the last column shows the best results reported
so far in the literature [5]. In general, the dynamic lexicographic ranking scheme
seems to be better than Pareto dominance in the clustered instances. However,
in the random (rxxx) and random-clustered (rcxxx) instances, its performance
in terms of time window violations is worse while the distance (length of the
route-plan) is slightly better.

Regarding the computational cost, the dynamic lexicographic approach is
more demanding than Pareto dominance. This overhead is due to the prepro-
cessing operations to generate the precedence vector. The complexity of this
process is O(m2), where m is the number of objectives. However, in our im-
plementation of the PSO, the proposed dynamic lexicographic approach is used
only when selecting the leader from a set of incoming solutions (attractors).
Then, each particle creates the precedence vector only once at every iteration
to compare all the attractors. This implementation detail helps to reduce the
computational cost of the dynamic lexicographic approach.

6 Final Remarks

In this paper we have described a dynamic lexicographic approach for the or-
dering of objectives in heuristic multi-objective optimization. This method is
proposed as an alternative to other mechanisms such as traditional lexicographic
ordering and Pareto dominance. The method adapts the priorities of the various
objectives during the optimization process. This gives more flexibility to tackle
conflicting objectives in difficult constrained combinatorial problems without
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the need to establish fixed preference values a priori. We incorporated the pro-
posed dynamic ordering scheme to select the leader in a multi-objective particle
swarm optimization algorithm. Our experiments on well-known instances of the
vehicle routing problem with time windows show that the proposed dynamic lex-
icographic approach performs better than Pareto dominance on instances with
clustered sets of customers.

Two issues deserve further discussion: (1) why the dynamic lexicographic
approach seems to produce better results than Pareto dominance with respect
to intensification? and (2) why is the performance of the dynamic lexicographic
ranking scheme worse in the random and random-clustered problems? The an-
swers to these questions are fairly related. Looking into the structure of the
Solomon VRPTW instances, we can note that the time windows are much nar-
rower in r1xx and rc1xx than in c1xx. Additionally, the instances in c1xx are
designed to be solved mainly by minimizing the traveled distance and this ob-
jective has high priority in the lexicographic precedence vector proposed in our
experiments. This also explains why our approach gets better results in terms
of distance minimization for r1xx and rc1xx. Further research must be con-
ducted to try different priorities in the preference vector as well as to compare
the dynamic approach to the most plausible static orderings. We think it is also
of interest to incorporate helper objectives to improve the search in those in-
stances in which the feasible area is much more restrictive. This is the case of
the instances rxxx and rcxxx where the Time Windows are much narrower than
those of cxxx.

Another potential research direction is to test the dynamic lexicographic ap-
proach in problem instances that have been conceived as multi-objective. In the
case of the Vehicle Routing Problem with Time Windows tackled here, the in-
stances that we are using (Solomon’s instances) were originally designed to be
tackled as single-objective optimization problems, although we are approaching
them in a multi-objective fashion. On the other hand, since the dynamic lexico-
graphic method is easy to implement and adapt to other algorithms, we will also
consider the implementation of this ranking approach into other multi-objective
algorithms. Finally, we will also consider the use of multi-objective quality me-
assures to assess more accuratedly the solutions obtained using both methods.
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