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Abstract—Course timetabling is the process of al-
locating, subject to constraints, limited rooms and
timeslots for a set of courses to take place. Usu-
ally, in addition to constructing a feasible timetable
(all constraints satisfied), there are desirable goals
like minimising the number of undesirable alloca-
tions (e.g. courses timetabled in the last timeslot
of the day). The construction of course timetables
is regarded as a complex problem common to a
wide range of educational institutions. The great
deluge algorithm explores neighbouring solutions
which are accepted if they are better than the best
solution so far or if the detriment in quality is no
larger than the current water level. In the original
great deluge, the water level decreases steadily in
a linear fashion. In this paper, we propose a modi-
fied version of the great deluge algorithm in which
the decay rate of the water level is non-linear. The
proposed method produces new best results in 4 of
the 11 course timetabling problem instances used
in our experiments.

Index Terms—course timetabling, great deluge al-
gorithm, local search, meta-heuristics.

I. Introduction

Constructing good quality timetables is a difficult
task due to the combinatorial and highly constrained
nature of most timetabling problems [1]. In this paper,
we are interested in the course timetabling problem in
which a set of events must be assigned to timeslots
and rooms ensuring the satisfaction of a number of
constraints (e.g. events should not be timetabled at
certain times). In particular, we tackle the set of 11
test instances of the course timetabling problem pro-
posed by Socha, Knowles and Samples [2]. A num-
ber of heuristic approaches have been proposed in the
literature to tackle those instances, which are repre-
sentative of real-world course timetabling problems.
Those instances have proven to be very challenging
for most of the methods proposed in the literature. In
this problem the quality of a solution is measured by
the overall penalty due to the violation of soft con-
straints and the aim is to minimise such penalty. We
present a simple yet effective modification of the great
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deluge algorithm proposed by Dueck [3]. In the orig-
inal great deluge method, the water level is set to a
value higher than the expected penalty of the best so-
lution at the start of the search. Then, the water level
is decreased in a linear fashion during the search until
it reaches a value of zero. During the search, the al-
gorithm explores solutions in the neighborhood of the
best solution. A new solution with a lower penalty is
accepted straight away replacing the best solution. A
new solution with a higher penalty is accepted only if
this worse penalty is not higher than the current water
level.

The modification to the conventional great deluge
method proposed in this paper is on the decay rate
of the water level. We propose a non-linear great del-
uge algorithm in which the water level decay rate is
controled by an exponenetial function. The proposed
algorithm is capable of producing new best results for
4 of the 11 instances while still finding competitive
solutions to the other 7 instances. The rest of this
paper is organised as follows. Section II describes the
course timetabling problem considered in this paper.
Section III gives an account of heuristic algorithms
proposed previously to tackle this problem and the
best results obtained so far. The non-linear great del-
uge algorithm proposed in this paper is described in
Section IV. Experiments and results are presented
and discussed in Sections V and VI. While Section V
focuses on the overall performance of the proposed
method, Section VI studies in more detail the effect
that the non-linear decay rate has on the overall per-
formance of the algorithm. Final remarks and future
work are the subject of Section VII.

II. The Course Timetabling Problem

We tackle the university course timetabling problem
(see [4] for description of different types of timetabling
problems) which refers to the process of allocating,
subject to constraints, a set of limited timeslots and
rooms to courses, in such a way as to satisfy as nearly
as possible a set of desirable objectives. In this prob-
lem, constraints can be distinguished into hard con-
straints and soft constraints. Hard constraints must
be satisfied, i.e. a timetable is feasible only if no hard
constraint is violated. Soft constrains might be vio-
lated but the number of violations has to be minimised
in order to increase the quality of the timetable.

Several formulations of the course timetabling prob-
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lem have been proposed in the literature. We adopt
the one by Socha, Knowles and Samples [2] and the
corresponding benchmark data sets in order to test
the algorithm proposed in this paper.

More formally defined, the course timetabling prob-
lem tackled in this paper consists of the following:
• n events E = {e1, e2, . . . , en}
• k timeslots T = {t1, t2, . . . , tk}
• m rooms R = {r1, r2, . . . , rm} in which events can
take place
• a set F of room features satisfied by rooms and re-
quired by events
• a set S of students

Each room has a limited capacity and each student
attends a number of events which is a subset of E. The
problem is to assign the n events to the k timeslots and
m rooms in such a way that all hard constraints are
satisfied and the violation of soft constraints is min-
imised. The benchmark data sets proposed by Socha,
Knowles and Samples [2] are split according to their
size into 5 small, 5 medium and 1 large, i.e. 11 in-
stances in total. For the small instances, n = 100,
m = 5, |S| = 80, |F | = 5. For the medium instances,
n = 400, m = 10, |S| = 200, |F | = 5. For the large
instances, n = 400, m = 10, |S| = 400, |F | = 10. For
all instances, k = 45 (9 hours in each of 5 days)1.

A. Hard Constraints

There are four hard constraints in this problem:
• A student cannot attend two events simultane-
ously, i.e. events with students in common must be
timetabled in different timeslots.
• Only one event is allowed to be assigned per timeslot
in each room.
• The room capacity must be equal to or greater than
the number of students attending the event in each
timeslot.
• The room assigned to an event must satisfy the fea-
tures required by the event.

B. Soft Constraints

There are three soft constraints in this problem:
• Students should not have only one event timetabled
on a day.
• Students should not have to attend more that two
consecutive events on a day.
• Students should not have to attend an event in the
last timeslot of a day.

C. Data Structures

The data for each problem instance includes the size
and features for each room, the number of students
attending each event and information about conflict-
ing events (those with students in common). The in-
formation from each problem instance is stored into
five matrices to be used by the heuristic algorithm

1The problem instances described above can be found at:
http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html

described here. These matrices are named: Studen-
tEvent, EventFeatures, RoomFeatures, SuitableRoom
and EventConflict.

The StudentEvent matrix of size |S|×n has a value
of 1 in cell (i, j) if student i ∈ S should attend event
j ∈ E, 0 otherwise. The EventFeatures matrix of size
n × |F | has a value of 1 in cell (i, j) if event i ∈ E
requires room feature j ∈ F , 0 otherwise. The Room-
Features matrix of size m × |F | has a value of 1 in
cell (i, j) if room i ∈ R has feature j ∈ F , 0 other-
wise. The SuitableRoom matrix of size n ×m is used
to quickly identify all rooms that are suitable (in terms
of size and features) for each event, a value of 1 in cell
(i, j) indicates that room j ∈ R has the capacity and
features required for event i ∈ E. The EventConflict
matrix of size n × n has a value of 1 in cell (i, j) if
events i, j ∈ E have students in common. The Event-
Conflict matrix helps to quickly identify events that
can potentially be assigned to the same timeslot.

III. Previous Work

In this section we give an account of previous work
by other researchers on this course timetabling prob-
lem. Socha, Knowles and Samples [2] presented a
MAX-MIN ant system in which a construction graph
is followed by the artificial ants in order to assign
timeslots to events. Then, rooms are assigned to pairs
event-timeslot using the matching algorithm to pro-
duce a full timetable which is then further improved
by local search. Socha, Knowles and Samples found
that the artificial ants were indeed capable of learning
to construct good timetables. Later, Socha, Samples
and Manfrin [5] compared the MAX-MIN ant system
to an ant colony system but the former algorithm had
a better overall performance. The main difference be-
tween these two algorithms is on the strategy to up-
date the pheromone.

Burke, Kendall and Soubeiga [6] tackled this prob-
lem using a hyper-heuristic in which a strategy based
on a choice function and a tabu list guides the itera-
tive application of a set of simple local search heuris-
tics. They used the same six local search heuristics
proposed earlier by Socha, Knowles and Samples [2].
The choice function assigns fitness to each heuristic
according to their success during the search. The
tabu list prevents some heuristics to be used some-
times during the search. That hyper-heuristic method
produced better results than the MAX-MIN ant sys-
tem of Socha, Knowles and Samples on 4 instances (2
small and 2 medium).

Rossi-Doria et al. [7] compared the performance
of several meta-heuristics on this course timetabling
problem. The methods compared were: evolution-
ary algorithm, ant colony optimisation, iterated local
search, simulated annealing and tabu search. No best
solutions were reported in that work as the intention
was to assess the strengths and weaknesses of each al-
gorithm when solving this timetabling problem. As a
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result of their work, Rossi-Doria et al. suggested that
a hybrid algorithm would be a promising research di-
rection. They also suggested that at least two phases
were needed in such algorithm, one to construct feasi-
ble timetables and another one to minimise the viola-
tion of soft constraints.

Asmuni, Burke and Garibaldi [8] implemented fuzzy
multiple heuristic ordering for this problem. The key
feature in that method is to use fuzzy logic to es-
tablish the ordering of events prior to be timetabled.
Three graph colouring heuristics were selected as the
fuzzy system input variables. The event with the high-
est crisp value is selected to be scheduled first, this
process continues until all events are scheduled into
feasible timeslots and rooms. They compared their
fuzzy ordering approach, using three ordering heuris-
tics, against five versions of single orderings, each us-
ing a single graph colouring heuristics. At the time
of publication, the fuzzy multiple heuristic ordering
method gave reasonable good results but it found a
new best solution for only one problem instance of
medium size.

Abdullah, Burke and McCollum [9] proposed sev-
eral versions of variable neighbourhood search (VNS)
for this problem. One basic version (VNS-basic), one
modification using an exponential Monte Carlo accep-
tance criterion (VNS-MC) and a hybridisation with a
tabu list (VNS-Tabu). The three VNS variants used
eleven neighbourhood structures in increasing order of
their size. In VNS-MC, non-improving solutions are
accepted with some probability. In VNS-Tabu, the
tabu list was used to penalise the neighborhood struc-
tures not performing well or not leading to promising
solutions after certain number of iterations. The ver-
sion with the best overal performance was VNS-Tabu
which produced best known results for 3 of the small
instances.

Later, Abdullah, Burke and McCollum [10] applied
a randomised iterative improvement approach using
a composite of eleven neighbourhood structures to
tackle this problem. In each iteration of that algo-
rithm, each of the eleven neighbourhood structures is
explored for the current solution and the best of the
eleven candidate solutions is pre-selected. Then, the
Monte Carlo criterion is used to decide whether to re-
place the current best solution with the pre-selected
candidate solution. This algorithm found overall best
results for 2 of the medium problem instances.

Burke, McCollum, Meisels, Petrovic and Qu [11] ap-
plied a graph-based hyper-heuristic in which a tabu
search procedure is used to change the permutations
of six graph colouring heuristics before applying them
to construct a timetable. The key feature of this ap-
proach is to find good orderings of constructive heuris-
tics to schedule events. An ordering is used to schedule
several events but the ordering might change several
times during the construction of one timetable. Al-
though this hyper-heuristic method gave reasonable

TABLE I
Best results with previous algorithms for the

course timetabling problem instances by Socha,

Knowles and Samples [2].
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S1 1 1 10 0 0 6 0
S2 3 2 9 0 0 7 0
S3 1 0 7 0 0 3 0
S4 1 1 17 0 0 3 0
S5 0 0 7 0 0 4 0
M1 195 146 243 317 242 372 221
M2 184 173 325 313 161 419 147
M3 248 267 249 357 265 359 246
M4 164.5 169 285 247 181 348 165
M5 219.5 303 132 292 151 171 130
L1 851.5 1166 1138 932 757 1068 529

MMAS is the MAX-MIN Ant System in [2]
CFHH is the Choice Function Hyper-heuristic in [6]
FMHO is the Fuzzy Multiple Heuristic Ordering in [8]
VNS-T is the Hybrid of VNS with Tabu Search in [9]
RIICN is the Randomised Iterative Improvement with Compos-
ite Neighbourhoods in [10]
GBHH is the Graph-based Hyper-heuristic in [11]
HEA is the Hybrid Evolutionary Algorithm in [12]
S1-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5
L1 represents the large problem instance

good results across the 11 problem instances, not new
best solutions were produced. Note that Burke et
al. [6], [11] proposed hyper-heuristics as more general
methods but not with the intention to outperform al-
gorithms tailored for course timetabling problems.

Recently, Abdullah, Burke and McCollum [12] pre-
sented another algorithm for this course timetabling
problem. This is a hybrid approach combining a mu-
tation operator with their previous randomised iter-
ative improvement procedure [10]. This hybrid evo-
lutionary algorithm produced new best results for 4
problem instances, 3 medium and the large one. The
time taken by their hybrid algorithm to produce those
results was around 10 hours of computation time on a
personal computer.

Table I shows the results reported in the literature
for the heuristic approaches surveyed in this section.
It should be noted that although a timetable with zero
penalty exists for each problem instance (the data sets
were generated starting from such a timetable [2]),
none of these heuristic methods has found the ideal
timetable for the medium and large instances. Hence,
these data sets are still very challenging for heuris-
tic search methods. Next, we describe our proposed
non-linear great deluge approach to tackle this course
timetabling problem.

IV. Non-linear Great Deluge Approach

The great deluge algorithm was originally proposed
by Dueck [3] and the basic idea is very similar to sim-
ulated annealing [13]. A new candidate solution is ac-
cepted if it is better or equal than the current solution.
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A candidate solution worse than the current solution
will only be accepted if the penalty of the candidate so-
lution is less than or equal to a pre-defined limit called
water level. The great deluge algorithm was applied
to course timetabling by Burke, Bykov, Newall and
Petrovic [14] using the 2002 international timetabling
competition dataset. The problem instances in this
dataset are an extended version of the instances pro-
posed by Socha, Knowles and Samples [2] which are
used in the present paper. Burke, Bykov, Newall, and
Petrovic observed good performance of great deluge on
all the 20 problem instances in the 2002 competition
dataset. Overall, their experimental results showed
superiority of great deluge when compared to simu-
lated annealing. Given the success of great deluge
on course timetabling problems reported by Burke,
Bykov, Newall and Petrovic [14], our aim here is to
investigate how the performance of this simple but ef-
fective method can be further improved. In this paper,
we test the proposed modified great deluge method on
the instances by Socha, Knowles and Samples [2]. In
the future we also intend to test our method on the
20 instances of the 2002 timetabling competition and
other course timetabling benchmarks that are avail-
able in the literature.

A. Neighbourhood Structures

We employ three neighbourhood moves in the over-
all algorithm from initialisation to improvement of so-
lutions. Move M1 selects one event at random and
assigns it to a feasible pair timeslot-room also chosen
at random. Move M2 selects two events at random
and swaps their timeslots and rooms while ensuring
feasibility is maintained. Move M3 identifies an event
that violates soft constraints and then it moves that
event to another pair timeslot-room selected at ran-
dom and also ensuring feasibility is maintained. Note
that the three neighbourhood moves are based on ran-
dom search but always seeking the satisfaction of hard
constraints. Also note that the difference between
moves M1 and M3 is whether the violation of soft con-
straints is taken into account or not when selecting the
event to re-schedule. The three neighbourhood moves
used here might seem too simple but this is because
we want to better assess the effectiveness of the non-
linear decay rate in the proposed algorithm for guiding
the local search.

B. Heuristic to Construct Feasible Timetables

To construct feasible timetables, we took the heuris-
tic proposed by Chiarandini, Birattari, Socha and
Rossi-Doria [15] and added the highest degree heuris-
tic (a well-known graph colouring heuristic) to Step
1 as described next. This modification was necessary
in our approach because otherwise we were unable to
generate feasible solutions for the large problem in-
stance. The resulting initialisation heuristic works as
follows.

TABLE II
Time range (in seconds) taken to construct an

initial feasible timetable for 10 runs of the

initialisation heuristic.

Minimum Time (s) Maximum Time (s)
S1 0.07800 0.12500
S2 0 .0790 0.10900
S3 0.06800 0.11000
S4 0.04700 0.11000
S5 0.07800 0.11000
M1 7.54600 9.3130
M2 9.65600 10.9370
M3 13.4370 21.7020
M4 6.89100 7.76600
M5 16.6700 143.560
L1 300 3000

S1-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5
L1 represents the large problem instance

Step 1 - Highest Degree Heuristic. In each iter-
ation, the unassigned event with the highest number
of conflicts (other events with students in common)
is assigned to a timeslot selected at random. Once
all events have been assigned to a timeslot, we use the
maximum matching algorithm for bipartite graph (see
Chiarandini, Birattari, Socha and Rossi-Doria [15]) to
assign each event to a room. At the end of this step,
there is no guarantee for the timetable to be feasible.

Step 2 - Local Search. We use neighbourhood
moves M1 and M2 to improve the timetable gener-
ated in Step 1. A move is only accepted if it improves
the satisfaction of hard constraints (this is because
the moves seek to achieve feasibility). This step ter-
minates if after 10 iterations no move has produced a
better (closer to feasibility) solution.

Step 3 - Tabu Search. We apply tabu search us-
ing only move M1. The tabu list contains events that
were assigned less than tl iterations before calculated
as tl = ran(10) + δ × nc, where ran(10) is a random
number between 0 and 10, nc is the number of events
involved in hard constraint violations in the current
timetable, and δ = 0.6. This step terminates if after
500 iterations no move has produced a better (closer
to feasibility) solution.

Steps 2 and 3 above are executed iteratively until
a feasible solution is found. This three-step initialisa-
tion heuristic is capable of finding feasible timetables
for most problem instances in reasonable computation
times as shown in Table II. The exception is the large
instance which is the most difficult and it takes much
longer time (a minimum of 300 seconds) to find a fea-
sible timetable. The reason is that the density matrix
for this dataset indicates a large number of conflicting
events (with students in common).

C. Non-linear and Floating Water Level Decay Rate

The distinctive feature of the great deluge algorithm
is that when the new candidate solution S∗ is worse
than the current solution S, then S∗ replaces S de-
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pending on the current water level B. At the start
of the algorithm, the water level is usually set accord-
ing to the quality of the initial solution. The decay
rate, i.e. the speed at which B decreases, is deter-
mined by a linear function in the original great deluge
algorithm [3] (B = B −ΔB where ΔB is a constant).

The modification proposed in this paper is to use a
non-linear decay rate for the water level given by the
following expression:

B = B × (exp−δ(rnd[min,max])) + β (1)

The various parameters in Eq. (1) control the speed
and the shape of the water level decay rate. Parameter
β influences the shape of the decay rate and it repre-
sents the minimum expected penalty corresponding to
the best solution. In this paper we set β = 0 because
we want the water level to reach the value of zero (i.e.
touching the y axis) by the end of the search. This is
because, as we mentioned at the end of Section III, we
know that a penalty on zero is possible in the problem
instances tackled in this paper. If for a given prob-
lem we knew that the minimum penalty that can be
achieved is lets say 100, then we would set β around
that value. If there is no previous knowledge on the
minimum penalty expected, then we suggest to tune β
through preliminary experimentation for the problem
in hand.

The role of the parameters min and max (more
specifically the expression exp−δ(rnd[min,max])) is to
control the speed of the decay rate and hence the speed
of the search process. The higher the values of min
and max, the faster the water level goes down, and in
consequence, the search quickly achieves improvement
but it also gets stuck in local optima very early.

In this paper, the value of the parameters in Eq. (1)
were determined by experimentation. We assigned δ
the values of 5 × 10−10, 5 × 10−8 and 5 × 10−9 for
small, medium and large instances respectively. As
said before, the value of β for all problem instances
is β = 0. The values of min and max in Eq. (1) are
set according to the size of the problem instance. For
medium and large problems we used min = 100000
and max = 300000. For small problems we used
min = 10000 and max = 20000. The use of the non-
linear decay rate is shown in the last else of Algorithm
1 below.

In addition to using a non-linear decay rate for the
water level B, we also allow B to go up when its value
is about to converge with the penalty cost of the can-
didate solution S∗. This occurs when range < 1 in
Algorithm 1. We increase the water level B by a ran-
dom number within the interval [Bmin, Bmax]. For
small problem instances the interval used was [2,5].
For the large problem instance the interval used was
[1,3]. For medium problem instances, we first check if
the penalty of the best solution so far f(Sbest) is lower
than a parameter flow. If this is the case, then we use
[1,4] as the interval [Bmin, Bmax]. Otherwise, we as-

sume that the best solution so far seems to be stuck in
local optima (f(Sbest) > flow) so we make B = B + 2.
Full details of this strategy to control the water level
decay rate in the modified great deluge are shown in
Algorithm 1 below.

Algorithm 1: Non-linear Great Deluge Algorithm
Construct initial feasible solution S
Set best solution so far Sbest ← S
Set timeLimit according to problem size
Set initial water level B ← f(S)
while elapsedT ime ≤ timeLimit do

Select move at random from M1,M2,M3
Define the neighbourhood N(S) of S
Select candidate solution S∗ ∈ N(S) at random
if ( f(S∗) ≤ f(S) or f(S∗) ≤ B ) then

S ← S∗ {accept new solution}
Sbest ← S {update best solution}

end if
range = B − f(S∗)
if (range < 1) then

if (Large or Small Problem) then
B = B + rand[Bmin, Bmax]

else
if ( f(Sbest) < flow ) then

B = B + rand[Bmin, Bmax]
else

B = B + 2
end if

end if
else

B = B × (exp−δ(rnd[min,max])) + β
end if

end while

V. Experiments and Results

We evaluate how beneficial it is to modify the water
level decay rate from linear to non-linear and float-
ing in the great deluge algorithm. For each type of
dataset (in terms of size) a fixed computation time
(timeLimit) in seconds was used as the stopping con-
dition: 3600 for small problems, 4700 for medium
problems and 6700 for the large problem. This fixed
computation time is only for the improvement phase,
i.e. the non-linear great deluge starting from a feasi-
ble solution. For each problem instance we executed
the non-linear and the original (linear) great deluge
algorithms for 10 times.

Table III shows the results obtained by the non-
linear and by the original great deluge algorithms
alongside other results reported in the literature. The
table also shows the penalty of the initial solution pro-
vided to the great deluge approaches. The best re-
sults are shown in bold for each dataset. The main
goal of this comparison is to assess whether great del-
uge with non-linear and floating water level performs
better than or similar to other algorithms that have
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TABLE III
Comparison of results obtained by the

non-linear Great Deluge (NLGD) proposed in

this paper against the best known results from

the literature for the 11 course timetabling

problem instances.

Init. Sol. GD NLGD Best Known
S1 198 17 3 0 (VNS-T)
S2 265 15 4 0 (VNS-T)
S3 214 24 6 0 (CFHH)
S4 196 21 6 0 (VNS-T)
S5 233 5 0 0 (MMAS)
M1 858 201 140 146 (CFHH)
M2 891 190 130 147 (HEA)
M3 806 229 189 246 (HEA)
M4 846 154 112 164.5 (MMAS)
M5 765 222 141 130 (HEA)
L1 1615 1066 876 529 (HEA)

MMAS is the MAX-MIN Ant System in [2]
CFHH is the Choice Function Hyper-heuristic in [6]
VNS-T is the Hybrid of VNS with Tabu Search in [9]
HEA is the Hybrid Evolutionary Algorithm in [12]
S1-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5
L1 represents the large problem instance

been reported in the literature. We also want to as-
sess if the proposed modification to the water level
decay rate produces better results than using the tra-
ditional linear and steady decay rate. The table shows
that our algorithm outperforms some of the previous
results and it is also competitive on the rest of the
datasets.

First, we can see in Table III that the modified great
deluge obtained results that are much better than
those produced with the conventional great deluge.
Also, the table shows that our algorithm outperforms
some of the previous best known results and it is also
competitive on the rest of the problem instances. The
proposed non-linear great deluge seems particularly
effective on the medium problem instances producing
new best results in 4 of those problems.

It must be said that adequate parameter tuning was
required in our experiments, but the algorithm can
definitely produce better results compared to the best
results already published. But more importantly, the
proposed algorithm can do that in short computation
time, usually less than 700 seconds. We can also ob-
serve that in the small instances the algorithm is able
to find solutions with low penalty cost but it cannot
outperform those results reported previously. We need
to further investigate this but we believe this is due
to the ineffectiveness of the neighbourhood search for
small instances, particularly when the penalty cost is
too low. We plan to design a more effective strategy
for exploring the neighbourhood of solutions and be
sure to reach unexplored areas of the search space. We
believe that the proposed non-linear great deluge al-
gorithm has considerable potential to succeed in other
timetabling and similar problems. This is because the
improvements achieved in this paper (4 new best re-

sults in the medium instances) are mainly due to the
strategy used to control the water level decay rate.
Remember that the neighbourhood moves and local
search strategy implemented here are quite simple and
general, that is, the local search is not dependant on
the problem domain.

VI. Effect of the Non-linear Decay Rate

In this section we present more results to illustrate
the positive effect that the non-linear decay rate has on
the performance of the great deluge algorithm. Fig-
ure 1 shows the performance of linear great deluge
across iterations for three problem instances while Fig-
ure 2 does the same but for the non-linear version of
the algorithm. Each graph in these figures shows the
search progress for one sample run of the correspond-
ing algorithm. The dotted line corresponds to the wa-
ter level and the solid line corresponds to the penalty
of the best solution which should be minimised. Fig-
ure 1 shows that the water level in the original great
deluge decreases at the same rate in every iteration
while in the modified great deluge proposed in this
paper the water level decreases exponentially accord-
ing to Eq. (1).

(a)

(b)

(c)

Fig. 1. Search Progress in Linear Great Deluge
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(a)

(b)

(c)

Fig. 2. Search Progress in Non-linear Great Deluge

The first interesting observation is that the relation
between the water level and the best solution varies for
different instance sizes. The rigid and pre-determined
linear decay rate appears to suit better the medium
problem instance while for the small and large in-
stances this decay rate seems to be less effective in
driving the search for the best solution. Figure 1(a)
shows that in the small instance the water level is
too high with respect to the best solution and this
provokes that the best solution is not ‘pushed down’
for the first 60000 or so iterations, i.e. improvements
to the best solution are rather slow. However, for
the medium (Figure 1(b)) and large (Figure 1(a)) in-
stances the water level and the best solution are very
close from the start of the search so the best solu-
tion is ‘pushed down’ as the water level decreases. We
can also see that in the medium and large instances
there is a point after which the water level contin-
ues decreasing but the best solution does not improve
further, i.e. the search stagnates. That is, when the
water level and the best solution ‘converge’, the search
becomes greedy and improvements are more difficult

to achieve while the water level continues decreasing.
This occurs around iteration 110000 in the medium in-
stance and around iteration 8000 in the large instance.
We argue that the simple linear water level decay rate
in the original great deluge algorithm does not adapt
easily to the quality of the best solution. This is pre-
cisely the shortcoming that we tackle in this paper
and hence our proposal for a non-linear great deluge
algorithm.

Then, in the non-linear version of the algorithm,
the decay rate is adjusted at every iteration and the
size of the problem instance being solved is taken into
account when setting the parameters β, δ, min and
max as explained in Section IV. We can see in Fig-
ure 2 that this modification helps the algorithm to per-
form a more effective search regardless of the instance
size. We can see that in the three sample runs of the
non-linear great deluge algorithm, if drastic improve-
ments are found then the water level also decreases
more drastically. But when the improvement to the
best solution becomes slower then the decay rate also
slows in reaction to this. Moreover, to avoid (as much
as possible) the convergence of the water level and the
best solution, the water level is increased from time to
time as explained in Section IV. This ‘floating’ feature
of the water level explains the small increases on the
best solution penalty observed in the graphs of Fig-
ure 2. As in many heuristics based on local search,
the rationale for increasing the water level is to accept
slightly worse solutions to explore different areas of the
search space in the hope of finding better solutions.

These observations help us to summarise the key
differences between the linear (original) and non-linear
(modified) great deluge variants:

Linear Great Deluge
1. The decay rate is pre-determined and fixed
2. Mainly, the search is driven by the water level
3. When the best solution and water level converge
the algorithm becomes greedy

Non-Linear Great Deluge
1. The decay rate changes every iteration based on (1)
2. Mainly, the water level is driven by the search
3. This algorithm never becomes greedy

VII. Final Remarks

This paper focused on extending the conventional
great deluge algorithm proposed by Dueck [3] to a ver-
sion with a non-linear and floating water level decay
rate. We applied this modified algorithm to 11 in-
stances of the course timetabling problem proposed by
Socha, Knowles and Samples [2]. Based on the exper-
imental results, we showed that the non-linear great
deluge outperformed previous results reported in the
literature in 4 instances while still competitive in the
other 7 instances. The proposed approach found new
best solutions in 4 of the 5 medium problem instances.
Unfortunately, it seems that this method is not very
effective on the small instances. We speculate that
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this is because the size of the neighbourhood in those
instances is not that large to allow the non-linear and
floating decay rate to take its time to diversify and
intensify the search repeatedly. Another potential ex-
planation is that the neighbourhood structures might
no be effective anymore once the penalty cost reaches
a very low value. Further investigation is needed on
what type of moves should be implemented when the
search is stuck in that stage on small problems.

In the future we intend to test the proposed non-
linear great deluge approach on other instances of
course timetabling problems available in the literature
and other related timetabling problems. We also in-
tend to investigate mechanisms to automatically adapt
the non-linear decay rate to the size of the problem
being tackled. Another future research direction is to
use the GRASP meta-heuristic [16] to construct ini-
tial solutions for course timetabling. Our algorithm is
able to find feasible solutions but it takes long time to
do that for the large instance (see Table II). Also, we
want to investigate a population-based version of the
non-linear great deluge algorithm taking into consid-
eration the diversity among a set of timetables.
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