Computational Study of Non-linear Great
Deluge for University Course Timetabling

Joe Henry Obit and Dario Landa-Silva

Abstract. The great deluge algorithm explores neighbouring solutions which are
accepted if they are better than the best solution so far or if the detriment in quality is
no larger than the current water level. In the original great deluge method, the water
level decreases steadily in a linear fashion. In this paper, we conduct a computational
study of a modified version of the great deluge algorithm in which the decay rate
of the water level is non-linear. For this study, we apply the non-linear great deluge
algorithm to difficult instances of the university course timetabling problem. The
results presented here show that this algorithm performs very well compared to
other methods proposed in the literature for this problem. More importantly, this
paper aims to better understant the role of the non-linear decay rate on the behaviour
of the non-linear great deluge approach.

1 Introduction

The great deluge algorithm is a meta-heuristic approach proposed by Dueck [12]]
and is inspired by the behaviour that could arise when someone seeks higher ground
to avoid the rising water level during constant rain. For a maximisation problem, the
algorithm seeks to find the highest point on a certain surface with hills, valleys and
plateaus (search space). Then, it starts to rain constantly and the algorithm walks
around (explores the neighbourhood) but never makes a step into the increasing wa-
ter level. As it continues raining, the algorithm can explore higher and lower ground

Joe Henry Obit

ASAP Research Group, School of Computer Science,
University of Nottingham, United Kingdom

e-mail: jzh@cs.nott.ac.uk

Dario Landa-Silva

ASAP Research Group, School of Computer Science,
University of Nottingham, United Kingdom

e-mail: dario.landasilva@nottingham.ac.uk

V. Sgurev et al. (Eds.): Intelligent Systems: From Theory to Practice, SCI 299, pp. 309-328]
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010

310 J.H. Obit and D. Landa-Silva

(improving and non-improving positions) but is continually pushed to a high point
(hopefully close to the optimum) until eventually it cannot escape the rising water
level and it stops. The initial water level is set to a value below the fitness of the
initial solution and then is increased in a linear fashion as the search progresses.
Note that for a minimisation problem, the water level starts on a value above the
fitness of the initial solution and decreases constantly. In this case, the algorithm
seeks to find the lower point by exploring the surface and maintaining its head be-
low the descreasing water level. One can see that great deluge is similar to simulated
annealing (SA) [1]] but while SA accepts non-improving solutions based on proba-
bility, great deluge does this in a more deterministic manner by controlling the water
level. The original great deluge algorithm was applied to course timetabling prob-
lems by Burke, Bykov, Newall and Petrovic [6]. They observed good performance
of great deluge on all the problem instances tackled.

In our previous work we presented a simple but effective modification of
the conventional great deluge algorithm. In that variant, the water level decreases
in a non-linear fashion and it also rises from time to time in order to improve the
explorative ability of the algorithm. In the present paper, our aim is to conduct a
computational study of the non-linear great deluge (NLGD) algorithm in order to
investigate the key mechanisms that make this algorithm very effective. For this
study, we use a number of well-known and difficult instances of the university course
timetabling problem. This problem is NP complete and real-world instances
are very difficult mainly due to the associated constraints. The present study uses the
11 instances of the course timetabling problem proposed by Socha, Knowles and
Samples [18] and the 20 instances of the 1st International Timetabling Competition.
All these instances consist of a set of events that need to be assigned into timeslots
and rooms ensuring the satisfaction of a number of constraints (e.g. events should
not be timetabled at certain times). These instances have been proven to be very
challenging for most of the methods proposed in the literature. In this problem, the
quality of a solution is measured by the overall penalty due to the violation of soft
constraints and the aim is to minimise such penalty.

The rest of the paper is organised as follows. Section 2 describes the non-linear
great deluge algorithm. Section [describes the university course timetabling prob-
lem considered in this paper and the instances used in our experiments. Important
algorithm implementation details are given in Section[dl Experiments and results are
presented and discussed in Section 3] focusing on the overall performance of NLGD
and the effect that the non-linear decay rate has on the overall performance of the
algorithm. Conclusions and future work are the subject of Section[6l

2 The Non-linear Great Deluge Algorithm

Consider a problem in which the goal is to find the solution that minimises a given
objective function. The distinctive feature of the conventional great deluge algorithm
is that when the candidate solution S* is worse than the current solution S, then S*
replaces S depending on the current water level B. The water level is initially set

Non-Linear Great Deluge for University Course Timetabling 311

according to the quality of the initial solution, that is, B > f(S°) where f(S°) denotes
the objective function value of the initial solution S°. The decay rate, i.e. the speed
at which B decreases, is determined by a linear function in the conventional great
deluge algorithm:

B=B—AB where AB € R™" (1)

The non-linear great deluge algorithm uses a non-linear decay rate for decreasing
the water level. The decay rate is given by the following expression:

B=Bx (expfﬁ(rnd[min,max])) +ﬁ)

The various parameters in Eq. (@) control the speed and the shape of the water
level decay rate. Parameter § represents the minimum expected value corresponding
to the optimal solution. In this paper, we set § = 0 because we want the water
level to reach that value by the end of the search. This is because we know that
an optimal value of zero is possible for the problem instances tackled in this paper
(see Section [3). If for a given minimisation problem we knew that the minimum
objective value that can be achieved is lets say 100, then we would set around that
value. If there is no previous knowledge on the minimum objective value expected,
then we suggest to tune f3 through preliminary experimentation for the problem in
hand. The role of the parameters &, min and max (more specifically the expression
exp 0(md min.max])y 5 to control the speed of the decay rate and hence the speed of
the search process. By changing the value of these three parameters, the water level
goes down faster or slower.

300 4 e With B=0 == Withf =10 Linear Decay Rate

Non-Linear Decay Rate (3=0): & =-0.0000005, Min = 10000, Max = 30000
Non-Linear Decay Rate (B =10): & =-0.0005, Min = 500, Max = 1000

250 - R
Linear Decay rate = 0.01

Objecvie Value (Minimisation)

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Iterations (x 0000)

Fig. 1 Comparison between linear (Eq.[I) and non-linear (Eq.[2)) decay rates and illustration
of the effect of parameters 3, 8, min and max on the shape of the non-linear decay rate

312 J.H. Obit and D. Landa-Silva

Figure [Tlillustrates the difference between the linear and non-linear decay rates.
The graph also illustrates the effect of parameters 3, 6, min and max on the non-
linear decay rate. The straight line in Figure [corresponds to the linear decay rate
(with AB = 0.01) originally proposed by Dueck [12]]. In this case, a non-improving
candidate solution S* is accepted only if its objective value f(S*) is below the water
level B. When f(S*) and B converge the algorithm becomes greedy and it is more
difficult for the search to escape from local optima. Figure[T]also illustrates the non-
linear decay rate with different values for f3, &, min and max.

Algorithm 1: Non-linear Great Deluge (NLGD) Algorithm

Construct initial feasible solution S
Set best solution so far Sp.s <— S
Set timeLimit according to problem size
Set initial water level B « f(S)
while elapsedTime < timeLimit do
Select move at random from M1,M2,M3
Define the neighbourhood N(S) of §
Select candidate solution S* € N(S) at random
if (f(S*) < f(S) or f($*) < B) then
S« §* {accept new solution}
Spest — S {update best solution }
end if
range = B — f(S*)
if (range < 1) then
if (Large or Small Problem) then
B=B+ rnd[BmimBmax]
else
if (f(Sbest) < flow) then
B = B+ rnd[Bin, Bimax]
else
B=B+2
end if
end if
else
if f(Spesr<=20) and Small then
B = B x (exp 8(mdlminmax)y L B (apply small instances parameters)
else
B=Bx (expfﬁ(rnd[min,max])) +B
end if
end if
end while

Non-Linear Great Deluge for University Course Timetabling 313

Algorithm 1 corresponds to the Non-linear Great Deluge (NLGD) method and
the use of the non-linear decay rate is shown in the last else. In addition to using a
non-linear decay rate for the water level B, we also allow B to go up when its value
is about to converge with the penalty cost of the candidate solution S*. This occurs
when range < 1 in Algorithm 1. We increase the water level B by a random number
within the interval [Biyn, Bmax|. Full details of this strategy to control the non-linear
decay rate are shown in Algorithm 1 and discussed in detail in [13].

3 The University Course Timetabling Problem

3.1 Benchmark Instances

Educational timetabling refers to the allocation, subject to constraints on resources,
of a set of timeslots and possibly rooms to events such as exams, lectures, lab ses-
sions, etc. [20]. In general, educational timetabling problems can be classified into
three types: school timetabling, course timetabling and examination timetabling [17].
Although these three timetabling problems share basic characteristics, significant
differences among them still exist. In this paper, we are concerned with the univer-
sity course timetabling problem which refers to the process of allocating, subject
to constraints, a set of limited timeslots and rooms to events (courses), in such a
way as to satisfy as nearly as possible a set of desirable objectives. In this prob-
lem, constraints can be distinguished into hard constraints and soft constraints. Hard
constraints must be satisfied, i.e. a timetable is feasible only if no hard constraint is
violated. Soft constrains might be violated but the number of violations has to be
minimised in order to increase the quality of the timetable. Several formulations
of the university course timetabling problem have been proposed in the literature.
Next, we refer to the formulation by Socha, Knowles and Samples [18].

More formally, the university course timetabling problem consists of:

nevents E = {ey,es,...,e,}
k timeslots T = {t1,, ..., }
mrooms R = {ry,r,...,ry,} in which events can take place

a set F' of room features satisfied by rooms and required by events
a set S of students

Each room has limited capacity. Each student attends a number of events (subset of
E). The problem is to assign the n events to the k timeslots and m rooms satisfying
all hard constraints and minimising the violation of soft constraints.

There are four hard constraints in this problem:

e hl: A student cannot attend two events simultaneously, i.e. events with students
in common must be timetabled in different timeslots.
e h2: Only one event can be assigned per timeslot in each room.

314 J.H. Obit and D. Landa-Silva

e h3: The room capacity must be equal to or greater than the number of students
attending the event in each timeslot.
e h4: The room assigned to an event must satisfy the features required by the event.

There are three soft constraints in this problem:

e sl: Students should not have only one event timetabled on a day.
e s2: Students should not have to attend more that two consecutive events on a day.
e s3: Students should not have to attend an event in the last timeslot of a day.

We use two sets of benchmark instances for this problem. One is a set of 11 in-
stances proposed by Socha, Knowles and Sampels [IEI] The second set are the
20 instances used during the 1st International Timetabling CompetitionE Details of
these instances are given in Table[I]and Table 2]

Table 1 There are 11 instances (5 small, 5 medium and 1 large) in the set by Socha, Knowles
and Sampels [18]. The last four rows give some indication about the structure of the instances.

Small|Medium |Large

Number of events n 100 | 400 | 400
Number of rooms m 5 10 10
Number of room features |F| 5 5 10
Number of students |S| 80 200 | 400
Maximum events per student 20 20 20
Maximum students per event 20 50 100
Approximation features per room| 3 3 5

Percent feature use 70 80 90

3.2 The Objective Function

The objective is to find a feasible timetable that also minimises the violation of
soft constraints. The problem can be formalised as follows. Let X be the set of all
possible solutions, @ = {h1,h2,h3,h4} the set of hard constraints, @ = {s1,s2,s3}
the set of soft constraints and X C X the set of all feasible solutions satisfying the
hard constraints in). For each solution x € X, f(x) is the cost function measuring
the violation of soft constraints in . The aim then is to find an optimal solution
x* € X such that f(x*) < f(x),Vx € X. The cost function f(x) is given by:

f(x):z(fl(xas)+f2(xas)+f3(xas)) (3)
sES
e fi(x,s): number of times a student s in timetable x has to attend a single event on
a day (violation of s1). For example, f (x,s) = 1 if student s has only 1 event in
a day and if student s has 2 days with only one event then f; (x,s) = 2.

! These instances can be found at:
http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html
2 These instances can be found at: http://www.idsia.ch/Files/ttcomp2002/

Non-Linear Great Deluge for University Course Timetabling 315

Table 2 There are 20 instances in the set for the 1st International Timetabling Competition.
The last three columns give some indication about the structure of the instances.

Instance |No. events |No. students|No. rooms|Rooms/event | Events/student|Students/event
n N m
comO1 400 200 10 1.96 17.75 8.88
com(2 400 200 10 1.92 17.23 8.62
com03 400 200 10 3.42 17.70 8.85
com04 400 300 10 2.45 17.43 13.07
comO05 350 300 10 1.78 17.78 15.24
com(06 350 300 10 3.59 17.77 15.23
comO7 350 350 10 2.87 17.48 17.48
comO8 400 250 10 2.93 17.58 10.99
com(09 440 220 11 2.58 17.36 8.68
coml0 400 200 10 3.49 17.78 8.89
coml1 400 220 10 2.06 17.41 9.58
coml2 400 200 10 1.96 17.57 8.79
coml3 400 250 10 2.43 17.69 11.05
coml4 350 350 10 3.08 17.42 17.42
coml5 350 300 10 2.19 17.58 15.07
coml6 440 220 11 3.17 17.75 8.88
coml7 350 300 10 1.11 17.67 15.15
coml8 400 200 10 1.75 17.56 8.78
coml9 400 300 10 3.94 17.71 13.28
com?20 350 300 10 3.43 17.49 14.99

e f>(x,s): number of times a student s in timetable x has to attend more than two
consecutive events (violation of s2). Every extra consecutive event receives 1
penalty point. For example f>(x,s) = 1 if a student s has three consecutive events
and f>(x,s) = 2 if the student s has four consecutive events, and so on.

e f3(x,s): number of times a student s in timetable x has to attend an event in the
last timeslot of the day (violation of s3).

4 Algorithm Implementation Details

4.1 Neighbourhood Structures

We employ three neighbourhood moves in the overall approach from initialisation
to improvement of solutions. Move M1 selects one event at random and assigns
it to a feasible pair timeslot-room also chosen at random. Move M2 selects two
events at random and swaps their timeslots and rooms while ensuring feasibility
is maintained. Move M3 identifies an event that violates soft constraints and then it
moves that event to another pair timeslot-room selected at random and also ensuring
feasibility is maintained. Note that the three neighbourhood moves are based on
random search but always seeking the satisfaction of hard constraints. Also note that

316 J.H. Obit and D. Landa-Silva

the difference between moves M1 and M3 is whether the violation of soft constraints
is taken into account or not when selecting the event to re-schedule. We use only
these three simple neighbourhood moves (and not more sophisticated ones) to better
assess the effectiveness of the non-linear decay rate in the NLGD algorithm.

4.2 Heuristic to Construct Feasible Timetables

To construct feasible timetables, we took the heuristic proposed by Chiarandini,
Birattari, Socha and Rossi-Doria and added the highest degree heuristic (a well-
known graph colouring heuristic) to Step 1 as described next. This modification was
necessary in our approach because otherwise, we were unable to generate feasible
solutions for large problem instances. The resulting initialisation heuristic works as
follows.

Step 1 - Highest Degree Heuristic. In each iteration, the unassigned event with
the highest number of conflicts (other events with students in common) is assigned
to a timeslot selected at random. Once all events have been assigned to a timeslot,
the maximum matching algorithm for bipartite graph (see [10] for details) is used
to assign each event to a room. At the end of this step, there is no guarantee for the
timetable to be feasible.

Step 2 - Local Search. We use neighbourhood moves M1 and M2 to improve the
timetable generated in Step 1. A move is only accepted if it improves the satisfaction
of hard constraints (this is because the moves seek to achieve feasibility). This step
terminates if after 10 iterations no move has produced a better (closer to feasibility)
solution.

Step 3 - Tabu Search. We apply tabu search using only move M1. The tabu
list contains events that were assigned less than ¢/ iterations before calculated as ¢/ =
rnd(10) + a X n., where rnd(10) is a random number from a uniform distribution
UJ[0,10], n. is the number of events involved in hard constraint violations in the
current timetable, and o0 = 0.6. This step terminates if after 500 iterations no move
has produced a better (closer to feasibility) solution.

In Steps 2 and 3 above, our initialisation heuristic uses simple local search and
tabu search to achieve feasibility. The local search (Step 2) attempts to improve the
solution but it also works as a disturbing operator, hence the reason for the maximum
of 10 trials before switching to tabu search (Step 3). Note that in the tabu search, M 1
selects only events that violate hard constraints. Then, Steps 2 and 3 are executed
iteratively until a feasible solution is found. This three-step initialisation heuristic
is capable of finding feasible timetables for most problem instances in reasonable
computation times as shown in Tables[Bland[] The exception is the large instance L1
from Table[I] which is the most difficult and it takes much longer time (a minimum
of 300 seconds) to find a feasible timetable. The density matrix for this instance
indicates a large number of conflicting events (with students in common).

Non-Linear Great Deluge for University Course Timetabling 317

Table 3 Time range (in seconds) taken to construct an initial feasible timetable, for 10 runs of
the initialisation heuristic on the instances by Socha, Knowles and Sampels (see Table[T).
Sx are small instances, Mx are medium instances and L1 is the large instance.

Minimum Time (s)[Maximum Time (s)

S1 0.07800 0.12500
S2 0.0790 0.10900
S3 0.06800 0.11000
S4 0.04700 0.11000
S5 0.07800 0.11000
Ml 7.54600 9.3130
M2 9.65600 10.9370
M3 13.4370 21.7020
M4 6.89100 7.76600
M5 16.6700 143.560
L1 300 3000

Table 4 Time range (in seconds) taken to construct an initial feasible timetable, for 10 runs of
the initialisation heuristic on the instances of the 1st International Timetabling Competition
(see Table[2)).

Minimum Time (s) | Maximum Time (s)

comO1 1.93 5.492
com02 1.36 2.644
com03 1.34 2.22

com04 4.464 28.98
com05 2.112 11.028
com06 1.33 3.272
com07 2.644 42.402
com08 1.82 11.086
com(09 1.496 8.088
coml0 4.644 29.045
coml1 3.14 13.75
coml2 3.016 12.632
coml3 2.26 6.976
coml4 5.816 50.675
coml5 1.564 8.956
coml6 1.092 3.884
coml?7 2.136 13.048
coml8 1.292 2.948
coml9 3.228 20.753
com20 1.804 0.085

318 J.H. Obit and D. Landa-Silva

5 Results with the NLGD Algorithm

5.1 Experimental Setting

We conducted several experiments using the two sets of benchmark instances de-
scribed in Section[3 It is known that for each of those instances there is at least one
assignment with an evaluation function value equal to zero, i.e. a feasible timetable
satisfying all soft constraints too. For each type of instance (in terms of size) in Ta-
ble[I] a fixed computation time (timeLimit in Algorithm 1) in seconds was set as the
stopping condition: 3600 for small problems, 4700 for medium problems and 6700
for the large problem. This fixed computation time is only for the NLGD algorithm,
i.e. starting from an already feasible solution. However, for every instance in Ta-
ble[2] the timeLimit was set to 2500 seconds but including finding the initial feasible
timetable. The reason for this is that the time taken by our initialisation heuristic (see
subsection4.2)) on the instances of Table 2]is negible, but considerable for the large
instance of Table[Il For each problem instance we executed the NLGD algorithm
10 times after generating an initial timetable.

The value of the parameters in Eq. (2)) were determined by experimentation. We
assigned 0 the values of 5 x 10719, 5% 1078 and 5 x 10~ for small, medium and
large instances of Table [l respectively. As said before, B = 0 for all problem in-
stances. The values of min and max were set as follows: for medium and large prob-
lems we used min = 100000 and max = 300000 while for small problems we used
min = 10000 and max = 20000. However, we should note that the parameter values
given above for the small instance only apply when the penalty cost reach around 20.
That is, the NLGD uses the same parameter values as for the medium instances and
changes to the small instance parameter values the cost function reaches the value
of 20. The interval By, Bnax| (see Algorithm 1) was set as follows. For small in-
stances it was [2,5] and for large instances it was [1,3]. For medium instances, we
first check if the penalty of the best solution so far f(Spe) is lower than a parameter
Jiow- If this is the case, then we use [1,4]. Otherwise, we assume that the best solu-
tion so far seems to be stuck in local optima (f (Spess) > fiow) SO we make B = B+2
as shown in Algorithm 1.

5.2 The Computational Study

First, we evaluate how beneficial it is to have a non-linear decay rate and floating
water level in the modified great deluge algorithm. In the first set of experiments,
we compared the NLGD with other algorithms reported in the literature for the in-
stances shown in Table [[l Results are reported in Table 5] where we can see the
results obtained by the NLGD and by the original great deluge alongside other re-
sults reported in the literature. The table also shows the penalty of the initial solution
provided to the great deluge approaches. The best results are shown in bold for each
dataset. The main goal of this comparison is to assess whether great deluge with
non-linear decay rate and floating water level performs better than or similar to
other algorithms that have been reported in the literature. We also want to assess if

Non-Linear Great Deluge for University Course Timetabling 319

Table 5 Comparison of results obtained by the non-linear great deluge (NLGD) against the
best known results from the literature for the 11 instances of Table[Il

Instance [Init. Sol.| GD |NLGD [Best Known

S1 198 17 3 |0 (VNS-T)
S2 265 15 4 |0 (VNS-T)
S3 214 24 6 |0 (CFHH)

S4 196 21 6 |0 (VNS-T)
S5 233 5 0 |0 (MMAS)

M1 858 201 | 140 |146 (CFHH)
M2 891 190 | 130 |147 (HEA)

M3 806 | 229 | 189 |246 (HEA)

M4 846 | 154 | 112 |164.5 (MMAS)
M5 765 | 222 141 (130 (HEA)

L1 1615 [1066| 876 |529 (HEA)

MMAS is the MAX-MIN Ant System in [18]

CFHH is the Choice Function Hyper-heuristic in
VNS-T is the Hybrid of VNS with Tabu Search in
HEA is the Hybrid Evolutionary Algorithm in

the proposed modification to the water level decay rate produces better results than
using the traditional linear and steady decay rate.

Table 5] shows that our algorithm outperforms some of the previous results and
it is also competitive on the other instances. For the small problems, NLGD is able
to solve instance S5 to optimality. For most of the medium problems, NLGD has
shown significant improvement over other algorithms. However, for instance M5
the NLGD method is not able to improve the solution found by HEA. Still, NLGD
is very competitive obtaining a solution quality of just around 8% worse than the
best value for M5. Table [3] also shows that the NLGD algorithm obtained results
that are much better than those produced with the conventional great deluge.

It must be said that adequate parameter tuning was required in our experiments,
but the algorithm can definitely produce better results compared to the best results
already published. But more importantly, the proposed algorithm can do that in short
computation time, usually less than 700 seconds. We can also observe that in the
small instances the algorithm is able to find solutions with low penalty cost but it
cannot outperform those results reported previously. We need to further investigate
this but we believe this is due to the ineffectiveness of the neighbourhood search for
small instances, particularly when the penalty cost is too low. We plan to design a
more effective strategy for exploring the neighbourhood of solutions and be sure to
reach unexplored areas of the search space. We believe that the proposed non-linear
great deluge algorithm has considerable potential to succeed in other timetabling
and similar problems. This because the improvements achieved (4 new best re-
sults in the medium instances) are mainly due to the strategy used to control the
water level decay rate. Remember that the neighbourhood moves and local search

320 J.H. Obit and D. Landa-Silva

strategy implemented here are quite simple and general. That is, the local search is
not dependant on the problem domain.

In the second set of experiments, we compared the NLGD with other algorithms
reported in the literature for the instances shown in Table 2l These results are re-
ported in Table[6] where we can see the best results obtained by different algorithms
from the competition plus the results obtained by NLGD, best results are in bold.
The table gives us an idea about the variability on the performance of different algo-
rithm proposed in the competition. Results from Table[6] show that even though the
NLGD did not obtain the best results, it is still very competitive particularly against
the algorithms ranked fifth to ninth in the competition.

Table 6 Comparison of results obtained by the non-linear great deluge (NLGD) against the
best 9 ranked algorithms for the 20 instances of Table[2] Details of the competition algorithms
are available at: http://www.idsia.ch/Files/ttcomp2002/results.htm.

Instances| 1st |2nd|3rd | 4th | 5th | 6th | 7th | 8th | 9th INLGD
comOl (45|61 85|63 |1321148]178|211|257| 153
com02 2539424692 |101|103|128|112| 118
com03 [65|77 |84 196 |170[162|156(213|226| 120
com04 [115|160(119]166|265(350|399(408|441| 358
com05 [102|161| 77 |203|257]412]336|312|299(398
com06 |13 (42| 6 |92 |133]246]|246|169|209(129
comO07 |44 |52 |12 |118|177(228]225(281{99 | 99
com08 |29 |54 32|66 |134[125]210(214|194| 111
com09 |17 |50 |184| 51 |139]126]|154|164|175| 119
comlO [61 |72]90 |81 |148]147]|153|222|308(153
comll |44 53|73 |65|35|144|169(196|273| 149
coml2 [107|110] 79 |119|290]182]219|282|242| 229
coml3 |78 [109] 91 |160]|251]192]248|315|364| 240
coml4 [52193|36(197|230(316|267(345|156| 282
coml5 |24 62|27 (114|140(209|235(185|95 | 172
coml6 |22 |341300| 38 |114]121]132{185|171| 91
coml7 |86 (11479 |212]|186]327]|313|409|148| 356
coml8 31383940 |87 |98 |107(153|117| 190
coml9 |44 |128| 86 |185|256(325|309(334|414| 228
com20 | 7 |26 0 | 17|94 |185|185|149|113| 72

In more detail, Figures summarise the performance of NLGD compared to
other allgorithms. In these graphs, the x-axis represents the instance type while the
y-axis represents the penalty cost. Figure Blshows the strong performance of NLGD
on the medium and large instances. Figures 7] show details of the results achieved
by NLGD when compared to the algorithms from the competition.

Non-Linear Great Deluge for University Course Timetabling 321

18

s /)\
14
/ \ —4—NLGD
12
2 / \ ~B—MMAS
S 10
> ”\)\ / \ ——CFHH
=
©
e 38 —<=FEMHO
& N —~ Y
6 - A . —H=VNS-T
ol ~@—RIICN
—+—GBHH
2 4
e HEA
0 p
s1 s2 s3 s4 S5

Instances

Fig. 2 Detailed comparison of non-linear great deluge against other algorithms for small
instances from Table[T]

1400

1200

1000 —4—NLGD

——MMAS
800

==—CFHH

600 =>e=FMHO

Penalty Cost

—H—VNS-T
400 Rl —o—RIICN

NTS

200 | —+—GBHH

e HEA

M1 M2 M3 M4 M5 L

Instances

Fig. 3 Detailed comparison of non-linear great deluge against other algorithms for medium
and large instances from Table[T]

5.3 Effect of the Non-linear Decay Rate

Here we present more results to illustrate the positive effect that the non-linear de-
cay rate has on the performance of the NLGD algorithm. Figures[8{I0show the per-
formance of linear great deluge (GD) across iterations for three problem instances
while Figures do the same but for the non-linear version of the algorithm
(NLGD). Each graph in these Figures shows the search progress for one sample run
of the corresponding algorithm. The dotted line corresponds to the water level and
the solid line corresponds to the penalty of the best solution so far which should be

322 J.H. Obit and D. Landa-Silva

500

450

400

——1st

N
Q ~-2nd
300 ———— =—3rd

350

250 =>é=4th

==fe=5th

Penalty Cost

200
—=@—6th

150 - w=t==Tth
100 ——8th
9th

50

====NLGD

Com01 Com02 Com03 Com04 Com05

Instances

Fig. 4 Detailed comparison of non-linear great deluge against other algorithms for comO1-
com05 instances from Table[2]

350

——1st

~#—2nd

“=fe=3rd

=>¢=4th
=i=5th
—=0—6th

Penalty Cost

et 7th
w8th
9th

=4—=NLGD

Com06 Com07 Com08 Com09 Com10

Instances

Fig. 5 Detailed comparison of non-linear great deluge against other algorithms for com06-
com10 instances from Table[2]

minimised. The water level in the GD decreases at the same rate in every iteration
while in the NLGD the water level decreases exponentially according to Eq.).
The first interesting observation is that the relation between the water level and
the best solution varies for different instance sizes. The rigid and pre-determined
linear decay rate appears to suit better the medium instance while for the small and
large instances this decay rate seems to be less effective in driving the search for

Non-Linear Great Deluge for University Course Timetabling 323

400
=t 1st
350
/\ —=-2nd
300 ’4 —4—3rd
> 4th
5 250 —
o =fe=5th
o
£ 200 - —e—6th
c
8 / ——7th
& 150
«—8th
100 - = 9th
=0—=NLGD
50 S :
0
Comll Com12 Com13 Coml4 Com15
Instances

Fig. 6 Detailed comparison of non-linear great deluge against other algorithms for com11-
coml5 instances from Table[2l

450

——1st

A
400 / \ —@—2nd
350 / X

w=fe=3rd

300 T ==4=4th

. ==ie=5th

N AN X 7\ &Iﬁiﬁ
'fl‘zﬁ\v’/l/\\\ ~

9th

250

200 -

Penalty Coast

150

100 -

50 -
=0-=NLGD

Com15 Com16 Com17 Com18 Com19 Com20

Instances

Fig. 7 Detailed comparison of non-linear great deluge against other algorithms for com16-
com?20 instances from Table 2]

the best solution. Figure B] shows that in the small instance the water level is too
high with respect to the best solution and this provokes that the best solution is not
‘pushed down’ for the first 60000 or so iterations, i.e. improvements to the best so-
lution are rather slow. However, for the medium (Figure Q) and large (Figure [10)
instances, the water level and the best solution are very close from the start of the
search so the best solution is ‘pushed down’ as the water level decreases. We can
also see that in the medium and large instances there is a point after which the water
level continues decreasing but the best solution does not improve further, i.e. the

324 J.H. Obit and D. Landa-Silva

Linear Great Deluge (Small5)

Penalty Cost
/

o~
N

0 200000 400000 600000 800000 1000000 1200000 1400000

Iterations

Fig. 8 Sample of search progress behaviour of GD on small instance

Linear Great Deluge (Medium1)

900 -
800 -
700 -
600 -
500 -
400

Penalty Cost

300 -
200 -
100

0 20000 40000 60000 80000 100000 120000 140000 160000

Iterations

Fig. 9 Sample of search progress behaviour of GD on medium instance

search stagnates. That is, when the water level and the best solution so far ‘con-
verge’, the search becomes greedy and improvements are more difficult to achieve
while the water level continues decreasing. This occurs around iteration 110000 in
the medium instance and around iteration 8000 in the large instance. We argue that
the simple linear water level decay rate in the original great deluge algorithm does
not adapt easily to the quality of the best solution so far. This is precisely the short-
coming that we tackle with the non-linear great deluge algorithm.

Then, in the non-linear version of the algorithm, the decay rate is adjusted at
every iteration and the size of the problem instance being solved is taken into ac-
count when setting the parameters of Eq.(2) as explained in Section[2] We can see in
Figures[TTHI3lthat this modification helps the algorithm to perform a more effective
search regardless of the instance size. We can see that in the three sample runs of the
non-linear great deluge algorithm, if drastic improvements are found then the water
level also decreases more drastically. But when the improvement to the best solution
so far becomes slower then the decay rate also slows in reaction to this. Moreover,

Non-Linear Great Deluge for University Course Timetabling 325

Linear Great Deluge (Large)

1800 -
1600 PRy - oo | —Best Solution| __________________________________
— — Water Lewel
1400 | aterlewel |
e 1200 = e AR
3
O 1 R, N o ____.
> 000 NG \
g 800\\ 777777777777777777777777777777777777777
L 0 A=
~N
400 T -=mmmm == e R R R R
= ~
200 - - m S R
0 ‘ ‘ ‘ ‘ ‘ — ‘ ‘
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Iterations

Fig. 10 Sample of search progress behaviour of GD on large instance

Non-Linear Great Deluge (Small5)

B00 T
Best Solution

250 fo—comooo - — — Water Level

200 4

L= T ———,—,—ffeetftfiaiiiiowitii

Penalty Cost

00 =~

L ——_———————_—BsA— I

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Iterations

0

Fig. 11 Sample of search progress behaviour of NLGD on small instance

to avoid (as much as possible) the convergence of the water level and the best solu-
tion, the water level is increased from time to time as explained in Section [2l This
‘floating’ feature of the water level explains the small increases on the best solution
penalty observed in the graphs of Figures [[THI3l As in many heuristics based on
local search, the rationale for increasing the water level is to accept slightly worse
solutions to explore different areas of the search space in the hope of finding better
solutions.

The above observations help us to summarise the key differences between the
linear (GD) and non-linear (NLGD) great deluge variants:

Linear Great Deluge

1. The decay rate is pre-determined and fixed
2. Mainly, the search is driven by the water level
3. When the best solution and water level converge the algorithm becomes greedy

326 J.H. Obit and D. Landa-Silva

Linear Great Deluge (Medium1)

900
Best Solution

800 J-- S ag oo TmBESLWOWON
~ — — Water Level
-~
e

700 -
600 -
500
400 ~

Penalty Cost

300 +

200

~
100 | ~
0 =

~
~

0 20000 40000 60000 80000 100000 120000 140000 160000

lterations

Fig. 12 Sample of search progress behaviour of NLGD on medium instance

Non-Linear Great Deluge (Large)

Best Solution

— — Water Lewel

Penalty Cost

0 10000 20000 30000 40000 50000 60000 70000
lterations

Fig. 13 Sample of search progress behaviour of NLGD on large instance

Non-Linear Great Deluge

1. The decay rate changes every iteration based on Eq.(2)
2. Mainly, the water level is driven by the search
3. This algorithm never becomes greedy

6 Conclusions

This paper presented a computational study of the non-linear great deluge (NLGD)
algorithm which is an extension of the conventional great deluge method [12].
The NLGD approach incorporates a non-linear decay rate and floating water level.
We applied this modified algorithm to well known benchmark instances of the uni-
versity course timetabling problem: the 11 instances proposed by Socha, Knowles
and Samples and the 20 instances from the 1st International Timetabling Com-
petition. The NLGD algorithm performs very well in both sets of instances and this

Non-Linear Great Deluge for University Course Timetabling 327

study showed that the non-linear decay rate and floating water level are key com-
ponents for the robust performance on this algorithm. In future work, we intend to
investigate mechanisms to automatically adapt the non-linear decay rate to the size
of the problem instance being tackled. Also, we want to investigate a population-
based version of the non-linear great deluge algorithm taking into consideration the
diversity among a set of timetables.

References

1.

2.

10.

11.

12.

13.

14.

15.

Aarts, E., Korts, J.: Simulated Annealing and Boltzman Machines. Wiley, Chichester
(1998)
Abdullah, S., Burke, E.K., McCollum, B.: An Investigation of Variable Neighbourhood
Search for University Course Timetabling. In: Proceedings of MISTA 2005: The 2nd
Multidisciplinary Conference on Scheduling: Theory and Applications, pp. 413-427
(2005)

. Abdullah, S., Burke, E.K., McCollum, B.: A Hybrid Evolutionary Approach to the Uni-

versity Course Timetabling Problem. In: Proceedings of CEC 2007: The 2007 IEEE
Congress on Evolutionary Computation, pp. 1764—-1768 (2007)

. Abdullah, S., Burke, E.K., McCollum, B.: Using a Randomised Iterative Improvement

Algorithm with Composite Neighborhood Structures for University Course Timetabling.
In: Metaheuristics - Progress in Complex Systems Optimization, pp. 153-172. Springer,
Heidelberg (2007)

. Asmuni, H., Burke, E.K., Garibaldi, J.: Fuzzy Multiple Heuristic Ordering for Course

Timetabling. In: Proceedings of the 5th United Kingdom Workshop on Computational
Intelligence (UKCI 2005), pp. 302-309 (2005)

. Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A Time-predefined Approach to Course

Timetabling. Yugoslav Journal of Operations Research (YUJOR) 13(2), 139-151 (2003)

. Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu-search Hyperheuristic for Timetabling

and Rostering. Journal of Heuristics 9, 451-470 (2003)

. Burke, E.K., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid Variable Neigh-

bourhood Approaches to University Exam Timetabling. Technical Report NOTTCS-TR-
2006-2, University of Nottingham, School of Computer Science (2006)

. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A Graph Based Hyper-

heuristic for Educational Timetabling Problems. European Journal of Operational Re-
search 176, 177-192 (2007)

Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An Effective Hybrid Algo-
rithm for University Course Timetabling. Journal of Scheduling 9(5), 403-432 (2006)
Cooper, T., Kingston, H.: The Complexity of Timetable Construction Problems. In:
Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 283-295. Springer, Hei-
delberg (1996)

Dueck, G.: New Optimization Heuristic: The Great Deluge Algorithm and the Record-
to-record Travel. Journal of Computational Physics 104, 86-92 (1993)

Even, S., Itai, A., Shamir, A.: On the Complexity of Timetabling and Multicommodity
Flow Problems. SIAM Journal of Computation 5, 691-703 (1976)

Glover, F., Taillard, E., De Werra, D.: A User’s Guide to Tabu Search. Annals of Opera-
tions Research 41, 3-28 (1993)

Landa-Silva, D., Obit, J.-H.: Great Deluge with Nonlinear Decay Rate for Solving
Course Timetabling Problems. In: Proceedings of the 2008 IEEE Conference on Intelli-
gent Systems (IS 2008), pp. 8.11-8.18. IEEE Press, Los Alamitos (2008)

328 J.H. Obit and D. Landa-Silva

16. Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella,
L., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stuetzle, T.: A
Comparion of the Performance of Different Metaheuristics on the Timetabling Problem.
In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 333-352.
Springer, Heidelberg (2003)

17. Schaerf, A.: A Survey of Automated Timetabling. Artificial Intelligence Review 13(2),
87-127 (1999)

18. Socha, K., Knowles, J., Sampels, M.: A Max-min Ant System for the University Course
Timetabling Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms
2002. LNCS, vol. 2463, pp. 1-13. Springer, Heidelberg (2002)

19. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art. In: Raidl, G.R., Cagnoni, S.,
Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Mar-
chiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvolASP 2003, EvoWorkshops 2003,
EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and Evo-
MUSART 2003. LNCS, vol. 2611, pp. 334-345. Springer, Heidelberg (2003)

20. Wren, V.: Scheduling, Timetabling and Rostering A Specail Relationship? In: Burke,
E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 46-75. Springer, Heidelberg
(1996)

	Introduction
	The Non-linear Great Deluge Algorithm
	The University Course Timetabling Problem
	Benchmark Instances
	The Objective Function

	Algorithm Implementation Details
	Neighbourhood Structures
	Heuristic to Construct Feasible Timetables

	Results with the NLGD Algorithm
	Experimental Setting
	The Computational Study
	Effect of the Non-linear Decay Rate

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

