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We present a method for bundling scenarios in a progressive hedging heuristic (PHH) applied to stochas-
tic service network design, where the uncertain demand is represented by a finite number of scenarios.
Given the number of scenario bundles, we first calculate a vector of probabilities for every scenario,
which measures the association strength of a scenario to each bundle center. This membership score cal-
culation is based on existing soft clustering algorithms such as Fuzzy C-Means (FCM) and Gaussian
Mixture Models (GMM). After obtaining the probabilistic membership scores, we propose a strategy to
determine the scenario-to-bundle assignment. By contrast, almost all existing scenario bundling methods
such as K-Means (KM) assume before the scenario-to-bundle assignment that a scenario belongs to
exactly one bundle, which is equivalent to requiring that the membership scores are Boolean values.
The probabilistic membership scores bring many advantages over Boolean ones, such as the flexibility
to create various degrees of overlap between scenario bundles and the capability to accommodate sce-
nario bundles with different covariance structures. We empirically study the impacts of different degrees
of overlap and covariance structures on PHH performance by comparing PHH based on FCM/GMM with
that based on KM and the cover method, which represents the state-of-the-art scenario bundling algo-
rithm for stochastic network design. The solution quality is measured against the lower bound provided
by CPLEX. The experimental results show that, GMM-based PHH yields the best performance among all
methods considered, achieving nearly equivalent solution quality in a fraction of the run-time of the
other methods.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Freight transportation concerns efficient distribution of com-
modities from one point to another utilizing an underlying net-
work, such as the national highway system. Among various types
of freight, less-than-truckload (LTL) transportation deals with ship-
ments that are small relative to vehicle capacity (Hewitt et al.,
2019). For LTL transportation, the underlying network is comprised
of geographically dispersed end-of-line and break-bulk terminals.
Each end-of-line terminal has a local service region and the ship-
ments from various end-of-line terminals are usually combined
to create truckloads of freight so that LTL carriers can spread the
transportation cost out among as many customers as possible. This
consolidation process is mainly performed at break-bulk terminals,
where freight is unloaded, sorted, consolidated and then reloaded
onto the same or different vehicles (Jiang et al., 2017).

To meet demands at certain end-of-line terminals from suppli-
ers at other end-of-line terminals, LTL carriers need to determine
which links connecting two terminals to travel along for a least-
cost shipment of commodities. The selected links and their associ-
ated terminals constitute a service network over which LTL carriers
operates. The design of the service network has a considerable
bearing on the level of service provided and the transportation cost
incurred. In addition to the spatial aspect, the temporal dimension
of the demand should also be taken into account (Wang et al.,
2019). A natural time constraint is that a commodity becomes
available at some time and the delivery of this commodity must
be completed no later than a prespecified deadline. In order to offer
customers high-quality services at competitive prices, LTL carriers
have to make smarter tactical decisions about the selection, rout-
ing and scheduling of services (Crainic, 2000).
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There is quite a significant body of literature on deterministic
service network design (e.g., Jarrah et al., 2009; Erera et al., 2013;
Lindsey et al., 2016; Boland et al., 2017; Crainic, 2000;
Wieberneit, 2008), where all parameters of the problem are known
with certainty. However, the decision making in LTL transportation
is subject to various uncertainties (Bai et al., 2014), among which
the demand uncertainty is of particular importance (Hewitt et al.,
2019). For LTL carriers, deterministic service network design under
significant demand fluctuations is very likely to result in failure to
satisfy actual customer demand or cause critical logistic assets
such as vehicles to stand idle. Both situations are undesirable
because they either miss opportunities to make more profits or
waste capital investment in logistic resources (Gupta and
Maranas, 2003). Integrating uncertain demand into service net-
work design can lead to a more robust service network, thereby
not only providing reliable services to customers, but also reducing
the expected cost for carriers.

Service network design with uncertain demand, also referred to
as stochastic service network design, is an inherently two-stage
decision problem (King and Wallace, 2012). The ‘here-and-now’
decisions in the first stage, which defines the structure of the ser-
vice network, have to be made prior to the realization of the uncer-
tain demand, whereas LTL carriers would wait to make decisions
until after the quantities of the demand are observed in the second
stage. Given customers’ demand, these ‘wait-and-see’ decisions
determine the most cost-effective way of commodity routing
through the first-stage service network, which can be viewed as
recourse actions taken after the uncertain demand is disclosed
(Birge and Louveaux, 2011).

In most real-life applications, demand uncertainty is described
by continuous probability distributions or discrete distributions
with a large number of outcomes (Lium et al., 2009). Consequently,
given a first-stage service network, the second-stage optimization
problems are far too numerous to solve individually. A common
approach to this problem is to approximate these distributions
with a finite and often rather small number of scenarios, each of
which has an associated probability. As the uncertain demand is
realized over time, these scenarios can be organized into a hierar-
chical tree-like structure, referred to as a scenario tree (Høyland
and Wallace, 2001). The two-stage stochastic program can then
be reformulated by replacing the demand distribution with the
scenario tree, giving rise to a deterministic model, known as the
extensive form (Birge and Louveaux, 2011). Except for some trivial
cases, directly solving the extensive form within acceptable run-
time is typically beyond the capability of existing commercial sol-
vers (e.g., CPLEX).

Fortunately, the extensive form contains some special decom-
posable structures that can be advantageously exploited to circum-
vent this difficulty. Various decomposition procedures have been
developed to break up the extensive form into a set of smaller
manageable subproblems (see, e.g., Santoso et al., 2005; Laporte
and Louveaux, 1993; Beier et al., 2015). The scenario-based struc-
ture of the extensive form inspires a class of scenario-wise decom-
position methods, which decompose the extensive form by
scenarios into a set of single-scenario subproblems. A representa-
tive example is the progressive hedging algorithm (Watson et al.,
2012), which iteratively solves each subproblem and aggregates
subproblem solutions into an overall solution until a consensus
solution among all subproblems is obtained or other stopping cri-
teria such as the run-time limit are met. Since the individual sce-
nario subproblems can be solved efficiently, the progressive
hedging algorithm lends itself well to stochastic service network
design. Although its desirable theoretical property of convergence
to the global optimum in the convex case (Løkketangen and
Woodruff, 1996) does not hold in this context, it can be effectively
2

used as a heuristic to find high-quality solutions within an accept-
able run-time (Watson and Woodruff, 2011).

Instead of working with scenario-wise decomposition, we can
combine individual scenarios into bundles and decompose the
extensive form by scenario bundles into multi-scenario subprob-
lems, giving rise to bundle-wise decomposition. In contrast with
scenario-wise decomposition, bundle-wise decomposition results
in a smaller number of subproblems, albeit each of which is in a
larger scale (Løkketangen and Woodruff, 1996). As long as the
multi-scenario subproblems remain readily manageable, the sig-
nificant reduction in the number of subproblems usually far out-
weighs the increased difficulty of addressing each subproblem,
making bundle-wise decomposition an attractive algorithmic
enhancement to the standard progressive hedging algorithm. In
fact, several recent studies have shown that bundle-wise decompo-
sition leads to a striking improvement in the computational perfor-
mance of the progressive hedging heuristic (Crainic et al., 2014;
Gade et al., 2016).

The effectiveness of bundle-wise decomposition has motivated
a growing body of research on how to group scenarios into bundles
for stochastic programs. Escudero et al. (2013) applied scenario
bundling for solving the Lagrange dual of two-stage stochastic
mixed 0–1 problems and obtained stronger lower bounds. In their
work, the number of scenario bundles was defined as a proper divi-
sor of the cardinality of the scenario set and the scenario set was
partitioned into some mutually exclusive subsets with equal cardi-
nalities. However, the scenario-to-bundle assignment was random
in nature since no criterion concerning which scenarios would be
grouped into the same bundle was given. Ryan et al. (2016) formu-
lated the problem of determining the scenario-to-bundle assign-
ment for two-stage stochastic mixed 0–1 programs as a mixed
integer program (MIP), the objective function of which is to maxi-
mize the bound improvement. Their MIP formulation assumed that
the intersection of any two scenario bundles was an empty set and
the size of individual bundles was far less than the total number of
scenarios. Crainic et al. (2014) proposed several scenario bundling
strategies based on the k-means algorithm, most of which assigned
each scenario to exactly one bundle. The scenario similarity was
measured by the Euclidean distance between the commodity
demand of different scenarios or between the solutions to different
scenario subproblems. In particular, the authors presented the
cover method, where each scenario was allocated to its two closest
bundles in terms of Euclidean distance. These scenario bundling
strategies were integrated as a preprocessing step into the progres-
sive hedging-based meta-heuristic to address stochastic service
network design problems. The results of their computational
experiments showed that, the meta-heuristic with k-means-
based scenario bundling performed better in terms of both the
solution quality and computing efficiency than that with random
scenario-to-bundle assignment or without scenario bundling.
Among all of the proposed strategies, the cover method with com-
modity demand as scenario features yielded the best performance.
Inspired by the cover method, we shall assume before the scenario-
to-bundle assignment that a scenario belongs to multiple bundles.
Unlike the cover method, each scenario is not restricted to belong
to precisely two bundles in this paper. Instead, a scenario may be
assigned to one or more scenario bundles, depending upon its
membership scores. Besides these works, scenario bundling is
being vigorously studied in other contexts, such as the multistage
stochastic programs (Bakir et al., 2020; Carpentier et al., 2013;
Escudero et al., 2016; Zenarosa et al., 2014) and the chance-
constrained programs (Ahmed et al., 2017; Deng et al., 2017).

In almost all of the existing scenario bundling strategies, the
assignment of scenarios to bundles is based on the assumption that
a scenario belongs to exactly one bundle. This form of grouping is
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known as hard clustering in the field of pattern recognition and
machine learning. One of most widely used hard clustering method
is k-means. In this paper, we approach scenario bundling from a
new perspective and the assignment of scenarios to bundles is
based on the assumption that a scenario belongs to every bundle
to a certain degree, referred to as soft clustering. If a scenario lies
close to the center of a bundle, it will have a high degree of mem-
bership to that bundle. A fractional membership score is calculated
to measure the association strength of a scenario to a bundle. We
consider the two most commonly known types of soft clustering
methods, namely fuzzy c-means and Gaussian mixture models,
to calculate the membership scores. The probabilistic membership
scores provide the flexibility to perform various scenario-to-
bundle assignments. For example, we can assign each scenario to
exactly two bundles by assigning a scenario to the bundles which
have the highest and second highest membership scores. This
scenario-to-bundle assignment is similar to the k-means-based
cover method from Crainic et al. (2014), but we group scenarios
based on their membership degrees. As we shall see later in Sec-
tion 3, soft clustering-based scenario bundling also brings with it
many other advantages, such as accurate reflections of the level
of uncertainty over a scenario’s bundle membership and the capa-
bility to accommodate scenario bundles with different covariance
structures.

The main contribution of this paper is the development and
empirical evaluation of the soft clustering-based scenario bundling
strategies for a progressive hedging heuristic in the context of
stochastic service network design. We believe that this is the first
attempt to introduce the idea of soft clustering, which has its origin
in the field of pattern recognition and machine learning, into sce-
nario bundling and to study the impacts of soft clustering-based
scenario bundling strategies on the computational performance
of the progressive hedging heuristic. Specifically, we examine the
impact of different degrees of overlap on the computational perfor-
mance of the progressive hedging heuristic using fuzzy c-means, k-
means and the cover method. Also, we make a comparison
between the computational performance of Gaussian mixture
models- and k-means-based progressive hedging heuristic to
investigate whether there is any advantage in allowing scenario
bundles to have different covariance structures. The observations
and insights drawn from our experimental studies not only
demonstrate the benefits of soft clustering-based scenario bund-
ling strategies in improving the progressive hedging heuristic,
but also provide some useful information for future research on
scenario bundling strategies.

The rest of this paper is organized as follows. In Section 2, we
present the mathematical model of stochastic service network
design. In Section 3, we present the soft clustering-based scenario
bundling method and discuss its potential advantages over k-
means. In Section 4, we modify the standard progressive hedging
algorithm to incorporate the resulting scenario bundles and to pro-
vide remedies for the undesirable conditions that may arise. The
computational experiments comparing the progressive hedging
heuristic based on different scenario bundling algorithms are
described in Section 5 and 6. We conclude in Section 7 with a sum-
mary of the computational evidence and with some suggested
directions for further study.
Fig. 1. A space–time network with 3 terminals over a time horizon of 5 days.
2. Problem formulation

To present the mathematical model for stochastic service net-
work design, we define the following notation. LetN represent
the set of terminals in LTL transportation. The transportation ser-
vice is scheduled over a time horizon of T periods, denoted by
T :¼ 0;1; . . . ; T � 1f g. For ease of illustration, we assume that the
3

transport movement between every pair of terminals takes one
time period and use t� to represent the departure time of a move-
ment that has arrival time t. So t� ¼ T � 1 if ttakes the value 0,
otherwise t� ¼ t � 1. The space–time network is constructed by
duplicating each terminal in every time period (Bai et al., 2010).
An illustrative space–time network with 3 terminals and 5 time
periods is shown in Fig. 1. This network consists of (3*5 = 15)
nodes. Every pair of nodes in two different nearby time periods
is connected by an arc, representing the transport movement from
one terminal at a certain time period to another terminal at the
next period. We use a triplet i; j; tð Þ to denote an arc from terminal
i at time period t� to terminal j at time period t. In particular, an arc
connecting the identical terminals in different time periods is
referred to as a holding arc, which represents the activities of hold-
ing vehicles at a terminal for some time. Each arc i; j; tð Þhas an asso-
ciated fixed cost cij incurred by the transportation or holding
service. Except for the holding arcs, each arc i; j; tð Þhas a resource
capacity denoted by uij.

Through the underlying space–time network, there are some
commodities to be delivered. We shall use K to denote the com-
modity set. Each commodity k 2 K is characterized by its quantity,
which is uncertain and will be explained later, its origin terminal
o kð Þ and the time period r kð Þwhen it is available, as well as its des-
tination terminal s kð Þ and the delivery deadline s kð Þ.

To meet the transport demand in a profitable way, LTL carriers
have to address the selection, routing and scheduling of services.
The decision-making process has an intrinsically two-stage struc-
ture, which is illustrated in Fig. 2. In the first stage, LTL carriers
make decisions about whether an arc would be included in the ser-
vice network. For an arc i; j; tð Þ, this decision is denoted by a binary
variable xtij. The corresponding vector x stands for such decisions on
all of the arcs. After the first-stage decisions are made, a realization
of the uncertain demand is observed. As mentioned in Section 1,
we have a limited number of scenarios s for possible future
demand, each with a probability of occurrence ps. These probabil-
ities are non-negative and sum to 1. The collection of these scenar-
ios is denoted by S. In Fig. 2, there are 8 scenarios altogether. The

demand of commodity k in scenario s is represented by dk
s and the

vector dsdenotes the demand of all types of commodities in that
scenario.

In the second stage, LTL carriers determine the flow of com-
modities based on the demand realizations. We use the decision
variable ystijk to represent the flow of commodity k on arc i; j; tð Þ in
scenario s. In addition, we assume that customer demand must
be met. To deal with the situations where the demand exceeds
the capacity of the first-stage service network, LTL carriers need
the flexibility to outsource some of the orders to external suppliers.
Let the decision variable Zs kð Þ denote the amount of outsourcing
for commodity k in scenarios s, whereas k stands for the cost of
outsourcing one unit of the commodity.



Fig. 2. Two-stage scenario tree describing the decision-making process in SSND.
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With this notation, stochastic service network design can then
be formulated as follows (Bai et al., 2014). We denote this model
as SSND for later use.

min
X
i2N

X
j2N

XT�1
t¼0

cijxtij þ k
X
s2S

psQ1 x;ds� �8<:
9=; ð1Þ
X
j2N

xt�ji ¼
X
j2N

xtij 8i 2N ;8t 2 T ð2Þ
xtij 2 0;1f g 8i; j 2N ;8t 2 T ð3Þ
where

Q1 x;ds� � ¼min
X
k2K

Zs kð Þ ð4Þ
X
k2K

ystijk 6 uijxtij 8i; j 2N ;8t 2 T ;8i–j ð5Þ
�
X
j2N

yst
�

jik þ
X
j2N

ystijk

¼
dk
s � Zs kð Þ
�dk

s þ Zs kð Þ
0

if i; tð Þ is supply node for k

if i; tð Þ is demand node for k

otherwise

8><>:
8i 2N ;8t 2 T ;8k 2 K

ð6Þ
yss kð Þ
ijk ¼ 0 8i; j 2 N ;8k 2 K ð7Þ
ystijk P 0 8i; j 2N ;8k 2 K;8t 2 T ð8Þ
Fig. 3. Scenario-wise decomposition.
Zs kð ÞP 0 8k 2 K ð9Þ
This formulation based on the scenario tree representation of

the demand uncertainty is referred to as the extensive form
(Crainic et al., 2014) or deterministic equivalent (Boland et al.,
2018), which is essentially a deterministic model. The objective
function (1) minimizes the cost of constructing the service net-
work, plus the expected outsourcing cost across all of the scenar-
ios. Constraint (2) is the design balance constraint (Pedersen
et al., 2009), which ensures that the number of incoming vehicles
is equal to that of outgoing vehicles at each node in Fig. 1. Con-
straint (3) enforces the binary restrictions on the design variables.
The objective function (4) minimizes the outsourcing cost for a
given scenario. Constraint (5) ensures that the total flow along
each arc does not exceed its capacity. Constraint (6) makes sure
that all customer demand is met, that is, all commodities are
shipped from their origins to the intended destinations. Constraint
(7) ensures that a commodity must not flow past its delivery dead-
line. Constraints (8) and (9) are used to guarantee non-negativity of
the decision variables.
4

3. Soft Clustering-based scenario bundling

3.1. Motivations

The extensive form of stochastic service network design typi-
cally contains so many decision variables that it cannot be directly
solved by existing commercial solvers within acceptable computa-
tional times (Crainic et al., 2014). Fortunately, the scenario tree
representation of the demand uncertainty gives the extensive form
a scenario-wise decomposable structure. The standard progressive
hedging algorithm takes advantage of this special structure to
decompose the extensive form into a set of easily solvable single-
scenario subproblems. Fig. 3 illustrates the scenario-wise decom-
position of the scenario tree in Fig. 2. To perform the scenario-
wise decomposition, copies xtsij of the design variable xtij are intro-
duced for each scenario, that is

xtij ¼
X
s2S

psx
ts
ij ð10Þ

The copies of the design variable should be identical, that is,

xtmij ¼ xtnij ; 8m;n 2 S; m–n ð11Þ
This is referred to as the non-anticipativity constraints (NACs)

(Watson and Woodruff, 2011), which require that, if two scenarios
are indistinguishable up to a specific time, then the decisions made
before this time must be identical. After substituting (10) into (1)
and rearranging, both the objective function and constraints are
separable with respect to scenarios, except for the newly added
NACs. The standard progressive hedging algorithm utilizes the aug-
mented Lagrangian relaxation to incorporate the NACs into the
objective function, so that the resulting model decomposes by sce-
narios. A detailed treatment of the decomposition is given in
Section 4.

One limitation of the scenario-wise decomposition is that the
number of subproblems increases with the size of the scenario
tree, which can make the NACs harder to satisfy and hence result
in poor computational performance of the standard progressive
hedging algorithm. The number of subproblems can be signifi-
cantly reduced by combining individual scenarios into bundles
and decomposing the extensive form according to scenario bundles
into multi-scenario subproblems, but at the cost of increasing the
size of each subproblem. Fig. 4 illustrates the bundle-wise decom-
position for the scenario tree in Fig. 2.

The eight scenarios in Fig. 2 are grouped into three disjoint bun-
dles in Fig. 4. The scenarios belonging to the same bundle share
common first-stage design variables. In this way, the NACs among
the scenarios of a bundle are implicitly implemented and only the
NACs among different bundles need to be explicitly considered.
Compared to the scenario-wise decomposition in Fig. 3, the
bundle-wise decomposition in Fig. 4 reduces the number of sub-
problems from eight to three, with the number of NACs decreasing
from seven to two. The benefits of bundle-wise decomposition
usually far outweigh the increased difficulty of solving each sub-



Fig. 4. Bundle-wise decomposition using disjoint scenario bundles.
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problem (Escudero et al., 2013; Crainic et al., 2014; Ryan et al.,
2016), provided that multi-scenario subproblems remain readily
manageable.

In order to perform bundle-wise decomposition, we need to
develop a method for grouping scenarios into bundles. As men-
tioned in Section 1, almost all scenario bundling strategies devel-
oped so far assume before the scenario-to-bundle assignment
that each scenario belongs to exactly one bundle. For example,
the k-means-based scenario bundling strategy assigns each sce-
nario to its closest bundle center according to the Euclidean dis-
tance (Crainic et al., 2014). In fact, this form of scenario bundling,
where a scenario is assumed to either belong to a bundle com-
pletely or not, falls within the class of hard clustering in the field
of pattern recognition and machine learning. From a mathematical
perspective, the membership relation between a scenario and a
bundle is described by a Boolean value 0 or 1 (i.e., False or True)
in hard clustering-based scenario bundling.

However, the Boolean assumption about the bundle member-
ship for every scenario may turn out to be inappropriate for those
scenarios that have some degree of uncertainty in their bundle
membership. There may be some scenarios that lie roughly mid-
way between the centers of several bundles. Logically, such a sce-
nario would have approximately the same degree of membership
in these bundles. Although there is no clear preference of one bun-
dle over the other in such cases, the hard clustering-based scenario
bundling would assign such a scenario to only one bundle. There-
fore, it seems reasonable to soften the Boolean membership rela-
tion and estimate the probability of a scenario belonging to a
certain bundle.

Moreover, with the Boolean membership relation replaced by a
probabilistic one, a scenario is allowed to belong to multiple bun-
dles, which could have a beneficial effect on the convergence rate
of the progressive hedging algorithm. If two bundles have a few
scenarios in common, the difference between the solutions of the
corresponding multi-scenario subproblems is expected to be smal-
ler by comparison with the case of disjoint bundles in hard
clustering-based scenario bundling. The smaller difference
between the first-stage decisions will normally lead to a faster con-
vergence of the progressive hedging algorithm (Crainic et al.,
2014). The bundle-wise decomposition based on overlapping sce-
nario bundles for the scenario tree in Fig. 2 is illustrated in Fig. 5.
In contrast with Fig. 4, scenario 3, 4 and 5 belong to two bundles
whereas scenario 6 has membership in three bundles.

In addition, the existing scenario bundling strategies take no
account of the covariances, which represent the geometric features
of the scenario bundles, that is, the shape and orientation of a con-
fidence ellipsoid drawn over a scenario bundle (see Fig. 6 for an
illustrative example). For example, the k-means-based scenario
bundling strategy does not estimate the covariances of the scenario
bundles but only the bundle centers. In fact, it assumes that all
5

ellipsoids of the scenario bundles have the same shape and orien-
tation and differ from each other only in bundle centers (Bishop,
2006). By adopting a probabilistic approach, the covariances can
be explicitly considered and the scenario bundles are allowed to
have different covariance structures. Thus, scenario bundles with
different shapes and orientations of ellipsoids can be better identi-
fied rather than erroneously merged into a single bundle.

These potential benefits motivate us to move from the hard
clustering-based scenario bundling approaches to a probabilistic
treatment, in which the bundle membership is described by prob-
abilities (i.e., values between 0 and 1) instead of Boolean values
(i.e., 0 and 1). We shall refer to scenario bundling based on proba-
bilistic membership as soft clustering-based scenario bundling, as
opposed to hard clustering-based scenario bundling rested upon
Boolean membership.

3.2. Methodologies

In soft clustering-based scenario bundling, a scenario is
assumed to have partial membership in each of the bundles, rather
than full membership of a certain bundle in the case of hard
clustering-based scenario bundling. More specifically, a fractional
membership score is computed to measure the degree to which a
scenario belongs to a bundle. The membership scores for all of
the scenarios across all of the bundles can be organized into a
matrix D, with the element dsb of row s and column b representing
the degree of membership for scenario s in bundle b. Each mem-
bership score is less than or equal to 1 and the sum of the member-
ship scores of a scenario is equal to 1, that is,

dsb 2 0;1½ �8s 2 S8b 2 B ð12ÞX
b2B

dsb ¼ 18s 2 S ð13Þ

Here B represents the set of scenario bundles b and thus b 2 B.
The method for determining the number Bj j of scenario bundles
will be discussed later. Various soft clustering algorithms in the
field of pattern recognition and machine learning can be applied
to calculate the membership scores. In order to investigate the
impacts of overlapping scenario bundles and covariance structures
on the computational performance of the progressive hedging
algorithm, we consider fuzzy c-means (Bezdek, Ehrlich and Full,
1984) and Gaussian mixture models (Bishop, 2006) in this paper,
which will be further discussed later. It is worth noting that the
resulting membership scores offer the flexibility to construct not
only overlapping scenario bundles, but also disjoint bundles,
whereas the Boolean membership relation allows disjoint bundles
only. For example, the disjoint bundles can be obtained simply by
assigning a scenario to the bundle with the highest membership
score.

Having found the membership scores, we need a strategy to
determine the scenario-to-bundle assignment. It is straightforward
to define a membership score threshold and assign a scenario to
those bundles in which the membership score of this scenario is
greater than the specified threshold. However, the fixed and global
threshold strategy suffers from severe limitations in practical
applications. For example, some scenarios may not be assigned to
any bundle when their maximum membership scores are lower
than the threshold.

To correct this deficiency, we propose a scenario-dependent
strategy that rests on the maximum membership score of a sce-
nario. Let hðsÞ denote the maximum membership score of a sce-
nario s. We define a parameter g called the interval coefficient,
which satisfies g 2 0;1½ �, and assign a scenario to those bundles
in which its membership scores fall within the interval
g � h sð Þ; h sð Þ½ �. Thus, each scenario will be assigned to at least



Fig. 5. Bundle-wise decomposition using overlapping scenario bundles.

Fig. 6. A comparison of the scenario bundles from K-Means and Gaussian Mixture Models with respect to the extent of variability in the bundle size. In the illustrative
example, the 100 two-dimensional data points are partitioned into 2 bundles. In the left plot, the bundle 1 and 2 consist of 79 and 21 data points, respectively. In the right
plot, the bundle 1 and 2 attain maximum membership scores on 58 and 42 data points, respectively. We see that the difference between the size of the two bundles is much
smaller in the right plot. The two shaded ellipses in the right plot correspond to the confidence regions of two fitted component Gaussian densities with probability threshold
99%. Since unshared full covariance structures are specified here, the two ellipses are arbitrarily oriented.
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one bundle. Compared with the hard clustering-based scenario
bundling approach, our proposed strategy is better suited to the
two types of scenarios discussed below. Some scenarios lie much
closer to the center of a particular bundle than to any other center.
For such a scenario, it is clear that the assignment to the nearest
bundle center is the most appropriate. With our proposed strategy,
such a scenario is assigned to exactly the nearest bundle because it
has a much higher membership score for the closest bundle than
the other bundles. This result is proved in Proposition 1. In addi-
tion, there may be other scenarios that lie in between the centers
of the bundles and somewhat far away from the center of any bun-
dle. It seems reasonable to assign such a scenario to multiple bun-
dles. Since the largest membership scores are very close in
magnitude, our proposed strategy assigns such a scenario to the
corresponding bundles as expected.

Proposition 1. Let s be a scenario and g the interval coefficient. If
the maximum membership score of s is greater than 1= gþ 1ð Þ, then s
would be assigned to exactly one bundle and this bundle has the high-
est membership score of s.

Proof. See Appendix A
In our proposed strategy, a scenario may appear multiple times

in the resulting bundles. We borrow the mathematical term ‘mul-
tiplicity’ from the multiset theory (Blizard, 1989) to refer to the
number of times that a scenario appears in the scenario bundles.
If a scenario occurs only once, it has multiplicity one. On the other
hand, the probabilities of each scenario bundle must sum to one
regardless of the scenario-to-bundle assignment. Therefore, we
cannot simply add together the probabilities of each scenario
6

within a bundle to calculate the probability of this scenario bundle.
To address this problem, we first count the total number of times a
scenario appears in all final bundles to obtain the multiplicity of
each scenario. Then the original probability of a scenario is divided
by its multiplicity and we obtain the new probability of a scenario.
As illustrated in Fig. 5, the original probabilities of scenario 3, 4 and
5 are divided by two while that of scenario 6 is divided by three.
The probability of a scenario bundle is found by summing the
new probabilities of each scenario within this bundle. It is worth
noting that our approach to calculating the probability of a sce-
nario bundle equally applies to the case of disjoint scenario bun-
dles where the multiplicity of each scenario is one.

To summarize, the soft clustering-based scenario bundling is
accomplished through three phases, which are shown in Algo-
rithm 1. In the first phase, we calculate the bundle membership
scores of each scenario using fuzzy c-means or Gaussian mixture
models. In the following phases, we assign each scenario to the
bundles based on their membership scores and calculate the prob-
abilities of the resulting bundles.

Algorithm 1: Soft Clustering-based Scenario Bundling
Inputs: the set Sof scenarios s, the probability of each scenario

ps, the number of bundles g,
the interval coefficient g.
Outputs: the set B of bundles b, the probability of each

bundlepb.
Begin
Phase 1: Membership score calculation.
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1: Calculate the membership scores with fuzzy c-means or
Gaussian mixture models.

Phase 2: Scenario-to-bundle assignment.
2: for each scenarios 2 Sdo
3: Find its maximum membership score h sð Þ.
4: Assignsto the bundles for which the corresponding member-

ship scores fall within the interval

g � h sð Þ; h sð Þ½ �
5: end for
Phase 3: Bundle probability calculation.
6: Count the total number of times a scenariosappears in all

bundles to obtain its multiplicity.
7: Compute the new probabilityqsofsthrough dividing its origi-

nal probabilitypsby its multiplicity.
8: Calculate the probability of a bundle pb according to

pb ¼
X
s2b

qs8b 2 B

End
Before we perform the scenario bundling algorithm, we need to

specify the scenario features based on which scenario similarity or
dissimilarity is measured. A straightforward yet effective choice is
the commodity demand (Crainic et al., 2014). In this paper, we
choose the Kj j-dimensional vector ds, which represents the
demand volumes of all commodities in scenario s, as the feature
of a scenario s.

In addition to the scenario features, the soft clustering-based
scenario bundling algorithm requires one to specify the number
of scenario bundles beforehand. Although there exist various algo-
rithms for determining the optimal number of clusters in the field
of pattern recognition, almost all evaluation criteria for the quality
of a clustering intrinsically amount to the clustering goal, that is,
attaining high intra-cluster similarity and low inter-cluster simi-
larity. For example, the well-known elbow method (Ketchen and
Shook, 1996) considers the clustering objective as a function of
the number of clusters and examines different numbers of clusters
in ascending order to choose the one at which the graph of this
function flattens markedly. However, an appropriate number of
clusters in terms of such criteria does not necessarily translate into
effectiveness for some later purpose. Actually, we are more con-
cerned with how well different numbers of scenario bundles serve
the downstream purpose of improving the computational perfor-
mance of the progressive hedging algorithm, than with the sce-
nario bundling itself. Therefore, we rely on this downstream
purpose to provide an evaluation metric for choosing the number
of scenario bundles. In view of this, we determine the number of
clusters by rounding the square root of the number of scenarios
to the nearest integer, that is,

ffiffiffiffiffiffiffi
Sj jp� �

(resp.
ffiffiffiffiffiffiffi
Sj jp� �

) when the frac-
tional part of the square root is greater (resp. less) than 0.5. In the
case where the square root has a fractional part of exactly 0.5, we
round it to the integer with larger magnitude. The rationale behind
our proposed method is to balance the number and the size of
multi-scenario sub-problems. With a larger number of clusters,
the number of subproblems will increase accordingly, whereas
the size of subproblems will generally decrease. As mentioned ear-
lier, the increase in the number of sub-problems will generally
make the NACs harder to satisfy and hence result in slow conver-
gence of the progressive hedging algorithm. If the size of sub-
problems is too small, we will not be able to take full advantage
of the computing power of the computers. On the other hand,
the size of the sub-problems would be too large to manage with
a smaller number of clusters. Therefore, the computational perfor-
mance of the progressive hedging algorithm is expected to be bet-
7

ter when a proper balance between the number and the size of
sub-problems is achieved.

3.3. Membership score calculation

3.3.1. Fuzzy c-means & degree of overlap
Fuzzy c-means determines the membership scores by minimiz-

ing an objective function that is the sum of distance between a sce-
nario and a bundle center weighted by that scenario’s membership
score over all possible scenario and bundle center pairs (Bezdek
et al., 1984; Bai et al., 2016). The membership score matrix D is
referred to as the fuzzy partition matrix in fuzzy c-means. Let vb

represent the center of a bundle band V the corresponding set of
bundle centers. This objective function denoted by J D;Vð Þ is given
as follows.

J D;Vð Þ ¼
X
s2S

X
b2B

dsbð Þmk ds � vb k2 ð14Þ

Here m m > 1ð Þ is the exponent for the fuzzy partition matrix,
which controls how much the resulting bundles can overlap with
one another. A higher value of the exponent generally leads to a
greater degree of overlap between the resulting bundles.

The most common method for solving the minimization prob-
lem (14) is the alternating optimization algorithm (Havens et al.,
2012), the pseudocode of which is given in Appendix B. The alter-
nating optimization algorithm is known to converge for any expo-
nent m 2 1;þ1ð Þ. As m goes to infinity, dsb approaches 1=g (see
step 5 of Algorithm B1). This implies that each scenario has an
equal chance of belonging to every bundle if m approaches infinity.
On the other hand, if m approaches 1, the membership score of a
scenario approaches 1 for its closest bundle and 0 for all other bun-
dles. Therefore, if m approaches 1, the probabilistic membership
scores become Boolean values and each scenario belongs to exactly
one bundle, which corresponds to hard clustering-based scenario
bundling method such as k-means.

We measure the degree of overlap by the overlap ratio, which is
defined as the sum of the cardinality of each scenario bundle
divided by the cardinality of the whole scenario set, that is,
b1j j þ b2j j þ � � � þ b Bj j

		 		� �
= Sj j. For disjoint scenario bundles without

overlap, the overlap ratio is therefore equal to one. In the case of
overlapping scenario bundles, the overlap ratio would be greater
than one and a larger quantity or higher multiplicity of repeated
scenarios would lead to a greater value of the overlap ratio.

3.3.2. Gaussian mixture models & covariance structures
Gaussian mixture models determine the membership scores by

maximizing the log of the likelihood function, which is given by

l U;l;Rð Þ ¼
X
s2S

log
X
b2B

/bN dsjlb;Rb

� �( )
ð15Þ

Here, /b is the mixing coefficient which satisfies the constraint
0 6 /b 6 1, together with

P
b2B/b ¼ 1. The corresponding set of /b

is denoted by U. For a Kj j-dimensional vector ds, the multivariate
Gaussian distribution takes the form

G dsjlb;Rb

� � ¼ 1

2pð Þ Kj j=2

� 1

detðRbÞð Þ1=2
exp �1

2
ds � lb

� �>
R�1b ds � lb

� �
 �
ð16Þ

where lb is a Kj j-dimensional mean vector, Rb is a Kj j � Kj j
covariance matrix and det Rbð Þ denotes the determinant of Rb.
The corresponding sets of lb and Rb are denoted by l and R,
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respectively. The membership score of a scenario s in the bundle b
is then obtained by substituting the resulting parameters, namely
lb, Rb and /b, into

dsb ¼
/b dsjlb;Rb

� �P
b2B/b dsjlb;Rb

� � ð17Þ

An elegant method for finding the maximum likelihood solu-
tions for the model (15) is the Expectation-Maximization (EM)
algorithm (Redner and Walker, 1984; Bishop, 2006), the pseu-
docode of which is given in Appendix C.

One notable feature of Gaussian mixture models is that each
component Gaussian density has a covariance matrix. The
covariance matrices can be full rank or constrained to be diago-
nal. We can also specify whether all component Gaussian densi-
ties share a common covariance matrix. By contrast, the k-
means-based scenario bundling strategy is close to a Gaussian
mixture model in which a single covariance matrix is shared
by all of the components, and is restricted to be a diagonal
matrix with equal diagonal elements (Bishop, 2006). Geometri-
cally, the values of the vector ds, at which the component Gaus-
sian density (16) yields a constant value, form ellipsoids
centered at the corresponding mean vector. The covariance
structure determines the shape and orientation of the resulting
ellipsoids (Banfield and Raftery, 1993). Consider the example of
bivariate Gaussian distributions. For full covariance matrices,
the orientation of an ellipse relative to the x- and y- axes can
be arbitrary, whereas the major and minor axes of an ellipse
are either parallel or perpendicular to the x- and y- axes in the
case of diagonal covariance matrices. Furthermore, an ellipse
becomes a circle when the corresponding diagonal matrix has
equal diagonal elements. If a covariance matrix is shared among
all components, all ellipses have the same shape and orientation.
Conversely, the shape and orientation of all ellipses might vary if
each component has its own unshared covariance matrix.

In comparison with k-means, Gaussian mixture models pro-
vide more flexibility by allowing unequal covariance structures
and can therefore better identify scenario bundles that have dif-
ferent shapes and orientations. This advantage often translates
into a better balance in the size of different scenario bundles.
To illustrate this, consider the simulated data points from a mix-
ture of two bivariate Gaussian distributions in Fig. 6, which are
partitioned into 2 bundles by k-means and Gaussian mixture
models.

The k-means algorithm fails to identify the two bundles cor-
responding to the two Gaussian components in the mixture
models and erroneously merge part of the bundle 2 with bundle
1 into a single large bundle. As a result, the bundle 1 is nearly 4
times as large as bundle 2. By contrast, the difference between
the size of the two bundles becomes much smaller and more
balanced bundles are obtained when Gaussian mixture models
with unshared full covariance matrices are used. Generally, the
difficulty of solving a multi-scenario subproblem increases
rapidly with the size of the subproblem, because the multi-
scenario subproblem as a network design problem is NP-hard
(Magnanti and Wong, 1984) and cannot be solved in polynomial
time unless P = NP (Impagliazzo et al., 2001). This means that
the total solution time for the two subproblems would be much
longer in the case of two greatly unbalanced scenario bundles
than that in the case of two relatively balanced scenario bundles.
Thus, we would expect a reduction in the run-time of the pro-
gressive hedging algorithm when the scenario bundling method
based on k-means is replaced by that based on Gaussian mixture
models.
8

4. Progressive hedging heuristic

4.1. Extension of scenario-wise decomposition to bundle-wise
decomposition

Having obtained the scenario bundles, we can now decompose
the extensive form of the model SSND in a bundle-wise fashion, as
is shown in Figs. 4 and 5. To do this, we shall introduce copies xtbij of

the design variable xtij for each scenario bundle b 2 B, that is,

xtij ¼
X
b2B

pbx
tb
ij ð18Þ

The non-anticipativity constraints require that copies of the
design variable should be identical, that is,

xtbij ¼ xtb
0

ij ; 8b; b0 2 B; b–b0 ð19Þ
Substituting (18) into (1), the objective function can be decom-

posed by scenario bundles and the newly added non-anticipativity
constraints are the only constraints that tie together different sce-
nario bundles. Applying Augmented Lagrangian relaxation to the
non-anticipativity constraints (Rockafellar and Wets 1991), we
obtain an objective function of the form

min
P
b2B

pb

P
i2N

P
j2N

PT�1
t¼0

cijxtbij
� 


þ k
P
s2b

P
k2K

qs
pb
Zs kð Þ

� 
 (

þP
i2N

P
j2N

PT�1
t¼0

wtb
ij x

tb
ij

� 

þ 1

2q
P
i2N

P
j2N

PT�1
t¼0

xtbij � bxt
ij

� 
2 Þ g ð20Þ

where wtb
ij are weights related to Lagrange multipliers, q > 0 is

the penalty factor and bxt
ij are given values (see (23)). Because

xtbij 2 0;1f g , it follows that xtbij
� 
2

¼ xtbij . By expanding the penalty

term in (20), we have

min
X
b2B

pbLb xtbij ; Z
s kð Þ

� 

ð21Þ

where

Lb xtbij ; Z
s kð Þ

� 

¼ P

i2N

P
j2N

PT�1
t¼0

cijxtbij
� 


þ k
P
s2b

P
k2K

qs
pb
Zs kð Þ

� 

þP

i2N

P
j2N

PT�1
t¼0

wtb
ij x

tb
ij

� 

þ 1

2 q
P
i2N

P
j2N

PT�1
t¼0

xtbij

�qP
i2N

P
j2N

PT�1
t¼0

bxt
ijx

tb
ij

� 

þ 1

2q
P
i2N

P
j2N

PT�1
t¼0

bxt
ij

� 
2
ð22Þ

From the procedure above, we see that the extensive form of
the model SSND is decomposed by scenario bundles and the result-
ing multi-scenario sub-problems are mixed integer linear pro-
grams. It is worth noting that the scenario-wise decomposition in
the basic progressive hedging algorithm can be viewed as a special
case of the bundle-wise decomposition when the cardinality of
each bundle is constrained to be one, or equivalently, the
bundle-wise decomposition is a generalization of the scenario-
wise decomposition.

With bundle-wise decomposition, the extensive form of the
model SSND is divided into a system of multi-scenario subprob-
lems. The solutions to these subproblems satisfy all of the con-
straints for the original two-stage model, referred to as
admissible solutions (Listes and Dekker, 2005). A subproblem solu-
tion is said to be implementable if it fulfils the non-anticipativity
constraints (Guo et al., 2015). However, the subproblem solutions
are typically not implementable. Therefore, an approach to enforc-
ing the implementability is needed.
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Proposed for scenario-wise decomposition, the basic progres-
sive hedging algorithm can be readily modified to address the
implementability issue in bundle-wise decomposition. The imple-
mentability is enforced by iteratively aggregating the multi-
scenario subproblem solutions into an implementable solution
and penalizing the deviation of the subproblem solutions from this
implementable solution until the subproblem solutions agree with
the implementable solution. More specifically, after each multi-
scenario subproblem is solved to optimality, the implementable
solution for a first-stage design variable xtbij is given by

bxt
ij

� 
 rð Þ
¼
X
b2B

pb xtbij
� 
 rð Þ

ð23Þ

Here variables with a parentheses-enclosed loop index rð Þ in the
superscript represents their values in the rth iteration. The devia-
tion of the subproblem solutions from the implementable solution
is then used to update the dual variables associated with the non-
anticipativity constraints, so that

wtb
ij

� 
 rð Þ
¼ wtb

ij

� 
 r�1ð Þ
þ q xtbij

� 
 rð Þ
� bxt

ij

� 
 rð Þ� �
ð24Þ

The above process is repeated to generate a sequence of imple-
mentable solutions that provably converges to the global optimum
in the convex case (Lamghari and Dimitrakopoulos, 2016). How-
ever, the integrality constraints on the first-stage decision vari-
ables render our problem non-convex and convergence is not
guaranteed. In the presence of discrete decision variables, compu-
tational studies have shown that the progressive hedging algo-
rithm can be used as an effective heuristic method (Watson and
Woodruff, 2011; Gade et al., 2016; Boland et al., 2018).

4.2. Algorithmic enhancements

4.2.1. Solution generation
The standard progressive hedging algorithm relies on conver-

gence to provide a solution to the model SSND. However, the inte-
grality constraints on the decision variables may sometimes spoil
convergence. The cycling behavior in Section 4.2.2 is an obvious
example. In the case of non-convergence, the subproblem solutions
fail to reach a consensus and the standard algorithm does not out-
put any feasible solution at all, let alone a high-quality one. Crainic
et al. (2014) attempted to derive a feasible solution to the stochas-
tic network design problem by finding the union of all subproblem
solutions. In other words, as long as an arc is included in any of the
subproblem solutions, it will be selected to form a feasible solu-
tion. Unfortunately, the design balance constraints (2) of our model
are not factored into this solution generation process, and hence
the resulting solution can no longer be trusted for our model.

To derive a feasible solution in the case of non-convergence, we
note that the solution to a subproblem satisfies all constraints of
the original problem and is thus a feasible solution to the original
problem. Based on this observation, we develop a simple solution
generation method as follows. First of all, a variable is defined to
store the incumbent, which is the best solution found so far. At
the beginning, there is no incumbent. Then, at each iteration of
the standard progressive hedging algorithm, we add a move to
compare all of the subproblem solutions with the incumbent. This
is done by solving a modification of the original model SSND, in
which the design variables are fixed at the values they attained
in a subproblem solution or the incumbent, and obtaining its opti-
mal objective function value. If any subproblem solution from the
current iteration has a better objective function value than the
incumbent, we update the incumbent with this subproblem solu-
tion. At termination, the algorithm returns the incumbent as the
final solution.
9

It is worth noting that the proposed solution generation process
must be performed whether the algorithm converges or not. The
reasons for this are twofold. First, in practice, until convergence
is achieved, we will not be able to tell if the algorithm will con-
verge. Second, the solution generation process ensures that we
can have the best possible solution at termination. In the case of
convergence, we see from the above process that the consensus
solution among subproblems will also be compared with the
incumbent, and so the final solution is at least as good as the con-
sensus solution. Indeed, we observe in our experiments that the
incumbent at termination is sometimes not the consensus solution
among subproblems, but rather some subproblem solution during
the iterative process. In order to obtain a solution of a higher qual-
ity, it is therefore worthwhile to include the solution generation
process for the convergence case.
4.2.2. Cycle detection
As mentioned earlier, convergence of the progressive hedging

algorithm is not assured due to the presence of integer decision
variables. One important case, which arises in our numerical
experiments, is that of cycling behavior. Once this happens, the
progressive hedging algorithm gets trapped in cycles, continuously
repeating the same sequence of implementable solutions and
never finding a consensus solution. It is therefore necessary to
detect the cycling behavior and stop the subsequent futile
iterations.

To detect cycles, Watson and Woodruff (2011) proposed to
check the repeated occurrences of the dual variables wtb

ij , which
are constantly changing before convergence. One major drawback
of this method is that the number of the dual variables can be very
large for some applications. In the context of stochastic service net-
work design, the total number of the dual variables is given by
Nj j � Nj j � Tj j � Bj j. A larger size of the vector of wtb

ij generally
leads to an increased complexity of the reoccurrence check,
because element-wise comparisons between two wtb

ij vectors are
needed.

To resolve this problem, we consider instead the objective func-
tion values of each subproblem in one iteration. As with the dual
variables, the subproblem objective values are also continually
changing during the execution of the algorithm. However, the size
of the subproblem objective value vector decreases considerably to
Bj j in comparison with that of the wtb

ij vector, making the reoccur-
rence check much easier to implement. We check the reoccur-
rences at each iteration of the progressive hedging algorithm by
performing an element-wise comparison of the subproblem objec-
tive value vector from the current iteration with that from each of
the previous iterations for equality. A cycle is detected if two vec-
tors are found to be equivalent. Our reoccurrence check method
has the advantage of being conceptually simple and easy to imple-
ment. There certainly exist other techniques for checking the reoc-
currences, such as Floyd’s tortoise and hare algorithm and the
hashing scheme (Watson and Woodruff, 2011), but we are not
interested in comparisons of these methods here.
4.3. Algorithm pseudocode

The progressive hedging heuristic based on bundle-wise
decomposition is summarized in Algorithm 2.

Algorithm 2: Bundle-wise decomposition-based progressive
hedging heuristic

Inputs: a multiplier h for penalty factors qtb
ij , parameters for

stopping criteria.
Outputs: the incumbent at termination.
Begin
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r  0, wtb
ij

� 
 0ð Þ
 0, bxt

ij

� 
 0ð Þ
 0.

2: Change the value of multiplier h to zero so that qtb
ij ¼ 0.

3: for all b 2 B do

4: xtbij
� 
 0ð Þ

 argmin
x;Z

Lb xtbij ; Z
s kð Þ wtb

ij

� 
 0ð Þ
; bxt

ij

� 
 0ð Þ
				� �

5: solve a restriction of the original model SSND with additional
constraints

xtij ¼¼ xtbij
� 
 0ð Þ

; 8i; j 2 N ;8t 2 T

6: update the incumbent with this subproblem solution if
appropriate.

7: end for
8: Restore the value of multiplier h so that qtb

ij –0.
9: Obtain implementable solutions according to (23).
10: for all b 2 B do
11: update the dual variables according to

wtb
ij

� 
 0ð Þ
 qtb

ij xtbij
� 
 0ð Þ

� bxt
ij

� 
 0ð Þ� �
12: end for
13: while stopping criteria are not met do
14: r  r þ 1.
15: for all b 2 B do

16: xtbij
� 
 rð Þ

 argmin
x;Z

Lb xtbij ; Z
s kð Þ wtb

ij

� 
 r�1ð Þ
; bxt

ij

� 
 r�1ð Þ				� �
17: solve a restriction of the original model SSND with addi-

tional constraints

xtij ¼¼ xtbij
� 
 rð Þ

; 8i; j 2 N ;8t 2 T

18: update the incumbent with this subproblem solution if
appropriate.

19: end for
20: Obtain implementable solutions according to (23).
21: for all b 2 B do
22: update the dual variables according to (24).
23: end for
24: end while
End
Note that we adopt the variable-dependent penalty factors pro-

posed by Watson and Woodruff (2011). Rather than a global value
q, each design variable xtbij has its own penalty factor qtb

ij . In the con-

text of stochastic service network design, an effective value of qtb
ij

should be proportional to the fixed cost cij and so can be written
in the form qtb

ij ¼ hcij. Here h h > 0ð Þ is a constant multiplier used

for all qtb
ij . Note also that, in order to obtain initial subproblem solu-

tions, we temporarily change the value of the multiplier for penalty
factors to zero in step 2.

We terminate the iterations based on the heterogeneity toler-
ance, which specifies the allowed proportion of arcs on which con-
sensus has not been reached. The heterogeneity tolerance is more
flexible than the convergence criteria in that the latter is equiva-
lent to zero tolerance for heterogeneity among subproblem solu-
tions. In order to hedge against the risk of non-convergence, we
limit the maximum amount of time expended on iterating, as well
as the maximum number of iterations. Besides, the iterations will
be stopped when cycling behavior is detected.
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5. Test instances and experimental settings

5.1. Test instances

We empirically evaluated the various scenario bundling meth-
ods on a space–time network adapted from Bai et al. (2014), which
consists of 6 terminals numbered consecutively from 1 to 6. As in
Bai et al. (2014) and Lium et al. (2009), we use a fully connected
network with no hub-and-spoke structure as the underlying net-
work. The fixed costs for all of the arcs are arranged in matrix form,
with the element of row i and column j representing the fixed
charge of opening an arc between terminal i and j. To provide a
diverse and representative set of test instances, we split the six ter-
minals into three groups, namely 1;2f g; 3;4f g; 5;6f gf g, and con-
structed two types of cost matrices, that is,

Type 1: Equal within-group and between-group costs.
Type 2: Low within-group costs while high between-group

costs.
These two types of cost matrices are shown in Appendix D. As

we shall see later in Section 6, among all of the test instances, those
with Type 1 cost matrix are the relatively difficult ones, while
those with Type 2 cost matrix are the relatively easy ones.

The planning horizon considered in this experiment is divided
into 5 time periods and the transport movement between every
pair of terminals takes one period. From the perspective of network
scale, the experimental space–time network, therefore, consists of
30 nodes and 180 arcs.

Through the underlying space–time network, there is a set of 12
commodities to be delivered, but the volumes of these commodi-
ties vary stochastically. For each type of cost matrix, we created
two commodity sets. The distributional properties of the uncertain
demand are given in terms of marginal distributions for each com-
modity, as well as correlations among the different commodities.
Analogous to the procedure in Lium et al. (2009) and Bai et al.
(2014), the demand uncertainty in our experiment is described
by the symmetric triangular distribution Tri(4, 12, 8) (min, max,
mode) and three types of correlation settings, which include (1)
all of the commodities are positively correlated, with the correla-
tion coefficients taking on values 0.4 or 0.7, (2) a mixture of posi-
tively and negatively correlated commodities, with the
correlation coefficients set at 0.5 and �0.5 respectively, (3) all of
the commodities are uncorrelated. For simplicity’s sake, these
three correlation types are sequentially denoted by capital letters
C, M and U, which will be used later in the instance identifiers.

Given the statistical description of an uncertain demand, we
employ the publicly available scenario generator from Høyland
et al. (2003) to construct scenario trees of varying size to approxi-
mate this uncertain demand. The scenario generator is based on
the moment-matching algorithm, where scenarios are generated
to match the first four marginal moments (i.e., the expected values,
standard deviation, skewness and kurtosis) and the correlation
matrix of the given uncertain demand. In our experiment, we gen-
erated 20, 30 and 40 scenarios for each uncertain demand. More
details about scenario generation and evaluation can be found in
the articles by Høyland et al. (2003) and Kaut and Wallace (2007).

By combining the three correlation types and three different
sizes of the scenario tree, together with the two types of cost
matrices and their associated commodity sets, we constructed 36
test instances. To further diversify the testbed, we constructed
three larger instances by increasing the number of scenarios to
100. While the test instances are small in terms of the network
size, we deliberately chose them because all associated multi-
scenario subproblems can be solved to optimality by CPLEX
V12.6.2 within several hours, thereby reducing the effect of sub-
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problem solution quality and providing a clear understanding of
the impact of scenario bundling on PHH performance. For the same
reason, we chose a relatively small value (i.e., 0.5%) as the relative
MIP gap tolerance of CPLEX, as we shall see shortly.

To differentiate between these instances, we define an instance
identifier, which contains three dot-delimited fields. The instance
identifier starts with a letter indicating the correlation type, fol-
lowed by a positive integer specifying the number of scenarios.
The second field represents the type index of cost matrices,
whereas the last one stands for the index of the commodity set.
For example, the identifier ‘C100.1.20 represents the test instance
where commodity set 2, whose uncertain demand is represented
by 100 positively correlated scenarios, need to be shipped through
the underlying network with type 1 cost matrix.

5.2. Experimental settings

On the test instances, we compared the progressive hedging
heuristic based on the two soft clustering algorithms (i.e., FCM/
GMM) with that based on the hard clustering algorithm (i.e., K-
Means, or KM) and with the extensive formulation solved directly
using CPLEX. We also benchmarked the soft clustering-based sce-
nario bundling against the cover method proposed by Crainic
et al. (2014), which represents the state-of-the-art scenario bund-
ling algorithm for stochastic service network design. We chose K-
Means as the hard clustering-based scenario bundling method
because it is one of the most popular clustering algorithms in clus-
ter analysis and was used in several papers on scenario bundling
(e.g., Crainic et al., 2014; Deng et al., 2017). More importantly, it
has been demonstrated by Crainic et al. (2014) that the K-
Means-based scenario bundling method outperformed random
bundling, which was another prevalent method for scenario bund-
ling in the current literature (e.g., Escudero et al., 2013; Gade et al.,
2016). Further details about the K-Means algorithm can be found
in (Lloyd, 1982) and (Arthur and Vassilvitskii, 2007). We imple-
mented the four scenario bundling algorithms in MATLAB
R2015b, making use of the predefined functions for Fuzzy C-
Means and Gaussian Mixture Models to estimate membership
scores. Since the four scenario bundling algorithms are random,
we repeated each algorithm 20 times for the 36 small instances
and four times for the three larger instances, each time using a
new set of initial values. Unless otherwise indicated, all of the com-
puting was conducted on a personal computer with eight 2.80 GHz
Intel Core i7 CPUs and 8 GB of RAM, under a 64-bit Windows 7
operating system.

The aim of our experiment is twofold. First, we aim to examine
the impact of different degrees of overlap on PHH performance. In
FCM-based scenario bundling, the amount of overlap between sce-
nario bundles is jointly governed by the interval parameter g and
fuzzy partition matrix exponent m. Since a high-valued interval
parameter does not encourage overlap between scenario bundles,
we consider a fairly small value of 0.4 for the interval parameter.
Meanwhile, we varied the exponent to obtain seven different over-
lap ratios ranging from 1.2 to 2.4. By so doing, we were able to cap-
ture a reasonably wide range of performance potential for PHH. We
did not consider even larger values of the overlap ratio because
they can render the multi-scenario subproblems hard to solve
due to a significant increase in the size of subproblems.

The second purpose of the experiments is to demonstrate the
benefit of allowing scenario bundles to have different covariance
structures. Consequently, we chose unshared full covariance matri-
ces for all mixture components in the Gaussian Mixture Model so
that each component had its own non-diagonal covariance matrix
which allowed for correlation. At the same time, we attempted to
minimize the effects of overlapping scenario bundles by assigning
a relatively high value of 0.8 to the interval parameter. According
11
to Proposition 1, the scenarios whose maximum membership
scores are greater than 0.56 will then be assigned to only one bun-
dle. Since the maximum membership score of almost every sce-
nario is very close to 1, we actually obtained disjoint scenario
bundles on our test instances, just as in the KM-based scenario
bundling.

The progressive hedging heuristic based on bundle-wise
decomposition was implemented with C++ programming language
in Microsoft Visual Studio 2010, with the multi-scenario subprob-
lems modeled by ILOG Concert Technology and solved by CPLEX
Mixed Integer Programming Optimizer in version 12.6.2. Except
for a relative MIP gap tolerance of 0.5%, all parameters controlling
the behavior of CPLEX assume their default values. For all test
instances, we set the weight multiplier for the vector of variable-
dependent penalty factors equal to 1 when executing the PHH.
To check for convergence of the PHH, we took 10-5 as the tolerance
threshold to determine equality of any two first-stage decisions
and 98% as the threshold for the level of consensus among the sub-
problem solutions. Regarding other termination settings, there are
some differences between the 36 small instances and three larger
instances. For the 36 small instances, we allow the PHH to run for a
maximum of 3 h in wall clock time or 30 iterations at most, which-
ever comes first. The maximum allowable number of iterations is
set to a small value so that the PHH executes only the early itera-
tions and discontinues the remaining numerous iterations, which
play the role of fine-tuning to reconcile the already small discrep-
ancies between subproblem solutions (Watson and Woodruff,
2011). As we have mentioned in Section 4, the best solution is usu-
ally found to be some subproblem solution instead of the final con-
sensus solution and thus it does not seem worthwhile continuing
the fine-tuning iterations. For the three larger instances, we
accordingly set larger tolerances, with the time limit being 10 h
and iteration limit being 100.

6. Experimental results and analysis

We solved the problem instances for stochastic service network
design using the progressive hedging heuristic based on bundle-
wise decomposition and report the optimization results in Table 1–
3. For simplicity, the Progressive Hedging Heuristic based on K-
Means-, Fuzzy C-Means-, Cover- and Gaussian Mixture Models-
based scenario bundling are represented by KM-PHH, FCM-PHH,
Cover-PHH and GMM-PHH, respectively. We run each of the four
algorithms 20 times for the 36 small problem instances and four
times for the three larger instances, with a new scenario bundling
result for every trial. To establish a benchmark against which the
solution quality of our proposed method can be evaluated, we also
solved the extensive formulations of these problem instances
directly using CPLEX, in which case CPLEX was executed to reach
an optimality gap of 0.5%. For the instances with no more than
40 scenarios, CPLEX can prove optimality within three hours. By
contrast, it took more than 12 h for CPLEX to solve the three
100-scenario instances to optimality. The quality of the solutions
produced by the progressive hedging heuristic is then measured
against the lower bound yielded by CPLEX and the relative opti-
mality gap is calculated as (Final Objective Value – Lower Bound
from CPLEX) / (Final Objective Value). We report the relative opti-
mality gap in percentage with two decimal places, as well as the
computing time (rounded to the nearest integer) and the number
of iterations (rounded to one decimal place) consumed by the pro-
gressive hedging heuristic.

6.1. Impact of different degrees of overlap

To study the impact of different degrees of overlap on the per-
formance of the progressive hedging heuristic, we compare the



Table 1
Performance results of FCM-PHH under different overlap ratios.

Overlap
ratio

Small Instance Larger instance
C40.1.2 M40.1.1 U40.1.1 C100.1.2
Gap CPLEX LB
(%)

#Iter. Time
(s)

Gap CPLEX LB
(%)

#Iter. Time
(s)

Gap CPLEX LB
(%)

#Iter. Time
(s)

Gap CPLEX LB
(%)

#Iter. Time
(s)

1(KM) 0.61 19.5 2741 0.56 12.7 1853 0.52 7.3 1491 0.60 51.5 15,340
1.2 0.66 15 2601 0.56 9.4 1638 0.53 8.1 1563 0.57 25.3 9900
1.4 0.61 17.2 2790 0.58 9.2 1762 0.55 6.2 1403 0.60 32.3 11,080
1.6 0.63 13 2523 0.50 7.3 1533 0.51 5.1 1367 0.53 18.5 8300
1.8 0.57 9.5 2276 0.50 6 1477 0.50 5.3 1429 0.53 15.3 9012
2 0.57 9.7 2503 0.50 6 1695 0.50 3 1386 0.52 14.5 10,122
2(Cover) 0.57 9.5 2472 0.50 6 1608 0.50 3 1395 0.52 14.8 10,386
2.2 0.57 6 3158 0.50 6 2165 0.50 3 1831 0.52 12 14,563
2.4 0.57 6 4136 0.50 4 3072 0.50 3 2455 0.52 12 20,328

‘Cover’ represents the cover strategy proposed for scenario bundling in (Crainic et al., 2014). Gap CPLEX LB is the relative optimality gap against the lower bound produced by
CPLEX. Given an instance and an overlap ratio, the average performance of FCM-PHH over 20 (resp. 4) trials is reported for small (resp. larger) instances, with every trial using
a new scenario bundling result. The shortest run-time is highlighted in boldface.

Table 2
Small instances: performance results of KM-, GMM-, Cover- and FCM-PHH on 36 instances with no more than 40 scenarios.

Small Instances Gap CPLEX LB (%) # Iterations Time (s)
CostMatrix #Scen. KM-

PHH
GMM-
PHH

Cover-
PHH

FCM-
PHH

KM-
PHH

GMM-
PHH

Cover-
PHH

FCM-
PHH

KM-
PHH

GMM-
PHH

Cover-
PHH

FCM-
PHH

Type 1 40 0.54 0.59 0.52 0.52 11.9 7.6 4.8 4.9 1931 1411 1602 1528
30 0.59 0.72 0.58 0.57 10.4 7.3 5.3 5.5 1199 840 912 889
20 0.53 0.67 0.51 0.51 8.0 6.1 4.7 4.9 508 458 483 472

Type 2 40 0.57 0.50 0.50 0.50 8.3 4.5 3.6 3.9 1233 887 996 935
30 0.52 0.51 0.50 0.50 6.2 5.5 4.2 4.2 977 673 799 739
20 0.64 0.60 0.58 0.57 5.8 4.9 3.1 3.4 710 477 485 483

Gap CPLEX LB is the relative optimality gap against the lower bound produced by CPLEX. For each method, its average performance over the six instances having the same cost
matrix and number of scenarios is reported, since the performance results on these instances are comparable.

Table 3
Larger instances: performance results of KM-, GMM-, Cover- and FCM-PHH on three 100-scenario instances.

LargerInstances Gap CPLEX LB (%) # Iterations Time (s)
KM-
PHH

GMM-
PHH

Cover-
PHH

FCM-
PHH

KM-
PHH

GMM-
PHH

Cover-
PHH

FCM-
PHH

KM-
PHH

GMM-
PHH

Cover-
PHH

FCM-
PHH

C100.1.2 0.60 0.59 0.56 0.56 51.5 21.5 18.3 19.5 15,340 6324 8317 7631
M100.1.1 0.58 0.50 0.50 0.50 48.5 19.5 4 4 17,635 5920 7938 6182
U100.1.1 0.54 0.55 0.52 0.51 16.3 12.5 5.8 6.1 8722 5407 6287 5933

Gap CPLEX LB is the relative optimality gap against the lower bound produced by CPLEX. Given an instance and a method, the average performance over 4 runs of this method
is reported, with every trial using a new scenario bundling result.

Fig. 7. The run-time and number of iterations consumed by FCM-PHH under
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performance results of FCM-PHH under different overlap ratios,
which are shown in Table 1. The value ‘1’ for the overlap ratio rep-
resents the scenario bundles obtained from K-Means, and there is
no overlap between any two bundles. For the overlap ratio with
value ‘2’, we evaluate the scenario bundles obtained not only from
FCM, but also from the cover strategy proposed in (Crainic et al.,
2014).

Let us consider first the solution quality and the number of iter-
ations. It can be seen from Table 1 that, when the overlap ratio
increases from 1 to 1.6, both the optimality gap and the number
of iterations fluctuate. However, when the overlap ratio is greater
than 1.6, the optimality gap becomes smaller and the number of
iterations reduces dramatically in comparison with the case of
small overlap ratios. Therefore, a high degree of overlap helps
improve the solution quality and reduce the number of iterations
required by FCM-PHH to achieve convergence. This tendency is
consistently observed on the other test instances, whose results
are not displayed here due to limited space.

We next look at the run-time of FCM-PHH. The impact of degree
of overlap can be seen more clearly by plotting the run-time
against the overlap ratio, as shown in Fig. 7. Here, we consider
the larger instance C100.1.2 as an example. It can be seen that,
as with the number of iterations, the run-time fluctuates dramati-
12
cally when the overlap ratio rises from 1 to 1.6. However, different
from the number of iterations, the run-time increases sharply
different overlap ratios on the larger instance C100.1.2.
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when the overlap ratio goes above 2. For the overlap ratios
between 1.6 and 2, FCM-PHH consumes much less run-time in
comparison with the case of small and large overlap ratios in
question.

The general trend of the run-time demonstrates that there is a
trade-off between the decreased number of iterations and the
increased difficulty in solving each subproblem. Although a high
degree of overlap may well lead to a reduction in the number of
iterations, allowing some overlap between scenario bundles typi-
cally results in a greater size of each bundle, thus increasing the
difficulty of solving each multi-scenario subproblem. When the
overlap ratio is greater than 2, the advantage of fewer iterations
is outweighed by the disadvantage of increased difficulty in solving
each subproblem, leading to a substantial growth in the run-time
eventually. By contrast, the advantage of fewer iterations domi-
nates when the overlap ratio is between 1.6 and 2. For small values
of the overlap ratio less than 1.6, the degree of overlap is too small
to produce a definite advantage.

Considering both the solution quality and the run-time, the
overlap ratios between 1.6 and 2 give relatively good performance
among all the overlap ratios in question. However, the best choice
for the overlap ratio depends on the problem instances, as can be
seen in Table 1. For the sake of comparison with KM-PHH and
GMM-PHH, we report in Table the performance results of FCM-
PHH under the overlap ratio with value 1.8, in light of the observa-
tion that this overlap ratio produces good performance on most
instances.

6.2. Impact of covariance structures

In order to investigate whether there is any advantage in spec-
ifying different covariance structures for scenario bundles, we then
make a comparison between the results of GMM-PHH and KM-
PHH, which are shown in Table 2 and 3. To save some space, we
also put the performance results of Cover-PHH and FCM-PHH in
these tables for later use in Section 6.3. It can be seen from Table 2
and 3 that there is no clear winner between KM-PHH and GMM-
PHH in terms of solution quality. On some test instances, GMM-
PHH yielded lower optimality gaps than KM-PHH, whereas KM-
PHH gave smaller optimality gaps on other test instances. In terms
of the number of iterations, we see from Table 2 and 3 that GMM-
PHH is slightly better than KM-PHH. On all of the problem
instances, GMM-PHH performed fewer iterations than KM-PHH,
but the difference between these two methods is not big, except
for two 100-scenario instances. When it comes to time consump-
tion, GMM-PHH beats KM-PHH by a considerable margin. On all
of the problem instances, GMM-PHH consumed much less time
than KM-PHH did. Averaging the time ratios of GMM-PHH to
KM-PHH, we find that GMM-PHH provides a significant saving of
26 percent on time for the 36 small instances and 54 percent for
the three larger instances.

We can gain some insight into the run-time advantage of GMM-
PHH by comparing the results of GMM- and KM-based scenario
bundling. Both algorithms grouped similar scenarios together into
one bundle while separating different bundles as well as possible
and yielded up disjoint bundles on the test instances. However, a
careful comparison of the scenario bundles from the two algo-
rithms shows that there is a big difference in variability of bundle
sizes. Take the case of 30 positively correlated scenarios for exam-
ple. The sizes of the five scenario bundles from the first run of the
KM- and GMM-based scenario bundling algorithm are {12, 1, 3, 2,
12} and {3, 5, 8, 8, 6}, respectively. Obviously, the values in the set
{12, 1, 3, 2, 12} are widely scattered, while the set {3, 5, 8, 8, 6} has
a small dispersion of values.

To measure the relative size of the scenario bundles in relation
to the whole scenario set, we applied the economic term ‘concen-
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tration ratio’ to the disjoint scenario bundles. The concentration
ratio, expressed as a percentage, is calculated as the sum of the
number of scenarios in the two largest scenario bundles divided
by the size of the whole scenario set. It ranges from 2= Bj j to
100% and a lower value indicates a better balance in the size of dif-
ferent scenario bundles. We also measure how far the bundle sizes
lie apart by the standard deviation and the range, which indicates
how far from the average size each scenario bundle is and the dif-
ference between the largest and smallest sizes, respectively. The
descriptive statistics of the KM- and GMM-based bundling results
are displayed in Table 4.

Let us consider again the example of 30 positively correlated
scenarios (i.e., scenario set ‘C30’). It can be seen from Table 4 that
the two largest scenario bundles account for nearly 80% of all sce-
narios on average in the 20 trials of KM-based scenario bundling,
whereas the average concentration ratio in the case of GMM-
based scenario bundling falls by one fourth to less than 60%. In
terms of the range and standard deviation, the average difference
between bundle sizes in KM-based scenario bundling is about
twice as big as that in GMM-based scenario bundling. Similar
results are consistently observed in other test instances.

These results demonstrate that KM-based scenario bundling is
prone to produce unbalanced scenario bundles, where there is a
high concentration of scenarios in one or two bundles, while the
other bundles contain very few scenarios. By contrast, the scenar-
ios are more evenly distributed among the bundles in GMM-based
scenario bundling and the resulting bundles are comparable in
size. Recall that GMM provides more flexibility than KM by allow-
ing arbitrary covariance structures for scenario bundles, so we
might expect GMM to better accommodate scenario bundles with
different correlation structures and thus to make the sizes of the
resulting bundles more balanced.

When both the algorithms assign every scenario uniquely to
one bundle, the result of KM-based scenario bundling would prob-
ably contain several much larger bundles, giving rise to somemuch
harder subproblems. For GMM-based scenario bundling, all result-
ing bundles are most likely to be in relatively modest size, render-
ing all subproblems easier to solve. As a result, KM-PHH consumes
more time than GMM-PHH, as we have seen in Table 2 and 3.

6.3. KM-PHH vs. Cover-PHH vs. FCM-PHH vs. GMM-PHH

In this section, we compare the performance results of KM-,
Cover-, FCM- and GMM-PHH, which are shown in Table 2 and 3.
We first examine the solution quality. Analyzing the relative opti-
mality gaps presented in Table 2 and 3, we observe that there is lit-
tle difference between Cover-PHH and FCM-PHH, with the
maximum difference being 0.01%. Also, there is no clear winner
between KM-PHH and GMM-PHH, as mentioned in Section 6.2.
Among the four methods in question, Cover- and FCM-PHH outper-
form KM- and GMM-PHH on almost all test instances in terms of
solution quality. This observation reinforces our previous findings
in Section 6.1 that a high degree of overlap between scenario bun-
dles helps improve the solution quality. However, the improve-
ment in the solution quality is marginal. For example, the
difference between the optimality gaps of FCM-PHH and GMM-
PHH is no greater than 0.16% on all test instances. In other words,
all four methods (i.e., KM-, Cover-, FCM- and GMM-PHH) found
high-quality solutions to the test instances, with the maximum
optimality gap being 0.64%, 0.58%, 0.57% and 0.72% respectively.

We look further into the relationship between the consensus
solution among subproblems and the best solution found by the
progressive hedging heuristic. Surprisingly, we observe from
Table 5 that the best solution may not be the final consensus solu-
tion, but some subproblem solution during the iterative process.
This is the case with more than one third of the total runs for 36



Table 4
Descriptive statistics of the KM- and GMM-based scenario bundling results on the 12 scenario sets.

ScenarioSet KM-based scenario bundling GMM-based scenario bundling
ConcentrationRatio (%) Range StandardDeviation ConcentrationRatio (%) Range StandardDeviation

C40 65.00 14.45 5.77 51.25 8.65 3.40
C30 77.83 11.55 5.57 58.00 6.95 2.86
C20 90.00 10.00 4.90 65.50 5.20 2.30
M40 60.13 14.50 5.31 46.75 6.90 2.57
M30 75.50 14 5.92 55.67 6.30 2.58
M20 73.50 6.55 3.04 63.50 4.20 1.88
U40 52.63 9.75 3.73 49.63 7.55 3.01
U30 61.33 8.80 3.57 50.83 5.00 1.95
U20 66.50 5.35 2.45 61.50 3.85 1.70
C100 50.00 29.50 9.38 35.50 17.50 5.49
M100 48.00 23.50 8.77 28.00 10.50 3.84
U100 38.50 19.50 5.94 28.50 11 3.42

For each scenario set with no more than 40 scenarios and with 100 scenarios, the three descriptive statistics are averaged over 20 runs and 4 runs of the scenario bundling
algorithm, respectively.

Table 5
The relationship between PHH best solution and PHH consensus solution.

Instances PHH consensus solution is notPHH best solution(percentage of
total runs)

First appearance of PHH best solution(percentage of total run-
time)

KM-PHH GMM-PHH Cover-PHH FCM-PHH KM-PHH GMM-PHH Cover-PHH FCM-PHH

36 small instances 47.22% 41.67% 37.67% 36.11% 88.38% 91.37% 94.26% 92.63%
3 larger instances 66.67% 66.67% 41.67% 41.67% 73.12% 77.05% 86.73% 83.56%
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small instances and approximately half of the total runs for 3 larger
instances. This observation demonstrates the important role of the
newly added step in finding high-quality solutions, where we
update the incumbent at each iteration by comparing it with each
of the subproblem solutions. Also, we observe from Table 5 that the
first appearance of the best solution is not very close to the PHH
termination point, but takes approximately 90% of the total run-
time for 36 small instances and about 80% for 3 larger instances.
These two observations suggest that we don’t have to wait until
all subproblem solutions reach full agreement to provide a high-
quality solution. Instead, we can stop the iterations in our pro-
posed method earlier than in the standard progressive hedging
algorithm, thereby reducing the number of iterations and the
run-time without a decline in the solution quality.

We next consider the run-time and the number of iterations. As
can be seen from Table 2 and 3, KM-PHH yielded the worst perfor-
mance among the four methods, requiring a much longer run-time
and more iterations than other methods on every test instance.
Compared to the case of KM-PHH, the number of iterations needed
by Cover-PHH reduces by 58% on average for 36 small instances
and 74% for 3 larger instances. Indeed, Cover-PHH required the
smallest number of iterations among the four methods. Regarding
the run-time, Cover-PHH consumed on average 81% of the run-
time of KM-PHH on 36 small instances and 57% on 3 larger
instances. In contrast with Cover-PHH, FCM-PHH required slightly
more iterations, but consumed less run-time. The run-time advan-
tage is most easily seen on 3 larger instances, where FCM-PHH
saved on average 12% of the run-time of Cover-PHH. Among the
four methods, GMM-PHH consumed the least amount of run-
time. On 36 small instances, GMM-PHH expended on average
74% of the KM-PHH run-time, 91% of the Cover-PHH run-time
and 95% of the FCM-PHH run-time. The run-time advantage is even
greater on 3 larger instances. Compared to KM-, Cover- and FCM-
PHH, GMM-PHH provides on average a significant time saving of
54%, 21% and 10%, respectively.

Considering both the solution quality and the run-time, GMM-
PHH yielded the best performance among the four methods,
achieving nearly equivalent solution quality in a fraction of the
run-time of KM-, Cover- and FCM-PHH.
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7. Conclusions and future directions

We have presented a soft clustering-based scenario bundling
method and modified the standard progressive hedging algorithm
accordingly to incorporate the resulting scenario bundles. The pro-
posed method differs from existing scenario bundling strategies in
that the bundle membership is described by probabilities (i.e., val-
ues between 0 and 1) instead of Boolean values (i.e., 0 and 1),
thereby bringing with it many advantages. We have empirically
studied its impacts on the computational performance of a pro-
gressive hedging heuristic in the context of stochastic service net-
work design by benchmarking it against k-means-based scenario
bundling and the cover method, which represents the state-of-
the-art scenario bundling algorithm for stochastic service network
design.

We can draw the following conclusions from the computational
evidence. Firstly, a moderate degree of overlap (with the overlap
ratio between 1.6 and 2) helps improve the solution quality and
reduce the run-time and number of iterations required by the pro-
gressive hedging heuristic. However, the best choice for the over-
lap ratio depends on the problem instances. More often, the
overlap ratio around 1.8 yields up relatively good performance.
Secondly, compared to k-means, Gaussian mixture models save
on the average more than 20 percent of the run-time of the pro-
gressive hedging heuristic, since the advantage of allowing sce-
nario bundles to have different covariance structures enables
Gaussian mixture models to produce more balanced scenario bun-
dles. Lastly, the progressive hedging heuristic based on Gaussian
mixture models yields up the best performance among all methods
in question, since it generally achieves nearly equivalent solution
quality in a fraction of the run-time of the other methods.

For future research, the proposed method can be extended in
two directions. First, the fact that soft clustering-based scenario
bundling has proven beneficial in the context of two-stage stochas-
tic mixed integer programming bodes well for its potential effects
in other contexts. It is therefore natural to consider the extension
of soft clustering-based scenario bundling to multi-stage stochastic
programs or chance-constrained programs. Secondly, the progres-
sive hedging heuristic has a natural advantage of being easily
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adaptable to parallel implementation, since the multi-scenario
subproblems can be solved independently. Compared to the serial
implementation in our experiments, parallel implementation has
the potential to decrease the run-time considerably. Thus, the
development of parallel approaches looks promising for future
research.
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Appendix A. . Proof of proposition 1

Proposition 1. Let s be a scenario and g the interval coefficient. If
the maximum membership score of s is greater than 1= gþ 1ð Þ, then s
would be assigned to exactly one bundle and this bundle has the high-
est membership score of s.

Proof. We first want to show that there is a single bundle that
has the highest membership score of s. Suppose for the sake of con-
tradiction that there exist two or more scenario bundles that has
the highest membership scores of s. Let h sð Þ be the maximum
membership score of s. By the definition of the interval coefficient,
g 2 0;1½ �and we have 0:5 6 1= gþ 1ð Þ 6 1. If h sð Þ > 1=ðgþ 1Þ, then
h sð Þ > 0:5. From the supposition, it follows that the sum of the
membership scores of s is greater than 1. But this contradicts the
fact that the membership scores of a scenario across all bundles
must sum to 1. Hence our supposition is incorrect and there is only
one bundle that has the highest membership score of s.

We now want to show that s would be assigned to the bundle
with the highest membership score of s. By the definition of our
algorithm, s would be assigned to the bundles for which the corre-
sponding membership scores fall within the interval
g � h sð Þ; h sð Þ½ �. Let h0 sð Þ be the second maximum membership
score of s. Since the membership scores of a scenario across all sce-
nario bundles sums to 1, it follows that h sð Þ þ h0 sð Þ 6 1. If
h sð Þ > 1=ðgþ 1Þ, then h0 sð Þ < g=ðgþ 1Þ, and thus h0 sð Þ < gh sð Þ,
since gh sð Þ > g=ðgþ 1Þ. Therefore, among all membership scores
of s, h sð Þ is the only one that falls within the interval
g � h sð Þ; h sð Þ½ �. We then conclude that s would be assigned to
the bundle with the highest membership score of s. This completes
the proof of the proposition. h
Appendix B. . Membership score calculation based on fuzzy c-
means

The pseudocode of membership score calculation based on
fuzzy c-means is given in Algorithm B1. The equations in step 4
and 5 are necessary conditions for the objective function (14) to
reach its minimum.
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Algorithm B1: Membership score calculation based on fuzzy c-
means

Inputs: the set of scenariosS, the number of bundlesg, the
exponent for fuzzy partition matrixm.

Outputs: the fuzzy partition matrix D.

Begin

1: Initialize the matrixDwith uniformly generated random
numbers between 0 and 1.

2: Normalize each entry inDthrough dividing it by the sum of
the corresponding column.

3: while stopping criteria are not met do
4: Calculate the bundle centers according to

vb ¼
X
s2S

dsbð Þmds
=
X
s2S

dsbð Þm8b 2 B

5: Update the membership scores according to

dsb ¼
1=k ds � vb k2
� 
 1

m�1

Pg
l¼1 1=k ds � v l k2
� 
 1

m�1
;

8s 2 S

8b 2 B

6: Calculate the objective function J D;Vð Þ.
7: end while
End

Appendix C. Membership score calculation based on Gaussian
mixture models

The pseudocode of membership score calculation based on
Gaussian mixture models is given in Algorithm C1. For the initial-
ization in step 1, we select several scenarios as the initial mean
vectors using the k-means++ algorithm, details of which can be
found in (Arthur and Vassilvitskii, 2007). All of the initial covari-
ance matrices are diagonal, with the diagonal entries being the
variances of the corresponding commodity demand. The initial
mixing coefficients are chosen to be the uniform probability.

Algorithm C1: Membership score calculation based on Gaussian
mixture models

Inputs: the set of scenarios S, the number of bundles g.
Outputs: the membership score matrix D.
Begin
1: Initialize the mean vectors lb, covariance matrices Rb and

mixing coefficients /b.
2: while convergence criteria are not met do
3: Compute the membership scores dsb according to (17).
4: Update the parameters lb, Rb and /b according to

lnew
b ¼

X
s2S

dsbd
s
=
X
s2S

dsb

Rnew
b ¼

X
s2S

dsb ds � lnew
b

� �
ds � lnew

b

� �T
=
X
s2S

dsb

/new
b ¼

X
s2S

dsb= Sj j

5: Calculate the log likelihood ‘ U;l;Rð Þ.
6: end while
End

Appendix D. The parameters for the test instances



Table D1
The parameters for the test instances. In each cost matrix, the main diagonal element in the ith row represents the fixed cost of holding service at terminal i, while the off-diagonal
element in the ith row and jth column represents the fixed cost of transportation service from terminal i to j.

Parameters Values Type 1 cost matrix (cij) Type 2 cost matrix (cij)
Nj j 6 50 100 100 100 100 100 50 100 250 250 250 250

T 5 100 50 100 100 100 100 100 50 250 250 250 250
Kj j 12 100 100 50 100 100 100 250 250 50 100 250 250
u 20 100 100 100 50 100 100 250 250 100 50 250 250
k 100 100 100 100 100 50 100 250 250 250 250 50 100
#scenarios 20/30/40 100 100 100 100 100 50 250 250 250 250 100 50
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