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Abstract. We propose an elitist Greedy Randomized Adaptive Search
Procedure (GRASP) metaheuristic algorithm, called mGRASP/MH, for
approximating the Pareto-optimal front in the multi-objective quadratic
assignment problem (mQAP). The proposed algorithm is characterized by
three features: elite greedy randomized construction, adaptation of search
directions and cooperation between solutions. The approach builds start-
ing solutions in a greedy fashion by using problem-specific information and
elite solutions found previously. Also, nGRASP/MH maintains a popula-
tion of solutions, each associated with a search direction (i.e. weight vec-
tor). These search directions are adaptively changed during the search.
Moreover, a cooperation mechanism is also implemented between the so-
lutions found by different local search procedures in mGRASP/MH. Our
experiments show that mGRASP/MH performs better or similarly to sev-
eral other state-of-the-art multi-objective metaheuristic algorithms when
solving benchmark mQAP instances.

1 Introduction

The quadratic assignment problem (QAP) models many real-world optimization
problems in diverse areas such as operations research, economics, etc. One of its
major applications is facility location, where a set of facilities should be assigned
to different locations. The objective is to find an assignment of all facilities to
all locations, such that the total cost is minimized. The QAP is a NP-hard
combinatorial optimization problem [I]. So, there is no known exact algorithm
for solving the QAP in polynomial time. Recently, the multi-objective QAP
(mQAP) has been investigated by researchers in the multi-objective optimization
community [2J3]. Unlike the single-objective QAP, the mQAP involves multiple
types of flows between any two facilities.

Over the last decades, research on multi-objective metaheuristics, such as
evolutionary algorithms, simulated annealing, and tabu search, has attracted a
lot of attention from the scientific community. A majority of these algorithms
use either Pareto dominance or weighting method for fitness assignment. For
example, two representative Pareto-based evolutionary multi-objective (EMO)
algorithms - NSGA2 [4] and SPEA2 [5] rank the members of the population by
comparing them in terms of Pareto domination while MOEA/D [6] defines the
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fitness of individuals by using weighted functions. To find a well-distributed set
of solutions, some strategies, such as estimating the density of non-dominated
solutions and maintaining a set of uniform weights, have been used to maintain
the diversity of population in these algorithms.

It is well-known that well-designed genetic operators play an important role in
improving the performance of evolutionary algorithms. The proximate optimality
principle (POP) [7] assumes that good solutions share some similarities in the
decision space. This principle holds for many real-world problems. Based on this
principle, Zhang and Sun [§] proposed a genetic operator, called guided mutation,
to sample solutions in promising areas of the search space. This is achieved by
modifying the elite solutions found previously and then using global information
from a probabilistic model. The combination of guided mutation with iterated
local search produced competitive results for solving the QAP in [g].

GRASP [9] is one of the most successful metaheuristics for combinatorial op-
timization. It is a multi-start local search approach. In each iteration of GRASP,
two procedures are involved: greedy randomized construction of starting solu-
tions and a local search procedure. A multi-objective version of GRASP was
proposed in [I0] to handle multi-objective knapsack problem. In that algorithm,
each solution is improved along a certain direction by local search. However,
the local optima obtained in different iterations do not interact with each other.
As shown in [6] and [II], cooperation between solutions with similar search
directions and the adaptive change of these search directions is beneficial. In
this paper, we propose an elitist multi-objective GRASP metaheuristic called
mGRASP/MH. We assess the performance of mGRASP/MH by applying it to a
number of benchmark mQAP instances and comparing its performance to that
of some existing multi-objective algorithms.

The remainder of this paper is organized as follows. Section 2 formulates the
mQAP and discusses fast local search for this problem. Section 3 discusses some
important issues of the basic GRASP algorithm for single objective optimization.
Section 4 presents the proposed mGRASP/MH for the mQAP. Experimental
results are presented and discussed in Section 5 while Section 6 concludes the

paper.

2 The Multi-objective Quadratic Assignment Problem

2.1 Mathematical Formulation

Given a location matrix A = {a;; }nxn and flow matrices B* = {bF }pxnsm, k =

1,...,m, the mQAP is to minimize the following objective functions simultane-
ously:

C(m) ={C*(m),...,C"™(m)}, 7 € N2 (1)
with

Ck(ﬂ'):Zzai]‘biiﬂ,j,kzl,...,m (2)
i=1 j=1
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where

— n is the number of locations/facilities, m is the number of objectives (i.e.
types of flows), m = (m1,...,m,) is a permutation of L = {1,...,n}, 2
is the set of all permutations, C(m) is a vector of m objective functions
Ck(m),i=1,...,m.

— a4 is the distance between locations ¢ and j, and bﬁm is the k-th flow
between facilities m; and ;.

In the case of conflicting objectives, there is no solution 7* which is optimal
for all objective functions C*(7),k = 1,..., m. Instead, the optimal solution 7*
to the mQAP in () is often defined as the trade-off solution in terms of Pareto
optimality. Assume u and v are objective vectors, u is said to dominate v if and
only if up < vy for all k =1,...,m, and s € {1,...,m}, us < vs. A solution
7m* is said to be Pareto-optimal to () if C(7*) is not dominated by C(w) for
any 7 € (2. The Pareto-optimal front (POF) is the set of objective vectors of all
Pareto-optimal solutions.

In the mathematical programming community, multi-objective optimization
problems are often tackled using some form of weighted sum method that com-
bines multiple objective functions into a single scalar function as follows:

Flrld) =" A - CF(m) 3)

where A\ = (A1,...,\n)7 is the weight vector with A\ > 0,k = 1,...,m and
> orey Ak = 1. Each component of A can be regarded as the preference w.r.t each
objective. The global minima of f() in (@) is also Pareto-optimal to the mQAP
in (). By minimizing the scalar functions (B]) with appropriate weight vectors, a
good approximation of the POF is likely to be obtained. However, the weighted
sum method cannot solve the multi-objective optimization problems with non-
convex POF. Despite this, the weighed sum method has been successfully applied
to solve many multi-objective combinatorial optimization problems.

2.2 Fast Local Search

Local search based on 2-opt operator has been widely used to tackle some
permutation-based combinatorial optimization problems. In the QAP, the neigh-
borhood of the current solution consists of all solutions obtained by exchanging
the positions of two elements in its permutation [12] (i.e., 2-opt swap). Since
all elements in the new solution, except the exchanged ones, remain the same,
the computation of the objective function value for neighboring solutions can be
done quickly by considering only those exchanged elements. In the case of the
mQAP, the computation of the function values of neighboring solutions is very
similar. Assume that i and j are two positions exchanged in permutation 7, the
difference A(m, k,14,7) of function values regarding the k-th flow before and after
exchanging elements ¢ and j can be stated as:
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A(m, ki, §) = (aj; — ai)(bs o — b )+

(aji - al])<bfr,7rj - biﬂn) +
ZZ:l,S#i,j((asj - asi)(bI;Sm' - b];sﬂj) +
(ajs - ais)(bﬁi'ns - b‘]fl’j‘ﬂ's)) (4)

When A and B* k= 1,...,m, are symmetric,

n

A(TF, kv%]) =2 Z (asj - aSi)<b§r3m - bisﬂ'j) (5)
s=1,s#1,j

Then, the function value of the neighboring solution 7 after swapping the ele-
ments ¢ and j is

CF(7) = CH(n) + A(m, ki, 5), k=1,...,m. (6)

The computational complexity in (@) is only O(n), which is much less than
the complexity of evaluating C(7) in [ (i.e. O(n?)).

3 Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start metaheuristic algorithm, which repeatedly improves
starting solutions by local search. At each iteration of GRASP, a greedy ran-
domized constructive procedure and a local search procedure are involved. The
best local optimum collected over all local searches is retained and returned as
the final solution of GRASP.

3.1 Greedy Randomized Construction

A greedy randomized construction procedure for building starting solutions is
shown in Fig. [} Initially, a partial solution S is set as an empty set. Then, the
greedy function values of all unselected components in E are evaluated. To make
better contribution to the partial solution S, a restricted candidate list (RCL)
is formed by the components with low g values in E. One of the commonly-used
strategies to determine RCL is to select the elements with g values between

min _min mazx min )]

g™ g™+ ax (9" —g

)

where g™ = min{g(e)|e € E} and g™ = max{g(e)|e € E}. Here, a € [0, 1] is
a parameter to balance the greediness and randomness of the partial solution .S.
When « = 0, only the component with the minimal g value will be selected. This
component should make the biggest contribution to the partial solution. On the
contrary, when a = 1, all candidate components in E have equal chance to be
selected. That is, the construction procedure will pick unselected components
randomly. In practice, « is set to be either fixed or adaptive.
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1 begin

2 S := () and E := {all components of solution}.

3 while F is not empty do

4 foreach e in E do compute greedy function value g(e);
5 Define RCL as the set of elements in E with low g values;
6 Select an element € € RCL randomly;

7 Add e to partial solution (i.e., S := S U {e});

8 Remove € from E (i.e., E := E\{e}).

9 end

Fig. 1. Greedy Randomized Constructive Procedure of GRASP

3.2 Local Search Procedure

Following the construction step, local search is applied to improve starting solu-
tions. Two basic strategies - first improvement and best improvement, are often
considered to accept local search moves. In first improvement, the first neighbor
with better objective function value examined is accepted as the new current
solution. In contrast, best improvement examines all neighbors and accepts the
best one as the new current solution. More sophisticated local search methods
with good global search ability, such as simulated annealing and tabu search,
have also been suggested to improve the starting solutions in GRASP [13].

4 The Proposed mGRASP/MH Algorithm

4.1 Motivation

In [I0], a GRASP algorithm, denoted mGRASP here, was developed to tackle
the multi-objective knapsack problem. Like single-objective GRASP algorithms,
mGRASP uses a greedy randomized construction step and a local search step.
At each iteration, a weighted sum function is defined as the utility function for
selecting greedy elements in the construction step and accepting better neighbors
in the local search step.

To find a diverse set of Pareto-optimal solutions, mGRASP uses multiple
distinct weight vectors evenly spread. According to the experimental setting
reported in [I0], up to one thousand weight vectors are used in one thousand
iterations of mGRASP. Note that each iteration of mGRASP is independent
from the other iterations. As shown in [6/11], the adaptation of finite weight
vectors and the cooperation between solutions with similar weight vectors could
benefit the diversity and convergence in multi-objective search. These strategies
can be easily used in mGRASP.

Inspired by the POP principle, the guided mutation operator generates so-
lution in a different way to greedy randomized construction [8]. This operator
uses the global information in a probabilistic model to disturb the elite solutions
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1 Algorithm 1: mGRASP/MH
input : N: population size, a:: balance factor between greediness and
randomness, 3: proportion of components from elite solution
output: NDS: the set of all non-dominated solutions
2 Initialize P = {7r<1>7 e ,7r<N)} and W = {)\(1>, R )\(N>}.

3 begin
4 repeat
5 foreach i € {1,...,N} do
6 Step 1: Generate greedy solution 7 based on A and 7(¥;
7 Step 2: Apply local search on 7 to produce 7’ and update NDS;
8 Step 3: Replace the worse members in P with 7';
9 Step 4: Modify the search direction A\’ adaptively.
10 end
11 until stopping condition is satisfied ;
12 end

Fig. 2. Framework of mGRASP/MH

found during the search. This idea has not yet been used in multi-objective
algorithms. Then, we improve the performance of mGRASP by constructing
promising starting solutions based on elite solutions.

4.2 mGRASP/MH for the QAP

We propose an elitist multi-objective GRASP metaheuristic in this paper, called
mGRASP/MH. At each iteration, a population P = {z(1), ... 7(")} of solutions
and a set of corresponding weight vectors W = {/\(1), ceey )\(N)} are maintained.
The framework of mGRASP/MH is shown in Fig. 2l The four main steps in
lines 6-9 are involved in the main loop of mGRASP/MH. In the following, each
of these steps is detailed.

Step 1: Elitist-based Greedy Construction. Unlike the greedy randomized
construction algorithm in Fig. [, the construction algorithm shown in Fig. [3
uses not only problem-specific greedy information but also the elite solution 7(*)
found in the previous local search. Parameter « is used to balance the greediness
and the randomness of the partial solution. The parameter 3 € [0, 1] is used to
control the proportion of components copied from the elite solution 7. ng is
the number of elements copied from 7(9. ¢ is a random order of locations. L’
denotes the set of locations assigned. In lines 4-6, ny components in 7 are
directly copied into a new solution 7. Line 7 calculates the cost of the partial
solution containing the components only from elite solutions. LOC and FAC in
line 8 are the set of locations and facilities unassigned.

The ground set E is composed of all unassigned (location, facility) pairs. For
each pair, the growth in cost is computed in lines 11-13. The associated g value
is obtained in line 14. In line 16, RCL is formed by selecting a set of (location,
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1 Algorithm 2: ElitistGreedyConstruction(«, S, A 7r<i))
input : A\(V: current weight vector, 7(V: elite solution
output: 7: greedy randomized elite solution
2 begin
3 Set ¢ = {o1,...,Pn} to be a random permutation of L = {1,...,n},
no = |8 xn|, and L' = 0
4 for ¢ =1 to no do
5 Ty = T;iz; L' =L u{¢.};
6 end
7 for k=1 to m do Ck:ZieL’ZjeLlaij'bfri'”j;
s Set LOC = {¢ng+1,...,¢n} and FAC = {x}) ... %)}
9 while FAC is not empty do
10 foreach (lc, fc) € M = LOC x FAC do
11 for k=1 to m do
12 Alle, fe k) = 3 1 apacbn, o+ o1 Gicabfer, Faicicbfe s
13 end
14 glle, fe) = 7L N - (CF + Alle, fe,k));
15 end
16 RCL = {(le. fo)lg™™" < glle, fe) < g™ + alg™* - g"™")};
17 Randomly select a pair (Ic/, fc') from RCL and set m = fc' and
L'=Lu{ld};
18 for k=1tomdo C*=CF+ A(d, fc, k);
19 Set LOC = LOC\{Ic'} and FAC = FAC\{fc'}.
20 end
21 return ;
22 end

Fig. 3. Elitist-based Greedy Construction Procedure for the mQAP

facility) pairs with the g values between [¢g™™, g™ + a(g™*® — g™")], where
g™ = min{g(lc, fc)|(le, fc) € M} and g™** = max{g(lc, fc)|(lc, fc) € M}.
One pair (I, fc') of (location, facility) is randomly selected from RCL and
updates the partial solution in line 17. In line 18, the total cost of partial solution
with the pair selected in the previous step is computed. Line 19 removes Ic/
and fc’ from the sets of unassigned locations and facilities respectively. This
procedure is repeated until the set FAC is empty. Finally, a complete solution
is returned.

Step 2: Local Search. After constructing an elite greedy solution, a local
search procedure is triggered and guided by the weighted sum function with \(?)
in @). In mGRASP/MH, 2-opt local search with first improvement is used for
the mQAP. Each local search procedure is terminated if there is no solution in
its neighborhood with better fitness. Since all members of the population have
different weight vectors (i.e. search directions), the set of all local optima found
for all search directions is likely to cover the POF reasonably well. The set NDS
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is updated when a successful local move is made. On the one hand, the current
solution is added to NDS if it is not dominated by any member of NDS. On
the other hand, any members of NDS dominated by the current solution are
removed from this set.

Step 3: Selection. As discussed in [116], optimal solutions obtained with
similar weight vectors should be similar in the objective space and decision
space. Cooperation between solutions with similar weighted sum functions can
be very helpful for finding good approximations to the POF. Therefore, the local
optima obtained in Step 2 is very likely to be better than the solutions in the
population with similar weight vectors. In this paper, we compare m with all
7D e Pi=1,...,N.If f(zx|]\®) < f(@|A\®), then set 7)) = 7. In mGRASP,
solutions found in different iterations do not interact.

Step 4: Modification of Search Direction. Ideally, finding the optimal so-
lutions of all weighted sum functions leads to a good approximation of the POF.
However, this is impossible in mGRASP/MH since a population of fixed size
is used. In [I1], we have suggested an adaptive mechanism to tune the weight
vector of each solution according to the locations of some solutions previously
examined. In this mechanism, the non-dominated neighboring solution 7’ that
is nearest to 7(*) is identified. For each objective k, if C*(7') < C*(x(?), then
decrease )\,(;) by 6 (> 0); otherwise, increase by 4. If )\,(;) exceeds the bounds,
then use the nearest bound to replace it. As a result, the optimal solution of the
weighted sun function with the modified weight vector should be moved away
from 7’ in the objective space. In such a way, the sparse part of POF can be
explored more intelligently and efficiently. In this paper, we use this strategy in
a slightly different manner. Each search direction is modified with a probability.

5 Computational Experiments

5.1 Performance Assessment

To quantitatively evaluate the non-dominated solutions found by each algo-
rithm, we use both the generational distance (GD) metric and the inverted
generational distance (IGD) metric. Assume S is the final set of non-dominated
solutions found by multi-objective algorithm and S* is a set of reference so-
lutions, either the true POF or a very good approximation. The GD metric
measures the average distance from S to S*, while the IGD metric measures
the average distance from S* to S [14]. These two metrics can be formulated
as follows: GD(S,S*) = ﬁZueS min{dist(u,v)lv € S*} and IGD(S*,S) =
|;_*|Zu€S* min{dist(u,v)|v € S}, where dist(u,v) is the Euclidean distance
between two objective vectors. The smaller the GD or IGD values, the better
quality of the set S. In this paper, the reference set for each instance is formed
by collecting all non-dominated solutions found by five algorithms in 20 runs.
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5.2 Experimental Settings

We used a set of 18 benchmark mQAP instances to test the performance of
mGRASP/MH. These test instances were generated by Knowles [I5] and are
available at http: //dbkgroup. org/knowles/m@AP/. The correlation values
between flow matrices of these test instances are shown in Table [l

Table 1. Correlations between the flows of the 18 benchmark mQAP test instances

Instance |c(B', B?)[| Instance |c(B',B?)|| Instance [c(B', B?),c(B', B%)
KC10-2f1-1uni 0 KC20-2f1-1uni 0 KC30-3f1-1uni (0, 0)
KC10-2f1-2uni 0.8 KC20-21-2uni 0.7 KC30-3f1-2uni (0.4,0.4)
KC10-2fl-3uni| -0.8 KC20-2f1-3uni| -0.7 KC30-31-3uni (-0.4, -0.4)
KC10-2f1-1r] 0 KC20-211-1r] 0 KC30-3f1-1r1 (0.4, 0)
KC10-2f1-2r] 0.7 KC20-211-2r] 0.4 KC30-3f1-2rl (0.7, -0.5)
KC10-211-3r1 -0.7 KC20-211-3r1 -0.4 KC30-31-3rl (-0.4, -0.4)

We compared mGRASP/MH to mGRASP and to three state-of-the-art EMO
algorithms - MOEA /D, NSGA2, and SPEA2. In MOEA /D, the mQAP is con-
verted into a number of single objective subproblems. These subproblems are
optimized by an evolutionary algorithm simultaneously. The best solutions to
all subproblems found so far are retained in its population. The distribution of
these solutions is controlled by the diversity of weight vectors. Each offspring
solution in MOEA /D is improved by local search. In both NSGA2 and SPEA2,
the non-dominated solutions found so far have priority to survive in the popula-
tion. The diversity of these non-dominated solutions is maintained by estimating
their density. In this paper, we use cycle crossover [16] and mutation based on
the 2-opt swap for the MOEA /D, NSGA2, and SPEA2 algorithms.

In both mGRASP and mGRASP/MH, « is set to 0.1. Parameter 3 is set to 0.5.
That is, half of the components in elite solutions are copied to the construction
procedure of mGRASP/MH. The population size (N) in mGRASP/MH is 50
for all instances. The § value for changing weight is 0.01. The population size in
NSGA2, SPEA2, and MOEA/D is 100. In MOEA/D, the neighborhood size of
each subproblem is 20 for all test instances.

We run each algorithm on each instance 20 times. All algorithms are coded in
C++ and executed on a PC with CPU (Intel (R) Core (TM) 2, 1.86GHZ) and
RAM (2GB). Every algorithm uses the same computational time for the same
test instance. The computational times used for the instances with 10, 20, and
30 locations are set to 10, 20, and 30 seconds, respectively.

5.3 Discussions of Results

The mean GD and IGD values found by the five algorithms are summarized in
Table 2] and Table B It is evident that mGRASP/MH and MOEA/D clearly
outperform the other three algorithms on all test instances. Among the five
algorithms, NSGA2 and SPEA2 show the worst performance with respect to


http://dbkgroup.org/knowles/mQAP/

490 H. Li and D. Landa-Silva

Table 2. The mean GD values of non-dominated solutions found in 20 runs

Instance | mGRASP/MH|mGRASP|MOEA/D|NSGA2|SPEA2

KC10-21-1uni 0 592 1730 4462 6152
KC10-2f1-2uni 5305 0 5490 11800 | 13845
KC10-21-3uni 0 1 111 1357 2893
KC10-21-1r] 0 1129 22132 | 236966 | 321468
KC10-21-2r] 22086 16300 34471 | 157128 | 151661
KC10-2f1-3r1 0 1129 14979 | 244293 | 285310
KC20-21-1uni 9225 21758 11269 48813 | 53635
KC20-2f1-2uni 9138 58660 16364 65180 | 61904
KC20-21-3uni 3758 6966 4934 22133 | 29537

KC20-21-1r1 580688 2069384 | 509229 |2996725|2565999
KC20-21-2r] 205812 1124948 | 155082 |1372892(1117776

KC20-2f1-3r1 168651 476440 145244 (1194632|1251489
KC30-3fl-1uni 41072 55178 18945 | 132735 | 163554
KC30-31-2uni 64156 111067 26085 | 153182 | 156566
KC30-31-3uni 30308 36855 14684 94685 | 123557

KC30-31-1r1 1302906 2491688 | 302268 |3264761|3667731
KC30-3f1-2rl 877695 1931606 | 297531 |3038431{3281139
KC30-31-3r1 917218 1427153 | 313038 [3450839|3880325

Table 3. The mean IGD values of non-dominated solutions found in 20 runs

Instance | mGRASP/MH|mGRASP|MOEA/D|NSGA2|SPEA2

KC10-2fl-1uni 7 460 2211 6590 7795
KC10-21-2uni 4715 0 4915 11284 | 13196
KC10-21-3uni 0 6 147 2393 4387
KC10-21-1r1 266 3555 45512 | 318513 | 382993
KC10-2f1-2rl 8414 10460 128988 | 212026 | 226922
KC10-21-3r] 14 2403 37239 | 300822 | 357818
KC20-21-1uni 8509 21360 12058 53492 | 58575
KC20-21-2uni 10500 58830 16987 66425 | 64604
KC20-21-3uni 3526 6677 4878 35764 | 44289

KC20-21-1r1 467232 1980738 | 433020 |2914559|2623621
KC20-2f1-2r1 280650 1259521 | 192956 |1895681|1520627

KC20-2f1-3r1 205030 653760 153859 (1594337|1534329
KC30-3l-1uni 38396 54552 20578 | 141325 | 167422
KC30-31-2uni 63583 110308 26415 | 161061 | 163284
KC30-31-3uni 29342 36927 16133 | 127932 | 154106

KC30-31-1r1 1519861 3350333 | 474028 [5962007|7018525
KC30-31-2rl 1062987 2837723 | 421962 |4538068|4986717
KC30-3f1-3rl 974208 1658247 | 395310 |4072323(4503648

minimizing the GD and IGD values. The main reason for this might be that no
local search is used to improve offspring solutions in these two approaches.

The non-dominated solutions found by all five algorithms after 20 runs on
the four 2-objective instances with zero correlation between flow matrices are
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Fig.4. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
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x10° KC10-2f-1rl
7, T T T T T
* mGRASP/MH
o mGRASP

e ¥ o MOEAD

8 o NSGA2

LIS > SPEA2
55F b B
51 |

1) g >
45F 4
-~ ® >
%%
o
4t By i R
&g
%DD
g
3.5 %{} 7
%bb
3t @ B
o &
'y
® >
25 ® > A —
@
‘ ‘ ‘ ‘ ‘ ‘ ® =%

2 25 3 35 4 45 5 5.5

fy x10°

Fig.5. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
NSGA2, and SPEA2 on KC10-2fl-1rl in 20 runs

plotted in Figs. @7 It can be observed from Fig. [ that all five algorithms find
almost the same set of non-dominated solutions on instance KC10-2fl-1uni. The
results in Fig.[6l and Fig. [[ show that both mGRASP/MH and MOEA /D clearly
perform better than mGRASP on KC20-2fl-1uni and KC20-2fl-1rl. Figs.
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Fig.7. Non-dominated solutions found by mGRASP/MH, mGRASP, MOEA/D,
NSGA2, and SPEA2 on KC20-2fl-1r] in 20 runs

show that three local search-based metaheuristics - mGRASP/MH, mGRASP,
and MOEA/D, find better solutions than two Pareto-based EMO algorithms -
NSGA2 and SPEA2 on three instances - KC10-2fl-1rl, KC20-2fl-1uni, and KC20-
2f1-1rl.
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Results in Table[2land TableBlon six 3-objective test instances show that both
mGRASP/MH and MOEA /D perform better than the other three algorithms in
terms of the GD and IGD metrics. It can also be seen that mGRASP/MH finds
the worse GD and IGD values than MOEA /D on these instances. It is easy to un-
derstand the reason behind the worse performance of mGRASP/MH. The greedy
randomized construction procedure in mGRASP/MH has higher computational
complexity than the crossover and mutation operators used in MOEA /D. Within
the restricted computational time, MOEA /D could improve more new solutions
by local search. This is also part of the reason that mGRASP/MH performs
better than mGRASP. The former only builds half of the starting solution by
greedy randomized construction procedure. Therefore, mGRASP/MH needs less
time in the construction of a starting solution.

6 Conclusions

We proposed an elitist GRASP metaheuristic algorithm called mGRASP /MH to
tackle the mQAP (multi-objective quadratic assignment problem). In the pro-
posed approach, elitist-based greedy randomized construction, cooperation be-
tween solutions, and weight-vector adaptations are used to accelerate convergence
and diversify the search. Our experimental results show that mGRASP/MH is
competitive with MOEA /D and outperforms mGRASP and two Pareto-based
EMO algorithms - NSGA2 and SPEA2 on the benchmark problem instances con-
sidered here. It has also been shown that the multi-objective metaheuristic algo-
rithms using local search perform better than those without local search for the
mQAP.

In this paper, the construction of starting solutions copies parts or compo-
nents from elite solutions. Under the framework of mGRASP/MH, it is very
easy to use other advanced techniques, such as guided mutation [§], cooperative
strategy [I7/I8] and path relinking [19]. Complex memory structure for stor-
ing historical information from the search, probability distributions in guided
mutation, all these should benefit the global search ability of mGRASP/MH.
The cooperation between solutions obtained by different local search procedures
can be implemented by considering path relinking [19] or tabu mechanisms [I8§].
These are some of our future research directions.
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EP/E019781/1. The authors would like to thank anonymous reviewers for their
helpful and constructive comments.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman,
New York (1979)

2. Knowles, J.D., Corne, D.W.: Towards landscape analyses to inform the design of
hybrid local search for the multiobjective quadratic assignment problem. In: Soft
Computing Systems - Design, Management and Applications (HIS 2002), pp. 271—
279 (2002)



494

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

H. Li and D. Landa-Silva

Paquete, L., Stiitzle, T.: A study of stochastic local search algorithms for the
biobjective QAP with correlated flow matrices. European Journal of Operational
Research 169(3), 943-959 (2006)

. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182—
197 (2002)

. Zitzler, E., Laumanns, M., Thiele, L.:. SPEA2: Improving the strength pareto evo-

lutionary algorithm for multiobjective optimization. In: EUROGEN 2001 - Evo-
lutionary Methods for Design, Optimisation and Control with Applications to In-
dustrial Problems, Athens, Greece, pp. 95-100 (2001)

. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on

decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712-731 (2007)

. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht

(1998)

. Zhang, Q., Sun, J.: Iterated local search with guided mutation. In: The 2006 IEEE

Congress on Evolutionary Computation (CEC 2006), Vancouver (2006)

. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult

set covering problem. Operations Research Letters 8, 67-71 (1989)

Vianna, D.S., Arroyo, J.E.C.: A GRASP algorithm for the multi-objective knapsack
problem. In: The First International Conference on Quantitative Evaluation of
Systems. IEEE Computer Society, Los Alamitos (2004)

Li, H., Landa-Silva, J.D.: Evolutionary multi-objective simulated annealing with
adaptive and competitive search direction. In: The 2008 IEEE Congress on Evo-
lutionary Computation (CEC 2008), Hong Kong, pp. 3310-3317. IEEE Press, Los
Alamitos (2008)

Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17(4-5), 443-455 (1991)

Resende, M.G.C.: Metaheuristic hybridization with GRASP. In: Chen, Z.L.,
Raghavan, S. (eds.) Tutorials in Operations Research, INFORMS (2008)

Czyzak, P., Jaszkiewicz, A.: Pareto-simulated annealinga metaheuristic technique
for multi-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1),
34-47 (1998)

Knowles, J.D., Corne, D.W.: Instance generators and test suites for the multiob-
jective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler,
E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295-310. Springer,
Heidelberg (2003)

Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-
tors on the traveling salesman problem. In: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic algorithms and their application,
Hillsdale, NJ, USA, pp. 224-230. L. Erlbaum Associates Inc., Mahwah (1987)
Burke, E.K., Landa-Silva, J.D.: The influence of the fitness evaluation method on
the performance of multiobjective search algorithms. European Journal of Opera-
tional Research 169(3), 875-897 (2006)

Landa-Silva, J.D., Burke, E.K.: Asynchronous cooperative local search for the office
space allocation problem. INFORMS Journal on Computing 19(4), 575-587 (2007)
Oliveira, C.A.S., Pardalos, P.M., Resende, M.G.C.: GRASP with path-relinking
for the quadratic assignment problem. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA
2004. LNCS, vol. 3059, pp. 356-368. Springer, Heidelberg (2004)



	An Elitist GRASP Metaheuristic for the Multi-objective Quadratic Assignment Problem
	Introduction
	The Multi-objective Quadratic Assignment Problem
	Mathematical Formulation
	Fast Local Search

	Greedy Randomized Adaptive Search Procedure
	Greedy Randomized Construction
	Local Search Procedure

	The Proposed mGRASP/MH Algorithm
	Motivation
	mGRASP/MH for the QAP

	Computational Experiments
	Performance Assessment
	Experimental Settings
	Discussions of Results

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


