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Abstract

The numerical peculiarities which inhabit the numerical instance
of a MOCO problem may seriously decrease the effectiveness of an
approximation method. To deal with this problem we propose a flexible
two-phase method for MOCO. Phase 1 produces a good approximation
of the efficient frontier. However it may not be of good enough quality
in terms of density. The aim of phase 2 is to tackle this problem in
a flexible way so as to deal with the potential numerical peculiarities.
We test this proposition on the multi-objective Traveling Salesman
Problem for which there exists a number of low-level heuristics.

1 Introduction

Multi-objective combinatorial optimization (MOCO) considers p ≥ 2 (con-
flicting) objectives to find a set of efficient solutions within a set of discrete
feasible solutions, see [3] for more details. It is assumed that a solution
which optimizes all objectives simultaneously does not exist. A solution
x̂ ∈ X is said to be efficient if there is no x ∈ X such that x dominates x̂

(xk ≤ x̂k,∀k ∈ {1, . . . , p} with at least one strict inequality).
Finding the whole set of efficient solutions is often not necessary. How-

ever, having a good distribution of an approximation of this set is useful for
decision makers to perform informed choices.



As resolution methods try to get better results, they often become more
complicated, requiring expert knowledge to use them effectively. The hy-
perheuristic approach [1] provides a high-level view of the problem. Its aim
is to allow the user to provide a number of heuristics, usually low-level ones,
to solve a problem and then the hyperheuristic tries to find on its own which
heuristics are the best online, i.e. as the search progresses. As such, a hyper-
heuristic does not operate in the solution space (this is done by the selected
heuristics) but in the heuristic space. This makes it different from variable
neighborhood search (VNS) [7] which looks for solutions based on the sys-
tematic change of neighborhood during the search. There exists a domain
barrier between the hyperheuristic and the low-level heuristics and, ideally,
the hyperheuristic requires no or minimal knowledge of how the heuristics
work but relies instead on the analysis of one or more objective functions
(knowing whether maximization or minimization are required) and heuristic
performance indicators such as running time.

This work proposes the use of a hyperheuristic to make the efficient
frontier more dense by starting from a sparse approximation of the efficient
frontier. The method is applied to the multi-objective Traveling Salesman
Problem (moTSP). To the best of our knowledge, hyperheuristics have yet
to be applied to this problem.

The objective of the TSP is to find the shortest tour passing only once
through every location which has to be visited (a Hamiltonian cycle). The
multi-objective version of the TSP is of interest because it represents many
practical situations, for example having to make a compromise between
travel time and cost of transportation.

This paper presents some initial results and discusses possible improve-
ments and future research.

2 Overview of the Method

Our algorithm consists of two phases which are described below. We note
that the key contribution here is the second phase of the proposed approach.

2.1 First Phase

The first phase computes a very good subset of efficient solutions. For the
bi-ojective TSP we use the same method employed by Lust and Teghem [6].
When considering problems with more objectives, in our case three objec-
tives, the first phase uses the algorithm proposed by Przybylski et al. [8]
where the exact solver is replaced by the Lin-Kernighan heuristic [5].



2.2 Second Phase

The second phase iteratively drives a subset of the population across the
potential efficient frontier with the goal of maximizing the hypervolume
indicator [9]. The non-dominated solutions found in this manner are added
to the population.

Components and Layout of the Method. The algorithm requires
a set of one or more heuristics whose only requirement is to implement a
simple interface so that the search mechanism can manipulate them.

Next, the algorithm needs an initial population of solutions P0, |P0| ≥
1. It maintains an archive A of all non-dominated points found and, at
each iteration, only uses a running population P of maximum size S. The
hypervolume indicator allows us to consider the movement of each solution
with respect to the current running population and not as a point on its
own.

At each iteration, each solution p ∈ P is considered, a heuristic is selected
and the neighborhood of p is explored to find a new point which increases
the hypervolume. Any non-dominated solution found during this process is
added to the archive. Should a point with a strictly improving hypervolume
be found, the same heuristic is applied to this new point in a descent fashion.

If the maximum size of the running population is not reached, improving
solutions are added to P as is, otherwise they replace the point they were
a neighbor of. If no solutions in P were moved during the last iteration, a
new running population is randomly selected from the archive. This prevents
the algorithm from getting stuck in a local optimum and contributes to the
diversity of the solution set. Since calculating the hypervolume and non-
dominated sorting occur constantly throughout the algorithm, it is better
to keep S small. We arbitrarily choose S = 20.

Heuristic Selection Mechanism. At the start of the search, all heuris-
tics have the same score of 1. The performance of the heuristics is inferred
through a system of reward and punishment, whereby improving heuristics
obtain a higher score and non-performing heuristics a lower one. The heuris-
tic with the best rank is selected in each iteration of the process described
above.

To supplement this strategy, a tabu list is also used to prevent worse
heuristics from being used during a certain amount of time (even if it was
performing well previously). This strategy is inspired by the one used in
Burke et al. [2]. A heuristic is included in the tabu list if it has not been
able to improve the distribution by moving a solution in the given amount
of time it was allowed to run. However, if an improving solution has been



found, the tabu list is cleared (it is also cleared if all heuristics turn out to
be tabu). No aspiration criterion is used.

Next, we present some results and name the hyperheuristic Best Rank
with Tabu List (BRTL).

3 Initial Experimental Results

A population of 11 low-level classic TSP heuristics is used: subpath inser-
tions and swaps, the 2-exchange move and a dummy heuristic (the first and
second cities are inverted). Running time was set to 30 s and the neighbor-
hood of each move was explored for a maximum of 50 ms. Averages of 10
runs are reported. We compare our method with two recent algorithms: evo-
lutionary multi-objective simulated annealing (EMOSA) [4] and two-phase
Pareto local search (2PPLS) [6]. Here, BRTL and 2PPLS share the same
first phase (but not EMOSA).

BRTL manages to outperform EMOSA for the hypervolume indicator in
three out of the four published results for convex instances (Table 1). BRTL
performs less well than our implementation of 2PPLS for instances with less
objectives (Table 2). However, with more objectives, if the running time of
2PPLS is capped in the same way as for BRTL, initial results indicate that
BRTL obtains better results.

Instance BRTL EMOSA
kroAB50 0.3544 0.2839
kroBC50 0.4327 0.2809
kroAB100 2.1782 1.9060
kroBC100 1.8630 1.9392

Table 1: Hypervolume (1010)
comparison of BRTL with
EMOSA

Instance Algo. H(108) R Time(s)
kroAB100 BRTL 225.84 0.93516 30

2PPLS 226.11 0.93526 13

Cluster100 BRTL 233.12 0.94672 30
2PPLS 233.35 0.94679 13

kroAB200 BRTL 835.37 0.875358 30
2PPLS 1076.08 0.94507 20

kroABC50 BRTL 4092608 0.98286 30

2PPLS 3454695 0.97029 30

2PPLS – – 3600+

Table 2: Phase 2 of BRTL and 2PPLS

4 Conclusion

Our approach is a new generic resolution method for MOCO. Work is still
needed to evaluate the potential advantage of the hyperheuristic with re-
gard to its flexibility when dealing with various numerical instances and its
ability to intelligently switch between heuristics. Potential avenues of inves-
tigation include a simpler first phase. The second phase could be improved
in a number of ways: better indicators of the quality of the distribution of
set, intelligent selection of the running population and a smarter selection



mechanism. The approach also needs to be tested on more instances and
other problems.
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