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Abstract. We propose an approach based on mixed integer programming
(MIP) with decomposition to solve a workforce scheduling and routing
problem, in which a set of workers should be assigned to tasks that
are distributed across different geographical locations. We present a
mixed integer programming model that incorporates important real-
world features of the problem such as defined geographical regions and
flexibility in the workers’ availability. We decompose the problem based
on geographical areas. The quality of the overall solution is affected by
the ordering in which the sub-problems are tackled. Hence, we investigate
different ordering strategies to solve the sub-problems. We also use a
procedure to have additional workforce from neighbouring regions and this
helps to improve results in some instances. We also developed a genetic
algorithm to compare the results produced by the decomposition methods.
Our experimental results show that although the decomposition method
does not always outperform the genetic algorithm, it finds high quality
solutions in practical computational times using an exact optimization
method.
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1 Introduction

The workforce scheduling and routing problem (WSRP) is a difficult problem
that arises in industries like home care, health care, patrol service, meter reading,
etc. [9]. One specific example of WSRP is home health care services where nurses
or care workers should deliver care services to patients at their home. Solving
the problem involves producing a job schedule and a route for each worker while
satisfying the business requirements and considering workers qualifications and
skills, task requirements, travelling distances, etc. It is usually expected that the
solution gives the lowest operational cost.

Developing automated solution methods to solve WSRP scenarios is a current
research challenge as reflected by recent published research [17,22,23]. Solving
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an instance of WSRP often requires the expertise and knowledge of a human
planner [4]. In this research, we are working with an industrial partner who
provides scheduling services for businesses and other organisations facing this
type of problems. The data sets considered here come from real-world scenarios.
A particular feature is that ‘working areas’ or ‘regions’ are pre-defined and this
affects the difficulty of the problem being tackled.

Tackling WSRP with exact optimization methods to produce solutions in
practice is still a research challenge. Since obtaining an optimal schedule is
the ultimate goal, exact methods like mathematical programming are a suitable
approach. However, proven optimality with exact methods has been shown mainly
on problem instances of limited size [7, 8]. Problem instances faced in practice
are larger and for solving them, heuristic methods are usually considered more
efficient in terms of computation time [2,27]. The motivation for our work is to
develop a solution approach based on exact optimization to tackle real-world
WSRP instances.

In this paper, we propose a decomposition approach that uses mixed integer
programming (MIP) to tackle WSRP instances of practical size. The proposed
method splits the problem into sub-problems according to defined geographical
areas. Our computational experiments show that the approach allows to explore
the trade-off between computation efficiency and solution quality. We also use a
process that brings additional workforce to understaffed regions from neighbouring
regions. This process is applied when required before further splitting the regions
into smaller sub-problems. The results from our experiments suggest that the
success of the proposed decomposition varies according to the problem instance,
which provides us with ideas for future research.

The main contribution of this paper is to show that the ordering in which sub-
problems in workforce scheduling and routing are tackled within a decomposition
approach, has an effect on the computational efficiency and achieved solution
quality. Following this, some ordering strategies are proposed to achieve solutions
of good quality in practical computation time. Moreover, we also compare the
results produced with the decomposition method to the results obtained with a
standard genetic algorithm and to the optimal solution when available.

Section 2 reviews related works in the literature and establishes the motiva-
tion for the research in this paper. Section 3 gives the problem definition and
formulation for the WSRP considered here. Section 4 describes the proposed MIP
with decomposition approach and the experimental study, including description
of test data instances. The final section summarises the paper and outlines some
of the proposed future work.

2 Literature Review

Solving integer programming formulations for larger problem instances still
has its limitations in terms of computation time. Mathematical programming
has been used in the literature to tackle some WSRP. Examples include linear
programming [3], integer programming [20] and mixed integer programming [7, 8,
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13, 30]. To solve real-world sized problems, works in the literature often resource to
heuristic or hybrid algorithms [2, 6, 14]. There are some improved exact methods,
like branch and price [8,13,30], that can deal with large scenarios. Branch
and price requires problem reformulation which usually involves Dantzig-Wolfe
decomposition to compute a tighter relaxation bound [33,15]. The algorithm
also requires two steps to repeatedly solve the problem in order to improve the
solution.

Decomposition techniques are another good alternative to apply exact opti-
mization methods to large integer programming formulations. The basic idea is
to transform or split the problem into smaller sub-problems. This technique has
been applied in various problem domains. For example, Benders’ decomposition
was used to produce solutions for large instances of the aircraft routing and crew
scheduling problem [11, 24]. Benders’ decomposition is suitable for problems with
exclusive sub-problem sets or problems that show some block structures linked
by constraints [5]. In another example of decomposition, [26] split the warehouse
location-routing problem into three smaller problems: the complete multi-depot
vehicle-dispatch problem, the warehouse location-allocation problem and the
multi-depot routing-allocation problem. These three smaller problems were solved
in phases and each of them was formulated with mathematical programming and
solved by an exact solver. For detailed reviews of decomposition approaches see
[29, 34].

Decomposition techniques have also been applied within heuristic approaches
using some form of clustering. For example, [31] tackled a large vehicle routing
problem by decomposing it into sub-problems. Each sub-problem was a cluster of
customers assigned to a vehicle which then became a travelling salesman problem.
The sub-problem size is controlled by splitting a large sub-problem to shrink
the corresponding cluster. Similar ideas were applied in a hybrid heuristic for
generating multi-carrier transportation plans [21].

In this work we propose a decomposition approach that uses mixed integer
programming (MIP) to tackle workforce scheduling and routing problem instances
arising in real-world scenarios. For this, we also present an MIP formulation that
incorporates features of the WSRP scenarios faced by our industrial partner. The
proposed decomposition technique does not require some formulation structure
like in Benders’ decomposition neither uses a heuristic solver. Our approach
harness the power of exact optimization solvers while decomposing the problem
instances in a way that is meaningful to practice.

3 Problem Description and Formulation

The goal in WSRP is to assign each worker to undertake a set of tasks across a
set of geographical locations. A path is the series of tasks to be performed by a
worker within the planning period. A good quality solution consists of a set of
shortest paths representing the task assignments for each worker at the lowest
cost. The solution should also respect other conditions such as task pre-requisites,
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required travelling time between locations, defined appointment times, workers’
skills, workers availability, restricted working regions, working time limits, etc.

Consider a graph G = (V, E) where V =T U D U D’ represents the union of
a set of tasks (each task as a location) T, a set of start locations D and a set
of end locations D’ while E represents a set of links between two locations (e.g.
between two task locations or between the worker’s home and a task location).
The set of workers is denoted by C'. Binary decision variable z{ ; = 1 if worker
c € C is assigned to a task j € T after finishing task i € T, 27 ; = 0 otherwise.
Note that elements of T are referred here as tasks but also each task has an
associated location.

In real-world scenarios like the ones considered here, the available skilled
workforce is often not sufficient to cover all the required tasks. We introduce a
dummy worker to address this issue (through an integer decision variable y;)
that takes any uncovered task that cannot be assigned to the available workforce
[1,30]. In our problem some tasks may require more than one worker. We denote
the number of workers required to perform a task by b;. Therefore, the required
number of workers must be assigned to each task. The dummy worker can be used
for that effect too, even taking the whole task as y; = b;. Then, the assignment
of tasks is represented by (1).

> ag;+yi=b,  VjeT (1)

ceCieDUT

The sequence of tasks performed by a worker is represented as a path for
visiting task locations, hence the number of workers arriving at one location
must be equal to the number of workers leaving that task location so that either
workers are assigned to the next task or go home. Then, the path constraint is
represented by (2).

Sooaf;= > af, NjeT\VeeC (2)

i€ DUT keD'uT

Workers must start and end their paths from their specific location (e.g. their
home or a central office) as given by (3) and (4). Since D and D’ are sets of start
and end locations respectively, these two constraints indicate the start and end
locations for each worker. Also, workers leave their start location and enter their
end location at most once (although the start and end locations can be different)
as expressed by (5) and (6) respectively. Note that a worker does not leave his
start location if he is not assigned to work. This is different from the common
case in the literature where all workers leave their start location. In our problem
instances, the specific start and end locations are provided for every worker.

>oag, > Y af; VeeCVieT,3keD (3)
jeD'UT jeED'UT
Soaf= Y o,  NeeCVjeT,keD (4)



Extended Decomposition for MIP to Solve a WSRP 5

Y af;<1  \VieDVeeC (5)
jeD'uT

Y oaf; <1 VjeD\VeeC (6)
i€ DUT

Let S be the set of skills and s € S a particular skill. For worker ¢ the
qualification level on skill s is ¢5 and for task j the requirement of skill s is 7 ;.
Hence, worker ¢ can be assigned to task j only if the worker has the required
qualifications level for skill s, that is, g§ > 75 ;. Then, in our model the multi-skill
qualification requirements are represented by (7).

Ti s < qs WNVee C)Vie DUT\VjeT,Vse S (7)

Also, travel time between task locations must be feasible. Decision variable af
takes a positive fractional value that gives the worker arrival time to the location
of task i. Note that the maximum arrival time value is 1440 which is equivalent
to the 24 hour of the day. Let ag, aj be the arrival times of worker ¢ to the
locations of task ¢ and task j respectively. Let ¢; ; be the travelling time between
the locations of tasks ¢ and j. Let &; be the duration of task 7. Then, if worker ¢
is assigned to perform task j after completing task 4, inequality (8) (M is a large
constant number) expresses the arrival on time requirement.

aj + M1 —xi;) > ai +x] ;ti j + ,Vee C,Vie DUT,Vje D'UT (8)

An arrival time window is also defined for task j and the worker should not
arrive earlier than wf or later than w]U, as expressed by (9).
wl <a¢ <w¥ VjeT VeeC (9)
g =% =" ) ’

An important feature of our WSRP scenarios is that working regulations
and availability can be specific for each worker. In the problems considered here,
this refers to long breaks between shifts (short breaks within the working shift
are not considered), days-off, working shift duration, maximum working hours,
and specific worker preferences (e.g. late morning, afternoon only, whole day,
overnight). We adopt a flexible availability constraint from an optimization of
daily scheduling for home health care services [32]. Any task assignment at time
a§ including the task duration d; should lie in between the shift starting time af,
and the shift ending time af;. The availability parameters af and af; are real
numbers defined for each worker c. A task assigned outside the shift is charged
as additional expense, hence binary decision variable w; = 1 if this is the case
and w; = 0 otherwise. Then, individual availability constraints are denoted by
(10) and (11) while the working hours limit (h°) constraint is denoted by (12).

aj —aj <M1 —-2zf,+w;) VeeCVie DUT\VjeT (10)
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Table 1: Summary of problem requirements and type of constraints.

Hard Soft‘ Hard Soft
Job assignment (Cons. (1)) * |Start-end paths (Cons. (3) - (6)) *
Path constraint (Cons. (2)) * Travel time feasibility (Cons. (8)) *
Time windows (Cons. (9))  * Skill and qualification (Cons. (7))  *
Working hours (Cons. (12)) * Worker availability(Cons.(10),(11)) 1  *

Working regions(Cons.(13)) *

t Hard constraints (15) and (16) are described in Section 4.2 and only apply to the
decomposition model.

aj +06; —ag < M1 -7 ; +w;) Vee C\Vie DUT\Vj €T (11)

> ags <kt VeeC (12)

i€DUT j€T

Another important feature of our WSRP scenarios is that workers have
preferred geographical areas for working but the decision maker can still request
workers to work outside those preferred regions. We formulate this in (13) where
binary parameter 7§ = 1 if worker c is willing and able to work at the location
of task j, 7§ = 0 otherwise, and binary decision variable ¢; = 1 if worker c is
forced to work outside their defined regions.

Z i — v <5 NVee C)VjeT (13)
i€DUT

Most of the above constraint formulations exist in literature but not all.
Common constraints (see also [9]) such as path constraint (2), skill and qualifica-
tion (7) and time windows (9) form the basic structure of the scheduling and
routing problem [12,1,13, 10, 30]. Tailor cut constraints adopted from literature
are the availability constraints (10,11) while the constraints that required further
adaptation to our problem features are the working region (13) (implemented as
soft constraint) and start-end paths (3-6).

Table 1 summarises the constraints in our MIP model. Given our real-world
data sets, some are implemented as soft constraints. For example, workers can
be forced to work outside their predefined regions and availability. Also, tasks
can be left unassigned (assigned to the dummy worker). These features are quite
important to maintain the practical applicability of our model and solution
approach.

The objective function (14) involves three costs: monetary cost, preferences
penalty cost and soft constraints penalty cost.
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Minz Z Z A (dij +p5) o7 5 + Z Z Z 20525
c€C ieDUT jeD'UT c€C ieDUT jeD'UT
+ D (sws +45) + Aayy)  (14)
jET

The first term in (14) is the monetary cost and includes the travelling cost
d;,j of going from location of task ¢ to the location of task j, and the payment p§
for worker ¢ to perform task j. The second term in (14) is the preference penalty
cost denoted by p > 0 and is a summation of penalties for not meeting worker-
client preferences, required skill preferences and working region preferences. This
penalty value can go from 0 to 2 and p§ = 0 when all preferences are met, while
this penalty value grows higher as the preference level of assigning worker ¢ to
task j decreases. The third term in (14) is the soft constraints penalty cost due
to the violation of the three soft constraints in the model. The job assignment
constraint has the highest priority, so a violation of this constraint type costs
more than a violation of the the other two constraints. The worker availability
and working regions constraints have the same priority. Note that the working
regions constraint is involved in two costs. If the worker is assigned a task in
a non-preferred region then this is a constraint penalty cost. If the worker is
assigned to one of the preferred regions this is quantified as a preference penalty
cost according to the degree in which the region is preferred by the worker (several
working regions with different preference levels). Note that A1, A2, A3 and A4 are
weights that set the priorities between objectives as A\ < Ay < A3 < A\q. The
value assigned to these weights are included with the data instances.

The above MIP model corresponds to the integrated scheduling and routing
problem. Solving this model with an exact optimization method is not practical
considering our real-world problem instances. Hence, we apply a decomposition
technique.

4 Decomposition Approach and Study

In order to reduce the overall computational time for solving real-world instances
of the integrated workforce scheduling and routing problem, we now present a
decomposition method. First, we describe the features of our problem instances
as this will help to explain the proposed decomposition approach. Later, the
method is described and experimental results are provided.

4.1 Test Instances

For the present work, we prepared some test instances using real-world data
corresponding to home care scenarios in the UK, provided by our industrial
partner. A problem instance P has a set of nodes V. Recall from Section 3 that
V =DUTUD'. Also, some of the tasks {j1,J2,...,4n} in T share the same
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Table 2: The test data sets.

Instance Il K| T A4 ‘Instance Ic| K| T 4]
WSRP-A-01 23 25 31 6 WSRP-B-01 25 27 36 6
WSRP-A-02 22 24 31 4 WSRP-B-02 25 11 12 4
WSRP-A-03 22 28 38 5 WSRP-B-03 34 43 69 6
WSRP-A-04 19 22 28 3 WSRP-B-04 34 14 30 4
WSRP-A-05 19 9 13 3 WSRP-B-05 32 38 61 8
WSRP-A-06 21 22 28 7 WSRP-B-06 32 38 57 7
WSRP-A-07 21 9 13 3 WSRP-B-07 32 38 61 7

WSRP-D-01 164 233 483 13 WSRP-F-01 805 477 1211 45
WSRP-D-02 166 215 454 12 WSRP-F-02 769 496 1243 46
WSRP-D-03 174 279 585 15 WSRP-F-03 898 582 1479 54
WSRP-D-04 174 237 520 15 WSRP-F-04 789 513 1448 47
WSRP-D-05 173 259 538 15 WSRP-F-05 883 626 1599 59
WSRP-D-06 174 291 610 15 WSRP-F-06 783 565 1582 44
WSRP-D-07 173 293 611 15 WSRP-F-07 1011 711 1726 64

|C| = number of workers.

| K| = number of task locations.
|T'| = number of required tasks.
|A| = number of working regions.

geographical location k € K, where K is a set of geographical locations. A group
of locations are assembled as a geographical region or working region a € A. Note
that a C K and A is a partition. Also, an individual worker ¢ may work on one
or several geographical regions. As noted above, a key aspect of our scenarios is
that several tasks might be required at one particular location. Each individual
task may have different required skills, worker preferences and worker cost.

We took four real-world scenarios and prepared a data set from each. Although
the instances in each data set come from the same scenario, each instance is formed
from a different planning time giving a variation in the available human resources
and task requirements. In our data, the start and end locations of a worker are
the same (d = d’). Table 2 shows the main features of the test instances: the
number of available workers |C|, the number of task locations |K|, the numbers
of tasks |T'| and the number of predefined geographical regions | A|. In terms of
size, instances WSRP-A-(01-07) and WSRP-B-(01-07) are considered small with
around 19-34 workers and 13-69 tasks. The optimal solution for each of these
instances can be found in less than 5 minutes. Instances WSRP-D-(01-07) and
WSRP-F-(01-07) are considered large with more than 100 workers and 400 tasks.
These large instances cannot yet be solved to optimality in practical computation
time. In our experimental study, we use the small instances to validate the
proposed decomposition approach as we can compare to the optimal solutions.
Moreover, the experimental results show the suitability of the decomposition
approach in tackling the large instances using an exact optimization solver.
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Algorithm 1: Geographical decomposition with conflict avoidance (GDCA).

Data: Problem instance P = {C, A}
1 initialization: For worker ¢ € C, define earliest availability vector Sz = (87) and
latest availability vector Su = (8%) ;

2 Split problem P by regions denoted as P; = {C,a},a € A,i = 1...]A;
3 forall the P, € P do

4 Solve P; with availability ar, and ay by CPLEX solver— @;;

5 Update availability vector 1, and Bu;

6 end

7 Combine sub-problem solutions;

4.2 Geographical Decomposition with Conflict Avoidance

In this paper, the workforce scheduling and routing problem is decomposed into
working regions as this is a key feature of the scenarios provided by our industrial
partner. Since we decompose the problem into sub-problems to deal with the
larger size more efficiently, by solving the sub-problems one at a time in a given
sequence, we can no longer guarantee overall optimality.

Basically, the decomposition method generates a sub-problem for each working
region and solves each sub-problem in sequence. Worker assignment conflicts (i.e.
a worker being assigned to different task locations at the same time) are avoided
because each sub-problem is solved using only the reduced available workforce
after solving the previous sub-problem.

Algorithm 1 presents the proposed geographical decomposition with conflict
avoidance approach (GDCA). A problem instance P is split into several sub-
problems P; (step 2). A sub-problem P; corresponds to a geographical region or
working region a € A. Some regions may generate a sub-problem that is too large.
Hence, we further split them until the sub-problem has no more than around
ten locations. Then, the sub-problems are solved in a given sequence (steps 3-6)
and different solving sequences can lead to different solution quality. This is
because the first sub-problem has access to the most workforce resources but
subsequent sub-problems will have access to limited available workforce. Since
worker assignment conflicts are avoided, this means that the hard constraints
expressed by equations (15) and (16) are enforced in this algorithm.

a5+ 6;— By <M2—15,-C) VeeCN¥ie DUTVjeTuD  (15)

B —af < M(1—xf; +¢°) Vee C,Vie DUT\VjeTuD' (16)

Here, 8¢ denotes the start of unavailable time and ff; denotes the end of
unavailable time for worker c. Since the original model generates a continuous
path for a worker, a path created under hard availability conditions is allocated
either before or after the unavailability period. That is, a path which overlaps
with the unavailability period defined by 3¢ and ¢ is not allowed. The control
variable (¢ is applied for selecting only one side of the availability period. When
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(¢ =1 the time interval before ¢ is selected and if the (¢ = 0 the time interval
after Bf; is selected.

In our data, we know that the start location d and end location d’ for a worker
are the same. Therefore, we designed a sub-problem solutions combination pro-
cess based on this assumption. During the Combine sub-problem solutions
process (step 7), sub-problem solutions are combined together by connecting
the worker’s paths from each sub-problem to get a long single path. After this
process, a worker leaves his start location and arrives to his end location only
once. Suppose that ¢4 = {(zg,,,a7), (v, 4,ag,)} is a solution to sub-problem
P, representing the assignment of worker ¢ from start location d to work on
task ¢1 and returning to end location d’ and @2 = {(z§ ,,, a$), (2§, 4, ag,)} is a
solution to sub-problem P, representing the assignment of the same worker ¢
from starting location d to work on task ¢5 and returning to ending location
d’. Assume without loss of generality that a < ag, < aj <ag,. The combining
process redirects the arriving assignment to end location d’ to task t, which gives
a global solution as @ = {(z§, ,af), (zf, +,,a5), (xf, 4, ag,)}. It is possible than
in other scenarios of the WSRP, the start location and end location for a worker
are different, we leave this for future work as it is not a feature of the scenarios
tackled at present.

4.3 Experimental Study of the Decomposition Method

We conduct an experimental study to gather insights into the performance of the
proposed geographical decomposition method. The flow of the study is depicted
in Figure 1. The figure outlines the three parts of the experimental design. First,
on the left-hand side of the figure, the permutation study refers to solving
the sub-problems in different order given by all the different permutations of
the geographical regions. However, trying all permutations is practical only in
small problems. Therefore, finding an effective ordering pattern is the second
part of the experiment, observation step in the figure. This second part solved
each sub-problem using all available workforce, i.e. ignoring if some workers were
assigned in previous sub-problems. The third part analysed the results from the
observation step in order to define some strategies to tackle the sub-problems.
Based on this strategies study, some solving strategies were conceived. Listed
in the figure are these ordering strategies: Asc-task, Desc-task, Asc-wé&u, etc.
More details about these ordering strategies are provided when describing the
Observation step below. Finally, the solutions produced with the different
ordering strategies are compared to the solutions produced by the permutation
study to evaluate the performance of these ordering strategies.

Permutation Study. Since the number of permutations grows exponentially
with the number of geographical regions, we performed the permutation study
using only the instances with |A] = 3 and |A| = 4 geographical regions. Figure
2 shows the relative gap obtained for the small instances that have 3 regions.
Each sub-figure shows the results for one instance when solved using the different
permutation orders of the 3 regions. Each bar shows the relative gap between the
solution by the decomposition method and the overall optimal solution. The figure
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Fig. 1: Outline of the experimental study in three parts: permutation study, observation
step and strategies study.

shows that the quality of the obtained solutions for the different permutations
fluctuates considerably. Closer inspection reveals that in these instances the
geographical regions are very close to each other and sometimes there is an
overlap between them. The result also reveals that some permutations clearly
give better results. For example, permutation “1-2-3” for instance WSRP-A-04,
permutations “1-2-3” and “2-1-3” for instance WSRP-A-05 and permutations
“1-3-2” for instance WSRP-A-07.

Figure 3 shows the relative gap obtained for the small instances that have 4
regions. Each sub-figure shows the result for one instance when solved using the
permutation orders of the 4 regions. Each bar shows the relative gap between
the solution by the decomposition method and the overall optimal solution.
The figure reveals an interesting result from instance WSRP-B-02. The optimal
solution value is obtained for every permutation. Closer inspection reveals that the
decomposition method works very well on this instance because its geographical
regions are well separated from each other. Therefore, the sub-problem solutions
are part of the complete overall solution and not many worker assignment conflicts
arise when solving the sub-problems. For the other instances, WSRP-A-02 and
WSRP-B-04, the quality of the obtained solutions fluctuates in the same way
as in Figure 2. Results in Figure 3 indicate that some solutions obtained with
the decomposition approach using some permutations have a considerable gap in
quality compared to the overall optimal solution. The figure also shows that some
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permutations clearly give better results than others. For example, permutation
“2-4-3-1”7 and “3-1-2-4” for instance WSRP-A-02, permutation “1-2-3-4”, “1-2-4-
37, “2-1-3-47, “2-1-4-3” and “2-3-1-4” for instance WSRP-B-02 and permutation
“4-3-1-2” and “4-3-2-1” for instance WSRP-B-04.

The conclusion from this permutation study is that the order in which the sub-
problems are solved matters differently according to the problem instance. More
importantly, the results confirm our assumption that some particular permutation
could produce a very good result in the decomposition approach. Hence, the next
part of the study is to find a good solving order.

Observation step. Here we solve each of the sub-problems using all available
workers and collect the following values from the obtained solutions: number
of tasks in the sub-problem (# task), minimum number of workers required in
the solution (# min worker), number of unassigned tasks in the solution (#
unassigned task) and the ratio of tasks to worker in the solution (task/worker
ratio). Then, we defined six ordering strategies as follows. Increasing number
of tasks in the sub-problem (Asc-task); decreasing number of tasks in the sub-
problem (Desc-task); increasing sum of minimum workers required and unassigned
tasks (Asc-w&u); decreasing sum of minimum workers required and unassigned
tasks (Desc-wé&u); increasing ratio of tasks to worker (Asc-ratio) and decreasing
ratio of tasks to worker (Desc-ratio).

Strategies study. The GDCA approach is again executed using the 6 order-
ing strategies listed above to tackle the sub-problems in each problem instance.
The results are presented in Figure 4 which shows the relative gap for the 14 small
instances in the WSRP-A and WSRP-B groups. Note that each bar represents
the relative gap obtained with each strategy.

From Figure 4, the decomposition technique with ordering strategies gives
solutions with relative gaps up to 70%. On average, the decomposition technique
produces relative gap at 30.77%. Moreover, we can see that some of the ordering
strategies are more likely to produce better solutions than others. The best
performing ordering strategy is Asc-w&u that gives 8 best solutions considering
all 14 small instances. The average gap for the ordering strategies Asc-task,
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Fig. 2: Relative gap obtained from solving the 3 instances (WSRP-A-04, WSRP-A-05
and WSRP-A-07) with |A| = 3 using the different permutation orders. Each graph
shows results for one instance. The bars represent the relative gap between the solution
obtained with the decomposition method and the overall optimal solution.
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Fig. 3: Relative gap obtained from solving the 3 instances (WSRP-A-02, WSRP-B-02
and WSRP-B-04) with |A| = 4 using the different permutation orders. Each graph
shows results for one instance. The bars represent the relative gap between the solution
obtained with the decomposition method and the overall optimal solution.

Table 3: Relative gap (%) of best permutation VS. best strategy.

Instance B.Permutation B.Strategy ‘ Instance B.Permutation B.Strategy

WSRP-A-04 3.41 7.97 |WSRP-A-02 16.95 29.51
WSRP-A-05 12.50 12.50 |WSRP-B-02 0 0
WSRP-A-07 9.01 11.95 |WSRP-B-04 3.91 6.28

Desc-task, Asc-wé&u, Desc-wé&u, Asc-ratio and Desc-ratio are 27.14%, 32.62%,
27.39%, 33.26%, 31.61% and 32.62% respectively. Table 3 shows a comparison
of relative gap between the best permutation order (see Permutation study)
and the best ordering strategy. There are differences between the best strategies
and the best permutation, the maximum being 12.56% for instance WSRP-A-02.
Two out of six solutions (instance WSRP-A-05 and WSRP-B-02) of the best
ordering strategy match the solution from the best permutation. This shows that
the ordering strategies are able to work well in other problem instances.

The decomposition method is also able to find solutions for the large instances
whilst solving those problems as a whole is not practical in terms of computation
time. The results from using the decomposition technique with the 6 ordering
strategies on the large instances are presented in Table 4. The table shows the
objective values of the obtained solutions as relative gaps cannot be computed
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Fig. 4: Relative gap obtained from solving the 14 small instances using the 6 ordering
strategies. Each bar for an instance represents the relative gap between a solution by
the decomposition method using an ordering strategy and the overall optimal solution.

because the optimal solutions are not known. The values in bold are the lowest
cost (best objective value) obtained among the six strategies. The table shows
that as a whole, Desc-task gives six best solutions, Desc-ratio gives four best
solutions, Asc-wé&u gives two best solutions, Desc-wé&u and Asc-task give one best
solution while the Asc-ratio gives no best solution. On average, the Desc-task
strategy gives the lowest cost solution, around 15.42% less than the highest
average cost strategy (Asc-task).

Figure 5 shows, according to the problem size, the computation times used by
the decomposition approach using the different ordering strategies and the time
used to find the overall optimal solution. Each sub-figure presents the problem
instances classified by their size (number of items is |T|+|C|). Each line represents
the time used by the ordering strategy in solving the group of 14 problem instances.
As noted before, the time to find the optimal solution represented by [=== is
available only for the small instances. For the smaller instances which smaller than
instance B-06 (has 89 items), the computation time used by the decomposition
method is not much different from the time used to find the optimal solution.
The computation time used to find the optimal solution grows significantly for
instances B-06 to B-03. Note that instance WSRP-B-03 which has 109 items uses
5,419 seconds for finding optimality. For the large instances, it is shown that the
computation time used by the decomposition method starts from 17 minutes
(1,060 seconds) to above 6 hours (22,478 seconds). Also, for the large instances
the average computation time used by six strategies are 4,620, 3,098, 7,451, 6,348,
7,640 and 7,048 seconds respectively. The average processing time shows Asc-task
and Desc-task use significantly less computation time. This is because these
ordering strategies do not require an additional process to retrieve information
about the problem. Hence, considering both solution quality and computation
time, it can be concluded that Asc-task and Desc-task (the second best known
on average) should be selected for large instances because they produce solutions
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Table 4: Objective value obtained from solving large instances using six ordering
strategies.

Instance Asc-task Desc-task Asc-wé&u Desc-wé&u Asc-ratio Desc-ratio
D-01 1,688.07 496.45 1,549.04 765.48 1,301.04 240.98
D-02 860.50 372.94 496.47 495.44 984.98 732.97
D-03 2,624.84 3,213.32 2,619.33 3,836.84 1,690.81 3,839.34
D-04 312.43 418.89 303.45 283.91 314.42 420.41
D-05 408.42 243.89 1,113.47 253.91 401.45 241.89
D-06 307.55 1,411.27 945.60 1,582.52 634.05 1,729.29
D-07 1,112.80 753.28 292.55 604.01 293.53 1,077.28
F-01 73,286 64,305 71,430 72,040 75,760 63,680
F-02 81,852 73,291 76,460 80,569 86,906 74,860
F-03 141,060 115,235 140,258 120,715 148,092 116,011
F-04 111,671 102,994 105,262 109,411 113,557 91,670
F-05 127,476 101,438 113,403 105,284 112,995 103,156
F-06 105,595 76,007 88,702 84,050 107,281 84,050
F-07 199,160 176,541 194,525 178,387 218,058 178,387
Average 60,529.69 51,194.39 56,954.29 54,162.73 62,019.34 51,435.43

Bold text refers to the best solution.

which are not much different from the other strategies but requiring significantly
less computational time (48% less on average).

4.4 Geographical Decomposition with Neighbour Workforce

The study on the proposed decomposition method shows some limitation on
tackling the working regions constraint. Recall that in our problem we consider
the regions constraint to be soft. Assigning a worker to a region other than
his/her own is allowed by penalised. However, the geographical decomposition
technique described above enforces the regions constraint because each sub-
problems corresponds to one region. When solving each sub-problem, the solver
can only use the workers included in the sub-problem. Adding neighbour workers
from nearby regions increases the feasible region by treating the regions constraint
as soft. We only add workers to those regions in which the number of workers
is less than the number of locations. Also, in order to maintain the size of the
sub-problem manageable we add only enough workers to fill that difference.
These additional workers are selected based on the distance from their departure
location to the region, hence considered neighbour workforce. But also, the
additional workers are selected from those with the highest set of skills and
qualifications to be eligible to work in most of the tasks. This process of adding
neighbour workforce is done before the process of further splitting a sub-problem.
The only instances that require this process of adding neighbour workforce are
instances WSRP-D and WSRP-F as presented in Table 5. For each instance,
the table shows in columns two and six, the number of regions that required
additional workers. Columns three and seven give the average ratio between
the number of available worker and the number of locations. Columns four and
eight show the improvement obtained in the objective function value when using
this process of adding neighbour workforce. The result shows that additional
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Fig.5: Computation time (seconds) used in solving small and large instances. Each
sub-figure corresponds to a problem size category (small and large). Instances are
ordered by the problem size (#items) which is the summation of #workers and #tasks.
Each graph presents the computation time used by the decomposition method with the
different ordering strategies (line with markers) and the time used for producing the
overall optimal solution (dashed line) when possible.

neighbour workforce is more beneficial to the WSRP-F instances for which the
cost decreased by up to 75.63% from the solution without additional neighbour
workforce. On the other hand, some of the WSRP-D instances did not benefit
from the additional workforce, an indication that such instances have the right
amount of workforce for the demand. This experimental result suggests that in
the WSRP-F instances, the workforce might not be distributed well across regions
according to the demanded tasks, which then causes problems when decomposing
the problem by regions.

4.5 Comparing to a Genetic Algorithm

We also compare the results obtained by our proposed techniques to the results
obtained with a genetic algorithm (GA) [16]. We have chosen a GA because it is
a well-known meta-heuristic that has been proven to provide good solutions for
both scheduling [18, 25] and routing [28, 19] problems.

We developed a straightforward GA implementation with uniform mutation
crossover using a mutation rate a = ﬁ [16], binary tournament selection,
population of 100 individuals where the 10% best individuals are kept on the
offspring population and time limit as stopping condition. Additionally, to avoid
getting stuck in local optima and early convergence, we introduced a reset
mechanism, that after 10 generations without improvement, the bottom half
(the less fit individuals) of the population is randomly re-generated acting as a
population diversity procedure.
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Table 5: Instances with understaffed regions. The second and sixth columns show the
number of understaffed regions. The third and seventh columns show the average
workforce/locations ratio. The fourth and eight columns show average decrease in the
objective function value (improvement) obtained from having the additional neighbour
workforce.

Instance #Regions Ratio Decrease ‘Instance #Regions Ratio Decrease
D-01 5 73.76% 41.17% F-01 13 39.51% 70.57%
D-02 4 75.04% 50.78% F-02 18 40.92% 66.79%
D-03 5 67.13% -5.87% F-03 22 31.87% 67.33%
D-04 5 76.77% 0% F-04 17 40.09% 70.04%
D-05 4 73.08% 0% F-05 19 37.97% 56.29%
D-06 5 64.72% 0.10% F-06 13 44.58% 75.63%
D-07 7 69.31% 7.34% F-07 23 33.73% 53.57%

#Regions is number of understaffed regions.
Ratio is average of proportion between workers and locations.

Decrease is the average improvement on the objective function value and is calculated
(originalObj—addedW orkerObj)
as - .
originalObyj

Problem-specific knowledge was introduced only at the chromosome encoding.
In order to eliminate time conflicts and restrict the exploration to the feasible
region of the solution space, we employed an indirect encoding. This encoding is
composed of an array of integers such that the indexes correspond to the tasks
(note that a task requiring multiple workers would have multiple indexes). The
contents of each element in the array represents the k;, worker that is skilled
to perform the task but that also represents a feasible assignment with no time
conflict. If there is no such worker, than the task is left unassigned.

We now compare the results obtained with the proposed decomposition
methods and the GA. Because of the stochastic nature of the GA, we ran the
GA eight times on each instance and calculated the average solution quality
obtained from all these runs. For the instance sets WSRP-A and WSRP-B, we
employed the strategies Asc-task and Desc-task without additional neighbour
workforce and we set a 15 minutes time limit for the GA. For the larger instance
sets WSRP-D and WSRP-F, the additional neighbour workforce process was
applied to the decomposition methods and the GA was ran for two hours. Table
6 presents the summary of the experimental results. Overall, we can see the GA
shows better performance. This is clearer on the larger instances where the GA
gives all best solutions on WSRP-F. However, it is important to mention that on
such scenarios the decomposition technique took less computational time than
the time limit given to the GA, except for instances WSRP-F-05 and WSRP-F-06
(see Figure 5).

The results obtained for the WSRP-F instances indicate that there is a
drawback when the problem is decomposed into too small sub-problems. Our
decomposition methods control the maximum size of each sub-problem to be
the same for every instance, hence more tasks were left unassigned. As we
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Table 6: Comparison of results obtained by the decomposition algorithms and the
genetic algorithm on 28 instances.

Asc-task Desc-task GA ‘ N-A-task N-D-task GA
A-01 4.33 5.65 3.92 D-01 1168.56  240.44 337.09
A-02 3.53 4.53 3.44 D-02 259.99 254.44 324.82
A-03 7.54 10.65 4.55 D-03 2933.84 3,212.32 434.00
A-04 1.54 3.09 1.75 D-04 312.44 418.89 386.26
A-05 2.77 3.54 2.47 D-05 408.42 243.89 356.47
A-06 3.55 3.74 3.70 D-06 307.05 1,410.77 435.03
A-07 5.25 4.81 3.84 D-07 949.55 753.28 421.93
B-01 2.00 1.79 1.82 F-01 18,046 22,020 2,592.56
B-02 1.94 1.89 1.79 F-02 25,712 25,654 2,652.67
B-03 2.25 2.06 2.27 F-03 50,944 33,686 1,372.24
B-04 2.29 2.21 2.49 F-04 29,965 34,070 2,064.93
B-05 5.60 4.74 3.38 F-05 59,363 41,433 1,092.35
B-06 2.62 2.52 2.16 F-06 20,853 22,038 1,439.86
B-07 4.30 4.06 2.37 F-07 109,398 66,969 4,419.73

Asc-task and Desc-task - GDCA ordered by ascending and descending task.
N-A-task and N-D-task - decomposition with neighbour workforce ordered by
ascending and descending task.

GA - genetic algorithm.

mentioned before, the larger regions were split further into several small sub-
problems which share the same workforce. The decomposition can be improved
by generating a better cluster based on location and also uniformly distributed.
Another challenge is choosing and clustering workforce which would improve the
computation efficiency and workforce utilisation.

5 Conclusion and Future Work

A tailored mixed integer programming model for real-world instances of a work-
force scheduling and routing problem is presented. The model is constructed by
incorporating various constraints from the literature while also adding working
region constraints to the formulation. It is usually the case that models in the
literature for this type of problem are presented but their solution is provided
using alternative methods such as heuristics because solving the model using
mathematical exact solvers is computationally challenging. An approach using
geographical decomposition with conflict avoidance is proposed here to tackle
workforce scheduling and routing problems while still harnessing the power of
exact solvers. The proposed decomposition method allows us to tackle real-world
sized problems for which finding the overall optimal solution requires extensive
computation time. However, the solution quality fluctuates when changing the
order to tackle the sub-problems defined by the geographical regions. Exploring
all permutation orders to find the one producing the best results is not practical
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for larger problems (e.g. more than 6 geographical regions). In this work, six
ordering strategies are proposed for obtaining high-quality solutions within ac-
ceptable computation time. We also implemented a process of adding neighbour
workforce to understaffed regions which helped to obtain better results. We also
implemented a standard genetic algorithm to compare the results produced by
the proposed decomposition methods. The experimental results indicate that
although the decomposition methods produce some best results, it is outper-
formed by the GA on several instances. However, the decomposition methods
are still faster in terms of computation time. Our future research will explore
ways to improve the decomposition methods by re-defining sub-problems through
automated clustering in order to to find well separated regions that improves the
solution procedure.
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