
Non-Linear Great Deluge with Reinforcement

Learning for University Course Timetabling

Joe Henry Obit1, Dario Landa-Silva1, Marc Sevaux2 and Djamila Ouelhadj1

1 ASAP Research Group, School of Computer Science, University of Nottingham, UK
jzh@cs.nott.ac.uk, dario.landasilva@nottingham.ac.uk, dxs@cs.nott.ac.uk
2 Centre de Recherche - BP 92116, University of South-Brittany, France

marc.sevaux@univ-ubs.fr

Abstract. This paper describes a non-linear great deluge hyper-heuristic
incorporating a reinforcement learning mechanism for the selection of
low-level heuristics and a non-linear great deluge acceptance criterion.
The proposed hyper-heuristic deals with complete solutions, i.e. it is a
solution improvement approach not a constructive one. Two types of re-
inforcement learning are investigated: learning with static memory length
and learning with dynamic memory length. The performance of the pro-
posed algorithm is assessed using eleven test instances of the univer-
sity course timetabling problem. The experimental results show that the
non-linear great deluge hyper-heuristic performs better when using static
memory than when using dynamic memory. Furthermore, the algorithm
with static memory produced new best results for five of the test in-
stances while the algorithm with dynamic memory produced four best
results compared to the best known results from the literature.

1 Introduction

The university course timetabling problem has been tackled using a wide range of
exact methods, heuristics and meta-heuristics. In recent years, the term hyper-

heuristic has emerged for referring to methods that use (meta-) heuristics to
choose (meta-) heuristics [CE8]. Then, a hyper-heuristic is a process which, given
a particular problem instance and a number of low-level heuristics, manages the
selection and acceptance of the low-level heuristic to apply at any given time,
until a stopping condition is met. Low-level heuristics are simple local search
operators or domain dependent heuristics. Typically, a hyper-heuristic is meant
to search in the space of heuristics instead of searching in the solution space
directly. One of the main challenges in designing a hyper-heuristic method is to
manage the low-level heuristics with minimum parameter tuning.

Early research work on hyper-heuristics focused on the development of ad-
vanced strategies for choosing the heuristics to be applied at different points of
the search. For example, Soubeiga [CE25] used a choice function that incorpo-
rates principles from reinforcement learning. That choice function rewards or
penalises the low-level heuristics according to their success in finding a better
solution. Another mechanism based on tabu search was proposed by Burke et

2

al. [CE9] in which a tabu list is used to prevent (for a number of iterations) the
acceptance of low-level heuristics with poor performance. Ross et al. [CE21] used
a learning classifier system to learn which heuristics were more useful than others
when tackling bin packing problems. Other hyper-heuristic approaches include
the GA-based hyper-heuristic by Cowling et al. [CE14], the case-based hyper-
heuristic approach by Burke et al. [CE11] and the ant-based hyper-heuristic by
Burke et al. [CE12]. Also, researchers have proposed different acceptance criteria
to drive the selection of low-level heuristics within a hyper-heuristic framework.
For example, Soubeiga [CE25] used a simulated annealing acceptance criterion,
Ayob and Kendall [CE5] used a Monte Carlo acceptance criterion while Kendall
and Mohamad [CE16] used the great deluge acceptance criterion.

We propose an approach that uses Reinforcement Learning and a Non-Linear
Great Deluge (NLGD) acceptance criterion in order to choose which low-level
heuristic to apply to solve university course timetabling problem instances. Sec-
tion 2 describes the course timetabling problem tackled in this work. Section 3
reviews previous meta-heuristic and hyper-heuristic methods used to tackle this
problem. Section 4 presents the non-linear great deluge hyper-heuristic method
proposed in this paper while Section 5 describes and discusses our experimental
results. Finally, conclusions and future research are the subject of Section 6.

2 The University Course Timetabling Problem

The university course timetabling problem can be defined as a process of allo-
cating, subject to predefined constraints, a set of limited timeslots and rooms
to courses, while satisfying as nearly as possible a set of desirable objectives. In
the timetabling problem, constraints can be divided into two categories: hard
and soft constraints. A timetable is said to be feasible (usable) if no hard con-
straints are violated. However, soft constraints may be violated and the objective
is to minimise their violation in order to increase the quality of the timetable.
The course timetabling problem is very complex (as discussed by Cooper and
Kingston [CE13]) and common to a wide range of educational institutions. The
manual process of preparing the timetable is tedious, time consuming and yet
not guaranteed to produce a timetable free of conflicts.

Several formulations of the course timetabling problem exist in the literature.
We adopt the one by Socha et al. [CE23] and the corresponding benchmark
data sets to test the proposed algorithm. More formally, the course timetabling
problem tackled here consists of the following: n events E = {e1, e2, . . . , en}, k
timeslots T = {t1, t2, . . . , tk}, m rooms R = {r1, r2, . . . , rm} in which events can
take place, a set F of room features satisfied by rooms and required by events,
and a set S of students. Each room has a limited capacity and each student
attends a number of events. The problem is to assign n events to k timeslots and
m rooms in such a way that all hard constraints are satisfied and the violation
of soft constraints is minimised. The benchmark data set proposed by Socha et
al. [CE23] involves 11 instances which are split according to their size into 5
small, 5 medium and 1 large. For the small instances, n = 100, m = 5, |S| = 80,

3

|F | = 5. For the medium instances, n = 400, m = 10, |S| = 200, |F | = 5. For the
large instance, n = 400, m = 10, |S| = 400, |F | = 10. For all instances, k = 45
(9 hours in each of 5 days).

There are 4 hard constraints: 1) a student cannot attend two events si-
multaneously (events with students in common must be timetabled in different
timeslots); 2) only one event can be assigned per timeslot in each room; 3) the
room capacity must be equal to or greater than the number of students attend-
ing the event in each timeslot; 4) the room assigned to the event must satisfy
the features required by the event. There are 3 soft constraints: 1) students
should not have exactly one event timetabled on a day; 2) students should not
attend more than two consecutive events on a day; 3) students should not attend
an event in the last timeslot of the day.

3 Summary of Related Work

Various heuristics have been proposed to tackle the course timetabling problem
described above. Socha et al. first proposed a MAX-MIN ant system [CE23] and
then later an ant colony system [CE24] in which artificial ants follow a construc-
tion graph to build a timetable. Rossi-Doria et al. [CE22] compared the perfor-
mance of several meta-heuristics to solve this problem. The methods compared:
evolutionary algorithm, ant colony optimisation, iterated local search, simulated
annealing, and tabu search. No best results were reported by Rossi-Doria et al.
as the intention was to assess the strength and weaknesses of each algorithm.
Asmuni et al. [CE4] implemented a fuzzy multiple heuristic ordering in which
fuzzy logic was used to establish the ordering of events prior to be timetabled.
Abdullah et al. [CE1] proposed versions of variable neighbourhood search while
Abdullah et al. [CE2] applied a randomised iterative improvement approach
using a composite of eleven neighbourhood structures in exploring the current
solution. Later, Abdullah et al. [CE3] presented a hybrid approach combining
a mutation operator with their previous randomised iterative improvement pro-
cedure. Recently, a non-linear great deluge algorithm (NLGD) was proposed by
Landa-Silva and Obit [CE17]. That method produced new best results in 4 of 11
problem instances. Finally, McMullan [CE19] proposed an extended great deluge
algorithm (EGD), which allows re-heating similar to simulated annealing, and
found new best results for the 5 medium instances.

Hyper-heuristics have also been applied to solve this timetabling problem.
Burke et al. [CE9] applied a choice function hyper-heuristic which also uses a
tabu list to guide the iterative application of a set of simple local search heuris-
tics. Rattadilok et al. [CD20] proposed a distributed choice function hyper-
heuristic and implemented two designs based on a parallel architecture: hier-
archical and agent-based. Burke et al. [CE10] proposed a graph-based hyper-
heuristic in which a tabu search procedure is used to change the permutations
of six graph colouring heuristics before applying them to construct a timetable.
Bai et al. [CE6] developed a simulated annealing hyper-heuristic which selects
low-level heuristics based on a stochastic ranking mechanism.

4

4 The Non-linear Great Deluge Hyper-heuristic

In this paper, we use our non-linear great deluge algorithm (NLGD) [CE17]
as an acceptance criterion and incorporate reinforcement learning to select the
low-level heuristics to apply at each step of the search process. That is, while
in a NLGD meta-heuristic candidate solutions are accepted or not based on the
great deluge criterion, in the proposed Non-Linear Great Deluge Hyper-heuristic
(NLGDHH) it is candidate low-level heuristics which are accepted or not, i.e.
the method operates in the heuristic search space.

Figure 1 illustrates the proposed hyper-heuristic in which the low-level heuris-
tics are local search operators which explore the solution space while the rein-
forcement learning and the NLGD acceptance criterion explore the heuristic
space. We use the non-linear great deluge criterion because of its simplicity and
less dependent nature upon parameter tuning compared to simulated anneal-
ing [CE7,CE17]. The low-level heuristics implemented in this work are listed
below. These heuristics are based on random search but always ensuring the
satisfaction of hard constraints.
H1: selects 1 event at random and assigns it to a feasible pair timeslot-room
also selected at random.
H2: selects 2 events at random and swaps their timeslot-room while ensuring
feasibility.
H3: selects 3 events at random and exchanges timeslot-room at random while
ensuring feasibility.

Fig. 1: Non-Linear Great Deluge Hyper-heuristic Approach

5

4.1 Non-linear Great Deluge (NLGD) Acceptance Criterion

The NLGD acceptance criterion refers to accepting improving and non-improving
low-level heuristics depending on the performance of the heuristic and the cur-
rent water level B. Improving heuristics are always accepted while non-improving
ones are accepted only if the detriment in quality is less than or equal to B. The
initial water level is usually set to the quality of the initial solution and then
decreased by a non-linear function proposed in our previous work [CE17]:

B = B × (exp−δ(rnd[min,max])) + β (1)

The various parameters in Eq. (1) control the speed and the shape of the water
level decay rate. Parameter β influences the shape of the decay rate and it
represents the minimum expected penalty corresponding to the best solution.
The role of parameters min and max is to control the speed of the decay rate.
However, the search could get stuck and to avoid this, it is necessary sometimes
to relax the water level. When the water level is about to converge to the current
penalty cost, the algorithm then allows the water level to go up.

Fig. 2: Comparison Between Linear (straight line) and Non-linear (curves) Decay
Rates and Illustration of the Effect of Parameters β, δ,min and max on the
Shape of the Non-linear Decay Rate.

Figure 2 illustrates the difference between the linear and non-linear decay
rates. The graph also illustrates the effect of parameters β, δ, min and max on
the non-linear decay rate. The straight line in Figure 2 corresponds to the linear
decay rate originally proposed by Dueck [CE15]. In this case, a non-improving
candidate solution S∗ is accepted only if its objective value f(S∗) is below the
water level B. When f(S∗) and B converge the algorithm becomes greedy and

6

it is more difficult for the search to escape from local optima. Figure 2 also
illustrates the non-linear decay rate with different values for β, δ, min and max.

We set δ = 5 × 10−7 and β = 0 for all datasets in this paper. The reason
for setting β = 0 is that we want B to reach the value of zero by the end of the
search. If for a given problem, the minimum penalty that should be achieved is
100, then β should be set around that value. If there is no previous knowledge on
the minimum penalty expected (best expected fitness), then we suggest to tune
β through preliminary experimentation for the problem in hand. The values of
min and max in Eq. (1) are set according to the current penalty cost. When
the penalty cost is more than 20, min = 80000 and max = 90000. When the
penalty cost goes below 20, min = 20000 and max = 30000. When the range < 1
(range is the difference between the water level B and the current penalty), B
is increased by a random number within the interval [Bmin, Bmax], we call this
mechanism floating B. For small and medium problem instances the interval
used is [0.85, 1.5] while for the large problem instance the interval used is [1, 5].

4.2 Learning Mechanism

A reinforcement learning strategy (adapted from Bai et al. [CE6]) is used to
guide the selection of low-level heuristics during the search. Initially, all low-level
heuristics have the same probability to be selected. Then, we tune the priorities
of the low-level heuristics as the search progresses so that the algorithm tries
to learn which low-level heuristic to use for better exploring the solution space.
In this paper, we investigate two types of reinforcement learning (RL): RL with

static memory length and RL with dynamic memory length as described below.

RL with Static Memory Length: In each iteration, a low-level heuristic i is
selected with probability pi given by Eq. (2) where n is the number of heuristics
and wi is the weight assigned to each heuristic.

pi =
wi

∑n
i=1 wi

(2)

Initially, every weight is set to wi = 0.01. At each iteration, the algorithm starts
to reward or punish the heuristics according to their performance. When the
chosen heuristic improves the current solution, a reward of 1 point is given to
the heuristic. If the heuristic does not improve the solution, the punishment is to
award no points. This amount of reward/punishment never changes. However,
the algorithm updates the set of weights wi in every learning period (lp) given
by lp = max(K/500, n), where K is the total number of feasible moves explored.

We use the following counters to track the performance of each low-level
heuristic: Ctotali, is the number of times that low-level heuristic i is called;
Cnewi is the number of times that low-level heuristic i generates solutions
with different fitness value; and Caccepti is the number of times that low-level
heuristic i meets the non-linear great deluge acceptance criterion. Each heuristic
weight wi is updated at every learning period lp and normalised by the ratio

7

Caccepti/Ctotali when range > 1 and by Cnewi/Ctotali when range < 1.
At every learning period lp and if range < 1, the water level increases to
B = B + rand[Bmin, Bmax]. We call this mechanism surge B. We set Bmin

equal to 1 and Bmax equal to 4 regardless to the size of the dataset. Note that
the water level can increase due to the floating B (continuous) mechanism or
the surge B (every lp feasible moves) mechanism.

RL with Dynamic Memory Length: In each iteration, a low-level heuristic
i is selected with probability pi given by Eq. (3) where n is the number of
heuristics, wi is the weight assigned to each heuristic and wmin = min {0, wi}.

pi =
wi + wmin

∑n
i=1 wi + wmin

(3)

Initially, every weight is set to wi = 0.01 as before, however, each wi is updated
every time the algorithm performs a feasible move. When the selected heuristic
improves the current solution, the heuristic is rewarded, otherwise the heuristic is
punished. The value <ij of reward/punishment applied to heuristic i at iteration
j is as given below where r = 1, = = 0.1 and ∆ is the difference between the
best solution (lowest penalty) so far and the current solution (current penalty).

<ij =























r if ∆ < 0
−r if ∆ > 0
= if ∆ = 0 and new solution
−= if ∆ = 0 and no new solution
0 if not elected

Then, at each iteration h, each weight wi is calculated using Eq.(4) where σ
gives the length of the dynamic memory.

wih =

h
∑

j=k

σj<ij (4)

In every learning period lp, the algorithm updates σ with a random value in
(0.5, 1.0]. Here, we also set lp = max(K/500, n) as before. At every learning pe-
riod lp and if range < 1, the water level increases to B = B+rand[Bmin, Bmax].
We set Bmin equal to 1 and Bmax equal to 4 regardless to the size of the dataset.

5 Computational Experiments and Results

To evaluate the performance of the proposed algorithm, we conducted a range
of experiments using the standard course timetabling benchmark instances pro-
posed by Socha et al. [CE23]. For each problem instance we run the algorithm 20
times. The stopping condition is a maximum computation time tmax or achiev-
ing a penalty value of zero, whatever was sooner. For small instances, we set

8

tmax = 0.75 hours as the algorithm takes less than 2500 seconds (42 minutes).
For medium instances, we set tmax = 2.5 hours. For the large instance, we set
tmax = 5 hours. Our previous NLGD meta-heuristic [CE17] was not able to
improve results even after extending the execution time. However, the approach
proposed here is now able to find better solutions thanks to the learning mecha-
nism that selects low-level heuristics accurately to further improve the solution
quality. In the rest of this paper, NLGDHH-SM and NLGDHH-DM refer to the
algorithm proposed here when using static memory length or dynamic memory
length respectively.

We conducted several experiments to evaluate the performance of the two
algorithm variants. The first set of experiments compared the performance of
NLGDHH-SM and NLGDHH-DM to the great deluge (GD) meta-heuristics.
The second set of experiments compared the performance of NLGDHH-SM and
NLGDHH-DM to other hyper-heuristics reported in the literature. The third
set of experiments investigates the performance of NLGDHH-SM when using
different learning period length. Finally, the performance of NLGDHH-SM and
NLGDHH-DM are compared to the best known results reported in the literature
for the subject problem.

5.1 Illustration of the Weights Adaptation

Before presenting our experimental results in detail, we further illustrate the
weight adaptation mechanism. As explained above, the weight wi for each of the
low-level heuristics is set to 0.01 at the start of the search. Then, these weights
are updated depending on the success or failure of the low-level heuristics to
improve the current solution. In order to appreciate how this works, Figures 3
and 4 show the weight values for a particular run of the NLGDHH-SM algorithm
on each of the test instances. The initial weights have the same value for all the
low-level heuristics but as the search progress, we can see that these weights are
adapted for each instance. For example, Figure 3 shows that for small instances,
the probability of low-level heuristic H3 being selected is reduced quickly down
to zero. However, Figure 4 shows that in the case of three medium instances and
the large one, this probability remains above zero and fluctuating for most of
the search. We can also see in these Figures that the weights for H1 and H2 are
tuned for each test instance and there is no clearly defined common pattern.

5.2 Static vs. Dynamic Memory

We first compare NLGDHH-SM to NLGDHH-DM with the objective of examin-
ing the effect of the RL mechanism when using Static Memory (SM) or Dynamic
Memory (DM). Figure 5 shows the best results obtained by the algorithm with
each type of memory. We can see that both learning mechanisms are able to
produce optimal solutions for all small instances for at least one out of 20 runs.
For medium instances, both mechanisms perform well and the results obtained
with the dynamic memory are competitive with those obtained with the static
memory, particularly for the M1 instance (for which NLGDHH-SM obtained a

9

Fig. 3: Adaptation of Weights (wi) During a Run of NLGDHH-SM on Small
Instances.

value of 51 while NLGDHH-DM obtained a value of 54). The exact values are
reported in Table 1. For instances M2, M3, M4, M5 and L, the results show that
NLGDHH-SM obtained better solution quality compared to NLGDHH-DM.

In addition to reporting the best results obtained from the 20 runs, we also
report in Figure 6, the average results over the 20 runs for each of the approaches.
We can see that although both algorithms reach optimal solutions for all small
instances, NLGDHH-SM does this more often compared to NLGDHH-DM. The
overall results obtained by NLGDHH-SM are better than those achieved by
NLGDHH-DM. It was shown above that the best results obtained by both al-
gorithms on the M1 instance are pretty close. However, on average, the results
obtained by NLGDHH-DM seem less consistent than the results achieved by
NLGDHH-SM.

We now have a closer look at the performance of each algorithm on instances
S1, M1 and L. Figures 7-9 show the results obtained by each algorithm on
these instances over all 20 runs. We can see in Figure 7 and Figure 8 that the
algorithm with static memory shows a more consistent performance compared

10

Fig. 4: Adaptation of Weights (wi) During a Run of NLGDHH-SM on Medium
and Large Instances.

to the algorithm with dynamic memory. For example, for the small instance S1,
NLGDHH-SM found a solution with penalty zero in 15 runs while NLGDHH-
DM did it only for 9 of the 20 runs. On the medium instance M1, the algorithm
with static memory found better results in almost all the 20 runs and with
less variability compared to the results obtained by the algorithm with dynamic
memory. However, for the large instance, Figure 9 shows that the algorithm
with dynamic memory shows a more consistent performance over the 20 runs
although the results obtained with the static memory are still better overall.

5.3 Comparison to Previous Great Deluge

The second set of experiments compared the proposed NLGDHH (with static
and with dynamic memory length) to previous great deluge meta-heuristics in
order to assess the performance of the non-linear acceptance criterion and the
RL mechanism. Table 1 shows the results obtained by the non-linear great deluge
hyper-heuristic with static (NLGDHH-SM) and with dynamic (NLGDHH-DM)
memory, the extended great deluge (EGD) [CE19], the non-linear great deluge

11

Fig. 5: Best Results Obtained by NLGDHH-SM and NLGDHH-SM

Fig. 6: Average Results Obtained by NLGDHH-SM and NLGDHH-SM

(NLGD) [CE17], the evolutionary non-linear great deluge (ENLGD) [CE18], and
the conventional great deluge (GD). We can see in Table 1 that NLGDHH-SM
mostly outperforms NLGDHH-DM in terms of the number of best solutions
found across all instances. Both variants of the proposed method obtained equal
or better results than the other approaches, except for instance L where EGD
found better solutions. However, NLGDHH-SM produced better solutions for 10
out of the 11 instances. In fact, NLGDHH-SM improved the solutions by 36.25%
for M1, 54.29% for M2, 56.83% for M3, 46.59% for M4 and 30.68% for M5.
The average improvements are 40.72%, 49.49%, 48.24%, 49.54% and 29.70% for
M1, M2, M3, M4 and M5 respectively. For the large instance, the best result
obtained by EGD is 0.13% better and in average 6.10% better than the best

12

Fig. 7: Results on 20 Runs of NLGDHH-SM and NLGDHH-DM on Instance S1.

Fig. 8: Results on 20 Runs of NLGDHH-SM and NLGDHH-DM on Instance M1.

Fig. 9: Results on 20 Runs of NLGDHH-SM and NLGDHH-DM on Instance
Large.

13

result by NLGDHH-SM. The overall performance of both NLGDHH-SM and
NLGDHH-DM is quite good according to these results.

Table 1: Comparison of the Proposed Great Deluge Based Hyper-heuristic and
Other Great Deluge Methods from the Literature.

Instance NLGDHH-SM NLGDHH-DM EGD NLGD ENLGD GD
Best Avg Best Avg Best Avg Best Best Best

S1 0 0.5 0 2.5 0 0.8 3 0 17

S2 0 0.65 0 1.9 0 2 4 1 15

S3 0 0.20 0 2.05 0 1.3 6 0 24

S4 0 1.5 0 2.85 0 1 6 0 21

S5 0 0 0 0.85 0 0.2 0 0 5

M1 51 60.1 54 139 80 101.4 140 126 201

M2 48 59.05 67 78.2 105 116.9 130 123 190

M3 60 83.9 84 115.45 139 162.1 189 185 229

M4 47 54.9 60 72.05 88 108.8 112 116 154

M5 61 84.15 93 112.8 88 119.7 141 129 222

L 731 888.65 917 1035.25 730 834.1 876 821 1066

5.4 Comparison to Other Hyper-heuristics

We now compare the proposed NLGDHH to other hyper-heuristics reported in
the literature. Table 2 shows the results obtained by the following approaches:
NLGDHH-SM, NLGDHH-DM, choice function hyper-heuristic (CFHH) [CE9],
case-based hyper-heuristic (CBHH) [CE10], simulated annealing hyper-heuristic
(SAHH) [CE6] and distributed-choice function hyper-heuristic (DCFHH) [CD20].
The results show that the proposed method finds equal or better solutions
for 5 out of the 11 instances. For all small instances, both NLGDHH-SM and
NLGDHH-DM are able to find the optimal solutions. For all medium instances,
the NLGDHH variants achieve a significant improvement over the other hyper-
heuristics. The NLGDHH approaches are also quite competitive in the large
instance when compared to the results obtained by SAHH.

5.5 Experiments With Different Memory Lengths

Since NLGDHH-SM produced better results, we conducted experiments with
different learning period length (lp). We ran experiments with lp = 250, lp = 500,
lp = 1000, lp = 2500, lp = 5000 and lp = 10000. The best and average results
are presented in Table 3.

We can see that for different values of lp, the proposed methods perform
different. All static memory (SM) variants are able to find the optimal solution

14

Table 2: Comparison of the Proposed Great Deluge Based Hyper-heuristic and
Other Hyper-heuristics from the Literature.

Instance NLGDHH-SD NLGDHH-DM CFHH CBHH SAHH (DCFHH)

S1 0 0 1 6 0 1

S2 0 0 2 7 0 3

S3 0 0 0 3 1 1

S4 0 0 1 3 1 1

S5 0 0 0 4 0 0

M1 51 54 146 372 102 182

M2 48 67 173 419 114 164

M3 72 84 267 359 125 250

M4 47 60 169 348 106 168

M5 61 93 303 171 106 222

L1 731 915 1166 1068 653 -

Table 3: Comparison of the NLGDHH-SM with Different lp Values

Instance lp = 250 lp = 500 lp = 1000 lp = 2500 lp = 5000 lp = 10000
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

S1 0 0.7 0 0.5 0 0.5 0 0.3 0 0.35 0 0.35

S2 0 0.95 0 0.9 0 0.65 0 0.4 0 0.2 0 0.35

S3 0 0.35 0 0.4 0 0.20 0 0.2 0 0.3 0 0.40

S4 0 1 0 0.85 0 1.5 0 0.8 0 0.5 0 0.55

S5 0 0 0 0 0 0 0 0 0 0 0 0

M1 54 61.6 53 56.9 51 60.1 38 53 42 51.35 44 52.15

M2 51 61.6 52 63.35 48 59.05 37 50.3 44 51.4 44 52.75

M3 70 101.2 62 78.4 60 83.9 61 75.45 60 79.5 61 79.65

M4 40 56.45 53 61.25 47 54.9 41 49.35 39 47.2 43 49.1

M5 68 87.8 62 77.15 61 84.15 61 76.95 55 79.05 62 78.45

L 818 937.4 755 939.85 731 888.65 638 829.05 713 875.1 831 918.75

15

for small instances. For medium and large instances lp = 2500 and lp = 5000
give better results. For the large instance lp = 2500 gives better results than all
other values of lp. NLGDHH-SM performed worst with lp = 250. The overall
performance for different lp values is shown in Figures 10 and 11. From these
experiments, we can conclude that longer length of learning period produces
better quality solutions than lp with shorter values.

Fig. 10: Best Results Obtained by NLGDHH-SM with Different lp Values

Fig. 11: Average Results Obtained by NLGDHH-SM with Different lp Values

5.6 Comparison to Best Known Results

Finally, we compare the results obtained by the NLGDHH to the best results
reported in the literature for the subject problem. The first five columns in

16

Table 4 show the results obtained by NLGDHH, while the fifth column shows
the best known results and the corresponding approaches. It should be noted
that although a timetable with zero penalty exists for each problem instance (the
data sets were generated starting from such a timetable [CE23]), to the best of
our knowledge no heuristic method has found the ideal timetable for the medium
and large instances. Hence, these data sets are still very challenging for heuristic
search methods. For all small instances, both approaches NLGDHH-SM and
NLGDHH-DM produced optimal solutions. For medium instances, NLGDHH-
SM improved the best solutions of M1, M2, M3, M4 and M5 while NLGDHH-
DM improved the best solution of M1, M2, M3, and M4. For the large instance,
neither NLGDHH-DM nor NLGDHH-DM improved the best solution reported
but they are very competitive.

Table 4: Comparison of the Proposed Great Deluge Based Hyper-heuristic to the
Best Results Reported in the Literature for the Course Timetabling Problem of
Socha et al. [CE23].

Instance NLGDHH-SM NLGDHH-SM NLGDHH-SM
LP=1000 LP=2500 LP=5000 NLGDHH-DM Best Known

S1 0 0 0 0 0 (VNS-T)

S2 0 0 0 0 0 (VNS-T)

S3 0 0 0 0 0 (CFHH)

S4 0 0 0 0 0 (VNS-T)

S5 0 0 0 0 0 (MMAS)

M1 51 38 42 54 80 (EGD)

M2 48 37 44 67 105 (EGD)

M3 60 61 60 84 139 (EGD)

M4 47 41 39 60 88 (EGD)

M5 61 61 55 93 88 (EGD)

L1 731 638 713 915 529(HEA)

NLGDHH-SM is the Non-Linear Great Deluge Hyper-heuristic with fixed memory length
NLGDHH-DM is the Non-Linear Great Deluge Hyper-heuristic with dynamic memory length
MMAS is the MAX-MIN Ant System in [CE23]
CFHH is the Choice Function Hyper-heuristic in [CE9]
VNS-T is the Hybrid of VNS with Tabu Search in [CE1]
HEA is the Hybrid Evolutionary Algorithm in [CE2]
EGD is the Extended Great Deluge in [CE19]

6 Conclusions

We have developed a hyper-heuristic approach that uses a reinforcement learn-
ing (RL) mechanism and a non-linear great deluge (NLGD) acceptance criterion
to manage the selection of low-level heuristics during the search process. The
method focuses on trying to choose the most appropriate heuristic in each step

17

of the search and hence it follows the hyper-heuristic concept. We appplied the
proposed method to well-known instances of the university course timetabling
problem proposed by Socha et al. [CE23]. The experimental results showed that
the proposed non-linear great-deluge hyper-heuristic (NLGDHH) was able to
find new best solutions for 5 out of the 11 problem instances compared to re-
sults reported in the literature. However, for the large instance, the algorithm
produced only competitive results. We believe that for very large search spaces,
the learning mechanism becomes less effective. Our future work contemplates
the decomposition of large problems into smaller ones where the proposed algo-
rithm seems to be very effective. We also want to incorporate a larger number of
low-level heuristics and perhaps some more specialised operators. Another issue
that requires further investigation is the robustness of the learning mechanism
with respect to the various algorithm parameters.

References

[CE1] S. Abdullah, E.K. Burke, B. McCollum: An investigation of variable neigh-
bourhood search for university course timetabling. In: Proceedings of the 2nd
Multidisciplinary Conference on Scheduling: Theory and Applications, pp. 413-
427, NY, USA, 2005.

[CE2] S. Abdullahm, E.K. Burke, B. McCollum: Using a randomised iterative im-
provement algorithm with composite neighbourhood structures for university
course timetabling. In: Metaheuristics - progress in complex systems optimiza-
tion, Springer, pp. 153-172, 2007.

[CE3] S. Abdullah, E. Burke, B. McCollum: A hybrid evolutionary approach to
the university course timetabling problem. In: Proceedings of the 2007 IEEE
Congress on Evolutionary Computation (CEC 2007), pp. 1764-1768, 2007.

[CE4] H. Asmuni, E. Burke, J. Garibaldi: Fuzzy multiple heuristic ordering for course
timetabling. In: Proceedings of the 5th United Kingdom Workshop on Com-
putational Intelligence (UKCI 2005), pp. 302-309, 2005.

[CE5] M. Ayob, G. Kendall: An investigation of an adaptive scheduling approach for
multi-head placement machines. In: Proceedings of the 1st Multidisciplinary In-
ternational Conference on Scheduling: Theory and Applications (MISTA 2003),
pp. 363-380, Nottingham, UK, 2003.

[CE6] R. Bai, E.K. Burke, G. Kendall, B. McCollum: Memory length in hyper-
heuristics: An empirical study. In: Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Scheduling (CISched2007), pp. 173-178, Hawaii,
USA, 2007.

[CE7] E. Burke, Y. Bykov, J.P. Newall, S. Petrovic: A time-predefined approach
to course timetabling. Yugoslav Journal of Operations Research (YUJOR),
13(2):139-151, 2003.

[CE8] E. Burke, K. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg: Hyper-
heuristics: an emerging direction in modern search technology. In: Handbook
of Meta-heuristics, Fred Glover, Gary A. Kochenberger (eds.), pp. 457-474,
Kluwer Academic Publishers, 2003.

[CE9] E. Burke, G. Kendall, E. Soubeiga: A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics, 9:451-470, 2003.

18

[CE10] E. Burke, B. McCollum, A. Meisels, S. Petrovic, Q. Rong: A graph based
hyper-heuristic for educational timetabling problems. European Journal of Op-
erational Research, 176:177-192, 2007.

[CE11] E. Burke, S. Petrovic, R. Qu: Case based heuristic selection for timetabling
problems. Journal of Scheduling, 9(2):115-132, 2006.

[CE12] E.K. Burke, G. Kendall, J.D. Landa-Silva, R. O’Brien, E. Soubeiga: An ant
algorithm hyperheuristic for the project presentation scheduling problem. In:
Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), Volume 3, pp. 2263-2270, Edinburgh, Scotland, 2005.

[CE13] T.B. Cooper, H. Kingston: The complexity of timetable construction problems.
Selected Papers from the 1st International Conference on the Practice and
Theory of Automated Timetabling (PATAT 1995), LNCS, 1153, Springer, pp.
283-295, 1996.

[CE14] P. Cowling, G. Kendall, L. Han: An investigation of a hyper-heuristic genetic
algorithm applied to a trainer scheduling problem. In: Proceedings of the 2002
IEEE Congress on Evolutionary Computation (CEC 2002), pages 1185-1190,
Honolulu, Hawaii, 2002.

[CE15] G. Dueck: New Optimization Heuristic: The Great Deluge Algorithm and the
Record-to-record Travel. Journal of Computational Physics, 104:86–92, 1993.

[CE16] G. Kendall, M. Mohamad: Channel assignment in cellular communication using
a great deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International
Conference on Network (ICON2004), pp. 769-773, Singapore, 2004.

[CE17] D. Landa-Silva, J.H. Obit. Great deluge with nonlinear decay rate for solving
course timetabling problems. In: Proceedings of the 2008 IEEE Conference on
Intelligent Systems (IS 2008), IEEE Press, pp. 8.11-8.18, 2008.

[CE18] D. Landa-Silva, J.H. Obit: Evolutionary nonlinear great deluge for university
course timetabling. In: Proceedings of the 2009 International Conference on
Hybrid Artificial Intelligence Systems (HAIS 2009), LNAI 5572, Springer, pp.
269-276, 2009.

[CE19] P. McMullan: An extended implementation of the great deluge algorithm for
course timetabling. In: Proceedings of the 2007 International Conference in
Computational Science (ICCS 2007), LNCS 4487, Springer-Verlag, pp. 538-
545, 2007.

[CD20] P. Rattadilok, A. Gaw, R. Kwan: Distributed choice function hyper-heuristics
for timetabling and scheduling. In: Proceedings of the 5th International Con-
ference on the Practice and Theory of Automated Timetabling (PATAT 2004),
2004.

[CE21] P. Ross, S. Schulenburg, J. Marin-Blazquez, H. Hart: Hyper-heuristics: learning
to combine simple heuristic in bin-packing problems. In: Proceedings of the
2002 Genetic and Evolutionary Computation Conference (GECCO 2002), pp.
942-948, New York, USA, 2002.

[CE22] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. Gam-
bardella, J. Knowles, M. Manfrin, L. Mastrolilli, B. Paechter, L. Paquete, T.
Stuetzle: A comparion of the performance of different metaheuristics on the
timetabling problem. In: Selected Papers from the 4th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT 2002),
LNCS 2740, Springer, pp. 330-352, 2003.

[CE23] K. Socha, J. Knowles, M. Samples: A max-min ant system for the university
course timetabling problem. In: Ant Algorithms - Proceedings of the Third
International Workshop (ANTS 2002), LNCS 2463, pp. 1-13, Springer, 2002.

19

[CE24] K. Socha, M. Sampels, M. Manfrin: Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art. In: Applications of
Evolutionary Computing - Proceedings of the 2003 EvoWorkshops, LNCS 2611,
Springer, pp. 334-345, 2003.

[CE25] E. Soubeiga: Development and application of hyper-heuristic to personnel
scheduling. PhD thesis, School of Computer Science, University of Notting-
ham, UK, 2003.

