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Abstract— An important goal in multiobjective optimisation
is to find a good set of non-dominated solutions that is
both well-distributed and well-converged. Most multiobjective
optimisation algorithms use the conventional Pareto dominance
relationship. Over recent years, new approaches for the domi-
nance relationship such as relaxed Pareto dominance, have been
proposed. The interest in relaxed forms of Pareto dominance has
been increasing due to their capability to find extreme values
in the objective space. This paper conducts a short review on
relaxed forms of Pareto dominance in the literature. A new
form of relaxed Pareto dominance, called volume dominance, is
presented afterward. The results based on comparison between
volume dominance and Pareto dominance using SEAMO2,
SPEA2 and NSGA2 show that the proposed volume dominance
is capable of obtaining a better and smoother trade-off front,
and it is more robust than Pareto dominance.

I. INTRODUCTION

Many real-world optimisation problems are multiobjective

and the interest on heuristic techniques to solve these kind of

problems has increased considerably over the last decade or

so. Confronted with a multiobjective optimisation problem,

a decision-maker should find an appropriate solution that

represents a good compromise between the several possibly

conflicting objectives. It is not easy to find such one solution

because there are usually more than one good tradeoff

solution. In Pareto based multiobjective optimisation, a set

of non-dominated solutions, also known as Pareto front,

is sought so that the decision-maker can select the most

appropriate one. Using Pareto dominance, a solution x is

said to be non-dominated if there is no other solution that is

better than x at least one objective and as good as x in other

objectives.

Evolutionary algorithms seem especially suitable to deal

with Pareto based multiobjective optimisation problems be-

cause they can produce multiple promising solutions in

a single run. Consequently, they can evolve a population

of solutions towards the Pareto front. A good multiob-

jective evolutionary algorithm (MOEA) should be able to

obtain Pareto fronts that are both well-distributed and well-

converged. Two issues when designing a MOEA are to

decide how solutions in the population are evolved and to

decide how to establish superiority between solutions in the

population (i.e. how to compare solution fitness in a multi-

objective sense). With respect to the first issue, a number of

techniques have been investigated to ‘push’ solutions towards

the desired part of the tradeoff surface. For example, directed

weighted vectors, restricted mating, archiving elite solutions,

clustering/crowding, fitness sharing, specialised operators,

etc. have been proposed to improve the distribution and the

convergence of the population towards the Pareto front [1],

[2], [3]. However, we believe that the latter issue of assigning

fitness to solutions in the multiobjective context has received

less attention than it deserves.

For assigning fitness to solutions, most modern MOEAs

adopt the conventional Pareto dominance relationship. There

are few papers that propose different types of dominance

relationship such as α-dominance, ε-dominance, E-Pareto

dominance and fuzzy dominance (details in section 2). These

variations of dominance aim to find solutions in difficult

areas (like the extremes of the tradeoff surface) or attempt

to combine convergence and diversity in order to achieve

better Pareto front in difficult problems. These variations of

Pareto dominance, called relaxed Pareto dominance here,

apply some transferring functions to the objective values

before comparing the solutions using Pareto dominance.

It has been shown that relaxed Pareto dominance helps

to obtain better quality Pareto fronts in some problems

(e.g. [4], [5], [6]). In this paper, we propose a new form

of relaxed Pareto dominance, called volume dominance. The

volume dominance relationship proposed here compares two

solutions with respect to the volume that each solution

dominates and also taking into consideration the volume that

both solutions dominate simultaneously (shared dominated

volume). Then we compute a relative dominated volume

to establish preference in the multiobjective context. We

compare the performance of some well-known MOEAs when

using the proposed volume dominance and the conventional

Pareto dominance. We use the multiple knapsack problem

in our experiments because benchmark results are available

for this problem. We also show how our proposed volume

dominance could be adapted for use in other MOEAs.

Section 2 presents a short literature review of Pareto

dominance and relaxed forms of Pareto dominance. Section 3

describes our proposed form of relaxed Pareto dominance,

volume dominance. Section 4 describes our experiments to

compare the impact of using volume dominance against that

of using Pareto dominance on three well-known MOEAs

from the literature. We discuss our results in Section 5 while

section 6 gives conclusions and summarises future work.
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II. LITERATURE REVIEW

Without loss of generality, we consider the multiobjective

optimisation problem with m objectives to be maximised.

maximise {f1(�x), f2(�x), . . . , fm(�x)}

subject to the decision vector �x = (x1, x2, . . . , xn)T belongs

to the feasible region S formed by constraint conditions.

Then, the objective vector of �x is

�f(�x) = (f1(�x), f2(�x), . . . , fm(�x))

A. Pareto Dominance

The concept of Pareto dominance or Pareto optimum was

proposed by Vilfredo Pareto in 1896 [7]. In the last two

decades or so, Pareto dominance has been widely adopted

as the technique to compare the fitness of solutions in

multiobjective optimisation. In Pareto dominance, a solution

�x is considered to be better than a solution �x∗ if and only if

the objective vector of �x dominates the objective vector of
�x∗. More formally:

Pareto Dominance. A solution �x ∈ S dominates a solution
�x∗ ∈ S (�x � �x∗) if and only if �x is not worse than �x∗ in all

objectives (fi(�x) ≥ fi( �x∗) ∀i = 1, . . . ,m) and �x is better

than �x∗ in at least one objective (fi(�x) > fi( �x∗) for at least

one i = 1, . . . ,m).

Within Pareto dominance, we can distinguish between

strong dominance and weak dominance [6] or strict domi-

nance and loose dominance respectively [8].

Strong dominance. A solution �x strongly dominates a

solution �x∗ if �x is better than �x∗ in all objectives.

Weak dominance. A solution �x weakly dominates a solu-

tion �x∗ if �x is better than �x∗ at least one of the objectives

and is as good as �x∗ in all other objectives.

In both of the above types of Pareto dominance, if neither

�x dominates �x∗ nor �x∗ dominates �x, then both solutions are

said to be incomparable or non-dominated. In this case, no

solution is clearly preferred over the other one. The set F
consisting of all non-dominated solutions �x ∈ S is called the

Pareto-optimal front with respect to S. A solution �x ∈ F if

there is no solution �x∗ ∈ S that dominates �x.

B. Relaxed Pareto Dominance

Relaxed forms of Pareto dominance have been recently

proposed as a way to improve the performance of multi-

objective optimisers. In general, relaxed Pareto dominance

allows a solution �x to dominate another solution �x∗ for which

�x and �x∗ are Pareto non-dominated solutions or even �x is

Pareto-dominated by �x∗, examples of relaxed dominance are

described below.

The first form of relaxed Pareto dominance was that

by Yu in 1974 who proposed a structure of domination

over the objective space to explore the geometry of the

set of all non-dominated solutions [9]. Two new concepts

of cone convexity and cone extreme point were introduced

to study decisions problems on polar cones and polyhedral

cones. However, it is not until recently that there is an

increasing interest in relaxed Pareto dominance within the

multiobjective optimisation community.

In 2001, Kokolo et al. introduced α-dominance to deal

with what they call dominance resistant solutions, i.e. so-

lutions that are fairly inferior qualitatively but for which

dominating solutions are scarely found [10]. The main idea of

α-dominance is to set up upper and lower bounds of trade-

offs between objectives. In α-dominance, small detriments

in one objective are considered acceptable if it leads to a

noticeable improvement in other objectives. For the formal

definition of α-dominance see [10].

Laumanns et al. proposed a slightly different but simpler

form of relaxed dominance called ε-dominance which seeks

to combine diversity and convergence in one criterion [4].

A solution with objective vector f is said to ε-dominate a

solution with objective vector g if and only if (1 + ε).fi ≥
gi ∀i ∈ 1, . . . ,m. The main difference between ε-dominance

and α-dominance is that ε-dominance allows some Pareto-

dominated solutions (e.g. �x � �x∗) to actually become

preferred (e.g. �x∗ ε-dominates �x) which is not the case in

α-dominance.

Jin and Wong proposed extended Pareto dominance (E-

Pareto) in their Adaptive Rectangle Archiving algorithm [11].

Extended Pareto dominance is quite similar to ε-dominance

in the sense that both apply some sort of transferring

functions to the objective vector before comparing them

using Pareto dominance. In extended Pareto dominance, �x
E-dominates �x∗ for some transferring function, FUN , and

a constant vector e (> 0) if and only if ∀i ∈ 1, . . . ,m
FUN(fi(�x)) ≥ FUN(fi( �x∗)) − ei. Jin and Wong com-

pared E-dominance to ε-dominance and the conventional

Pareto dominance and stated that E-dominance becomes ε-

dominance as FUN(fi(�x)) = ln(fi(�x)) and ei = ln(1 + ε)
and Pareto dominance as FUN(fi(�x)) = fi(�x) and ei = 0.

Several researchers have investigated the fuzzification of

Pareto dominance. In fuzzy-Pareto-dominance proposed by

Koppen et al. [5], �x dominates �x∗ by degree μa with

μa(�x, �x∗) =

∏m

i=1 min(fi(�x), fi( �x∗))∏m

i=1 fi( �x∗)

and �x is dominated by �x∗ at degree μp with

μp(�x, �x∗) =

∏m

i=1 min(fi(�x), fi( �x∗))∏m

i=1 fi(�x)

This fuzzy form of Pareto dominance becomes the conven-

tional Pareto dominance (for �x � �x∗) when μa(�x, �x∗) = 1
and μp( �x∗, �x) = 1, but μp(�x, �x∗) < 1 and μa( �x∗, �x) < 1.

Koppen et al. applied fuzzy-Pareto-dominance to deal with

what they call the Pareto-Box problem, determining the

expectation value for the size of the Pareto set of m points

in an n-dimensional space.

Peng et al. proposed a different concept for fuzzy

dominance based on the credibility distribution of fuzzy

variables [12]. Here, ξ and η are two fuzzy variables

with the credibility distribution Φ(x) and Ψ(x) respec-

tively, where Φ(k)(x) =
∫ x

−∞
Φ(k−1)(t)dt and Ψ(k)(x) =
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∫ x

−∞
Ψ(k−1)(t)dt k = 2, 3, . . . and Φ(1)(x) = Φ(x) and

Ψ(1)(x) = Ψ(x). Then, it is said that ξ k-Order Fuzzy

Dominates η if and only if Φ(k)(x) ≤ Ψ(k)(x) ∀x ∈ �. For

more discussion on credibility distribution fuzzy dominance

see [12].

Burke and Landa-Silva proposed another form of relaxed

dominance using a gaining factor [6]. For a 2-objective max-

imisation problem, �x dominates �x∗ if f2( �x∗) < f2(�x).(1 +
gain) where gain = (f1(�x) − f1( �x∗))/f1(�x) which is

equivalent to the following relation:

f1( �x∗)

f1(�x)
+

f2( �x∗)

f2(�x)
< 2

For m objectives maximisation problem, �x dominates �x∗ if

f1( �x∗)

f1(�x)
+

f2( �x∗)

f2(�x)
+ . . . +

fm( �x∗)

fm(�x)
< m

They showed that the performance of two multiobjective

algorithms was improved by using relaxed dominance when

solving a highly constrained combinatorial optimisation

problem.

III. VOLUME DOMINANCE

All the above forms of relaxed dominance, like the con-

ventional Pareto dominance, are based on comparing the

objective vectors of solutions in one way or another. We

propose a new form of relaxed Pareto dominance, called

volume dominance which is based on a different concept:

comparing the dominated volumes in the objective space

between two solutions �x and �x∗. The dominated volume

of �x is defined as the region R for which all feasible

solutions in R are dominated by �x. In order to determine

the dominated volume of solution �x, we need to define a

reference point �r in the objective space corresponding to

a solution x−. The solution x− is dominated by all other

solutions which objective vectors are also in R. Hence, the

formula to calculate the dominated volume of �x with respect

to the reference point �r = (r1, r2, . . . , rm) is defined as

follows:

V�x =
m∏

i=1

(fi(�x) − ri)

Then the dominated volumes of �x and �x∗ are compared to

establish the dominance relationship between �x and �x∗.

Our volume dominance relationship is not based on di-

rectly comparing the two dominated volumes. Instead, it is

based on the relative dominated volume. The relative domi-

nated volume is the volume of the region that is dominated by

both �x and �x∗, called shared dominated volume. The shared

dominated volume is defined as follows:

SV�x, �x∗ =
m∏

i=1

(min(fi(�x), fi( �x∗)) − ri)

The volume dominance relationship of �x and �x∗ is then

established by comparing the dominated volumes V�x and V �x∗

to the shared dominated volume SV�x, �x∗ . Then, we say that

�x∗ is volume-dominated by �x ( �x∗ ≺V �x) for some ratios

rSV if either:

• V �x∗ = SV�x, �x∗ and V�x > SV�x, �x∗ or

• V�x > V �x∗ > SV�x, �x∗ and r�x, �x∗ =
V�x−V �x∗

SV
�x, �x∗

> rSV

The rSV value sets the target shared volume ratio. A small

rSV indicates that a small difference between the dominated

volumes of �x and �x∗ (w.r.t SV�x, �x∗ ) is enough to discriminate

between �x and �x∗. Here, we experiment with different values

of rSV .

At the first sight, the above volume dominance relationship

seems to be very similar to the S metric proposed in [17].

However the underlying principle is different. The S metric

measures the size of the volume covered by a set of non-

dominated solutions to determine how good that set is in

comparison with another set of non-dominated solutions.

The volume dominance deploys the size of volume covered

by a single solution to establish the dominance relationship

between any two solutions. Moreover, when using the S
metric the volumes covered by the two sets are compared

directly while in the volume dominance the shared dominated

volume is also considered.

Figure 1 illustrates the volume dominance relationship

between �x and �x∗ in a 2-objective space with the reference

point �r in the origin O(0, 0). In this example, �x volume-

dominates �x∗ for some values of rSV .

x*

x

f1

f2

r

Fig. 1. Volume Dominance - A Form of Relaxed Dominance

The volume dominance proposed in this paper clearly

covers Pareto dominance:

Proof: if �x Pareto-dominates �x∗ (�x � �x∗) i.e. fi(�x) ≥
fi( �x∗) ∀i = 1, . . . ,m and fi(�x) > fi( �x∗) for at least one

i = 1, . . . ,m. The shared dominated volume:

SV�x, �x∗ =
m∏

i=1

(min(fi(�x), fi( �x∗)) − ri)

=

m∏
i=1

(fi( �x∗) − ri) = V �x∗

As fi(�x) ≥ fi( �x∗) ∀i = 1, . . . ,m and fi(�x) > fi( �x∗) for

at least one i = 1, . . . ,m, then V�x > V �x∗ i.e. V�x > SV�x, �x∗ .

Therefore, �x volume-dominates �x∗ (�x �V
�x∗).

It is noted that the proposed volume dominance contains a

normalisation element which prevents bias in some directions

in cases with non-commensurable objective functions.
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Proof: Suppose it is required to normalise each objective

function using �n = {ni|i : 1 . . .m} then

V N
�x =

m∏
i=1

(
fi(�x)

ni

−
ri

ni

)
=

m∏
i=1

fi(�x) − ri

ni

=

∏m

i=1(fi(�x) − ri)∏m

i=1 ni

=
V�x∏m

i=1 ni

SV N
�x, �x∗

=
m∏

i=1

(
min

(
fi(�x)

ni

,
fi( �x∗)

ni

)
−

ri

ni

)

=

m∏
i=1

min(fi(�x), fi( �x∗)) − ri

ni

=

∏m

i=1(min(fi(�x), fi( �x∗)) − ri)∏m

i=1 ni

=
SV�x, �x∗∏m

i=1 ni

rN
�x, �x∗

=
V N

�x − V N
�x∗

SV N
�x, �x∗

=

V�xQ
m
i=1

ni
− V �x∗Q

m
i=1

ni

SV
�x, �x∗

Q
m
i=1

ni

=
V�x − V �x∗

SV�x, �x∗

= r�x, �x∗

There is a crucial difference between the proposed vol-

ume dominance and other dominance relationships including

conventional Pareto dominance and other forms of relaxed

dominance proposed in the literature. In order to decide

dominance between solutions, volume dominance takes all

objectives into consideration at once by combining them into

a single unit vector rather than directly comparing each ob-

jective in turn as it happens in other dominance relationships.

In this way, volume dominance seeks to evaluate the whole

objective vectors to somehow compensate improvement and

detriment between objectives.

IV. EXPERIMENTAL DESIGN

Most relaxed forms of dominance presented in the litera-

ture aim to reach and maintain extreme points in the objective

space or points that are difficult to reach and maintain with

Pareto dominance while others aim to combine diversity

and convergence into a single criterion when discriminating

between solutions. These relaxed dominances have been

proposed as an integral part of specific multiobjective al-

gorithms, see [4], [5], [6], [9], [10], [12]. To the best of

our knowledge, none of these forms of relaxed dominance

has been tested on different multiobjective optimisers and

using a benchmark problem in order to compare it to the

conventional Pareto dominance. We aim to address this issue

in this paper.

The volume dominance proposed here was conceived in

our work tackling the QMC nurse scheduling problem, a

highly constrained personnel scheduling problem [13]. In this

problem, there are a number of extreme points in the tradeoff

surface and it is very difficult to find feasible solutions due to

the constrained nature of the problem. Our work on the QMC

nurse scheduling problem is still ongoing but preliminary

results showed that volume dominance helps multiobjective

optimisers to obtain better results.

In this paper, we present experimental results showing that

volume dominance works well on different multiobjective

evolutionary algorithms such as SEAMO2 [14], SPEA2 [15]

and NSGA2 [16] when solving the multiple knapsack prob-

lem [17], a well-known benchmark multiobjective combi-

natorial optimisation problem. SEAMO2 uses a steady-state

population and a simple elitist replacement strategy. The

algorithm chooses each member of the population, in turn,

to be the first parent and a second parent is chosen at

random. Offspring is produced by applying cycle crossover

on the two parents followed by a single mutation. If the

offspring’s objective vector improves on any best-so-far

objective function, it replaces one of the parents and the

objective’s best-so-far is updated. Otherwise, if the offspring

dominates one of the parents, it replaces that parent (unless

it is a duplicate, then the offspring is deleted). If neither the

offspring dominates the parents nor the parents dominate the

offspring, the offspring replaces a random solution in the

population that the offspring dominates. SPEA2 uses a fixed

size archive to store non-dominated solutions in addition to

a population. SPEA2 deploys a fine-grained fitness assign-

ment strategy which takes for each individual into account

how many individuals it dominates and it is dominated by.

A nearest neighbour density estimation for environmental

selection is used to deal with two situations: when either

the archive is too small or too large. The best dominated

individuals in the previous archive and the population are

copied to the new archive in the fist case. In the latter

situation, non-dominated individuals in the archive are itera-

tively removed until the archive’s size is not exceeded. The

removal of non-dominated individuals from the archive is

carefully managed by using an archive truncation method that

guarantees the preservation of boundary solutions. NSGA2

uses a fast non-dominated sorting algorithm to classify a

population into different nondomination levels. NSGA2 also

uses a crowding technique based on the density of solutions

surrounding a particular solution to preserve the diversity

of the population. SEAMO2 is implemented according to its

description in [14] whereas SPEA2 and NSGA2 are obtained

from the PISA [18] platform. Parameter settings for tackling

the multiple knapsack problem with SPEA2 and NSGA2

were kindly provided by Marco Laumanns by means of email

based discussions. Then, in our experiments we replace the

conventional Pareto dominance with our proposed volume

dominance and analyse the impact on the performance of

these three algorithms.

We use the 750 items and 4 objectives instance of the

knapsack problem proposed in [17]. In order to investigate

the proposed volume dominance, we carry out short and

long runs with medium and large population sizes and

using different values of rSV . Each short run uses 175,000

fitness evaluations and each long run uses 672,000 fitness

evaluations. The values used of population size are 250

and 350 individuals. For the volume dominance we use 6
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different values of rSV , 0.05, 0.10, 0.15, 0.20, 0.25 and

0.30. The reference point for volume dominance is chosen

as the origin in the objective space. Below, we summarise

and discuss the results from 50 independent short runs and

30 independent long runs.

We use two metrics to evaluate the non-dominated fronts

produced by the volume dominance approach and the con-

ventional Pareto dominance approach. These two metrics,

size of the space covered S and coverage of two sets C,

were proposed in [17]. The S hypervolume metric, which

measures the overall size of objective space covered by all

the non-dominated solutions, is scaled as the percentage of

the volume created by the origin and the reference point

(41656, 40363, 41905, 41744) which is the sum of profits

of all items in each objective. The boxplots in Figure 3, 4, 7

present the distribution of the S hypervolume metric. The

vertical axes of the boxplots measure the percentage of

non-dominated objective space. The horizontal axes present

Pareto dominance (PD) and volume dominance (VD) with

different rSV ratios. The average values for the coverage

metric C, which compares the dominance of the Pareto front

obtained by one opmitisation technique to that obtained by

another optimisation technique, are given in Table I, II, III.

The standard deviations are given in brackets.

V. RESULTS AND DISCUSSION

With respect to the coverage metric C, the performance

of SEAMO2 with the proposed volume dominance and the

conventional Pareto dominance is quite similar (Table I). In

Table I, the column labels present the population size and the

number of generations (e.g. 250-700 indicates the population

size of 250 individuals evolved for 700 generations) and

the row labels VDx refer volume dominance using rSV =
x/100. However, with respect to the hypervolume metric

S (Figure 3), volume dominance in SEAMO2 suffers from

using lower ratios rSV especially in longer runs. Using higher

ratios rSV, volume dominance obtains competitive results

compared to the conventional Pareto dominance, in both S
and C metrics.

Objective 1 Objective 3 Objective 4Objective 2

2
0

0
0

0
2

1
5

0
0

2
3

0
0

0
2

4
5

0
0

2
6

0
0

0
2

7
5

0
0

2
9

0
0

0

pd1 vd5_1 vd10_1 vd15_1 vd20_1 vd25_1 vd30_1 pd2 vd5_2 vd10_2 vd15_2 vd20_2 vd25_2 vd30_2 pd3 vd5_3 vd10_3 vd15_3 vd20_3 vd25_3 vd30_3 pd4 vd5_4 vd10_4 vd15_4 vd20_4 vd25_4 vd30_4

Types of Dominance

O
b

je
c
ti

v
e
 V

a
lu

e

Fig. 2. The distribution of objective values obtained when using conventional Pareto dominance (PD) and volume dominance (VD) on SEAMO2 for
4-objective knapsack problem

TABLE I

AVERAGE VALUES (STANDARD DEVIATION) OF coverage of two sets FOR

SEAMO2 C(A � B)

SEAMO2 C(A � B)

Dominance

A B 250-700 350-500 250-2688 350-1920

PD VD5 20.6(34.3) 23.8(27.4) 1.7(4.8) 15.5(23.8)

VD10 21.7(24.5) 21.9(25.0) 8.0(15.7) 18.4(22.6)

VD15 25.6(33.7) 20.5(28.5) 11.9(14.8) 16.5(20.1)

VD20 14.9(23.0) 25.4(25.9) 12.1(14.1) 19.7(23.4)

VD25 18.4(26.3) 27.4(27.8) 17.2(17.3) 19.8(24.9)

VD30 17.8(21.6) 26.7(27.7) 15.1(17.4) 14.8(18.6)

VD5 PD 18.0(26.9) 23.1(28.6) 20.0(17.8) 16.3(16.4)

VD10 17.0(24.7) 22.9(29.2) 17.6(16.8) 14.2(19.6)

VD15 23.4(30.3) 21.9(25.6) 18.7(19.6) 13.9(20.2)

VD20 23.6(22.8) 17.2(25.1) 14.1(17.2) 14.2(17.2)

VD25 23.3(26.7) 15.9(22.0) 11.8(13.4) 10.1(13.0)

VD30 20.3(24.9) 16.4(23.5) 16.4(19.3) 21.0(21.8)

PD VD5 VD10 VD15 VD20 VD25 VD30

(a) 250-700

PD VD5 VD10 VD15 VD20 VD25 VD30

(b) 350-500

PD VD5 VD10 VD15 VD20 VD25 VD30

(c) 250-2688

PD VD5 VD10 VD15 VD20 VD25 VD30

(d) 350-1920

Fig. 3. Performance of PD and VD on SEAMO2 for 4-objective knapsack

problem based on size of the space covered metric S. Each graph label

indicates the population size - the number of generations
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A closer look at the values of individual objectives in the

final non-dominated sets, suggests that SEAMO2 with the

conventional Pareto dominance has already obtained good

extreme points in the objective space. The sets of extreme

points obtained with volume dominance using high ratios

rSV are quite similar to the ones achieved with Pareto

dominance. It seems that lower ratios rSV are less able to

produce extreme points. However, volume dominance with

low ratios rSV is better in pushing the set of the final non-

dominated solutions towards the Pareto front. In other words,

the range of objective values is much better when using

volume dominance with lower ratios rSV.

Figure 2 presents the distribution of each objective in

the objective space for one particular run using SEAMO2

with population size of 250 in a long run. The vertical

axis represents the objective value while the horizontal axis

represents each objective with different types of dominance.

For example, in the horizontal axis, pd1 stands for objective

1 of Pareto dominance, and vd5 1 stands for objective 1 of

volume dominance using rSV = 0.05.

We predicted that the search strategy in SEAMO2,

which outperforms two well-known algorithms SPEA2 and

NSGA2 [14], should be able to obtain good extreme values

in the objective space but its trade-off front shows a lot of

variation. Figure 2 provides evidence to support this, we can

see that there is a large number of outlier values in the box-

plots for each objective when using Pareto dominance (PD).

Volume dominance using low ratios rSV is less able to find

outlier values. However, it is able to obtain a smoother trade-

off front with significantly less variation. Figure 2 shows

that the boxplots for volume dominance using ratios rSV of

0.05, 0.10 and 0.15 (VD5, VD10 and VD15 respectively)

are much smaller than the ones for Pareto dominance in all

4 objectives. Volume dominance using higher ratios obtains

similar distribution of objective values as those achieved by

the conventional Pareto dominance.

In general, for SEAMO2 volume dominance is not capable

of finding good extreme objective values as it is the case for

Pareto dominance but it obtains a smoother trade-off front,

especially when using lower ratios rSV. Furthermore, vol-

ume dominance helps SEAMO2 to push the trade-off front

forward as a whole without bias on a particular objective.

Volume dominance when deployed in SPEA2 and NSGA2

using low ratios rSV clearly outperforms Pareto dominance

with respect to the C metric as seen in Tables II and III). For

example, in Table II, for the run with population size of 250

and using 700 generations (250-700 column), none of the

non-dominated solutions produced using Pareto dominance

dominates solutions produced using volume dominance for

the case when rSV = 0.05 (PD VD5 0(0)). On the other

hand, we can see 6 rows below in the table that 78.1% of the

non-dominated solutions produced using volume dominance

for the case when rSV = 0.05 dominate solutions produced

using Pareto dominance with a standard deviation of 7.4%

based on 50 independent runs (VD5 PD 78.1(7.4)). However,

as in SEAMO2, the hypervolume of the final non-dominated

set obtained by deploying volume dominance with low ratios

rSV in SPEA2 and NSGA2 is worse than the one obtained by

deploying Pareto dominance, but not as bad as in SEAMO2

(Figures 4 and 7).

As in SEAMO2, we also analyse the distribution of each

objective value in the objective space when using SPEA2 and

NSGA2 with the two types of dominance. Figures 5 and 6

present results for a particular run using SPEA2 and NSGA2

respectively. As it is shown, volume dominance using low

ratios rSV, deployed in SPEA2 and NSGA2, is slightly worse

in obtaining extreme objective values than Pareto dominance.

However volume dominance is better in pushing the trade-

off front forward in all objectives and obtaining a smoother

trade-off front. Figure 5 and 6 show a better range and a

smaller size of the boxplot for volume dominance using

rSV = 0.05 than for Pareto dominance.

Based on our results with respect to the size of the space

covered S, coverage of two sets C and the distribution of the

trade-off front, we suggest that the rSV ratio should be in

the range of 0.15 to 0.20 for SEAMO2 and around 0.10 for

SPEA2 and NSGA2.

TABLE II

AVERAGE VALUES (STANDARD DEVIATION) OF coverage of two sets FOR

SPEA2 C(A � B)

SPEA2 C(A � B)

Dominance

A B 250-700 350-500 250-2688 350-1920

PD VD5 0(0) 0(0) 0(0) 0(0)

VD10 4.8(5.8) 10.4(15.4) 0.9(1.3) 1.7(1.9)

VD15 20.3(15.2) 23.2(18.5) 10.5(8.1) 14.9(7.2)

VD20 19.6(14.3) 26.6(20.2) 20.2(11.8) 21.7(10.7)

VD25 20.7(14.2) 24.7(16.3) 20.8(10.0) 22.8(12.5)

VD30 24.9(23.7) 24.5(18.8) 24.0(11.3) 28.2(17.4)

VD5 PD 78.1(7.4) 77.3(6.6) 81.1(5.9) 73.7(8.3)

VD10 52.8(18.4) 48.4(22.8) 68.8(9.4) 61.8(12.7)

VD15 30.9(21.4) 31.4(22.2) 39.6(13.7) 33.6(11.6)

VD20 30.5(17.0) 27.7(20.1) 29.9(13.7) 26.2(11.1)

VD25 28.9(16.3) 27.6(16.9) 27.2(12.1) 26.3(11.5)

VD30 35.0(23.8) 30.8(19.7) 24.3(12.4) 26.8(18.0)

TABLE III

AVERAGE VALUES (STANDARD DEVIATION) OF coverage of two sets FOR

NSGA2 C(A � B)

NSGA2 C(A � B)

Dominance

A B 250700 350500 2502688 3501920

PD VD5 0(0) 0(0) 0(0) 0(0)

VD10 0.9(2.1) 0.9(1.7) 0.1(0.2) 0.3(1.0)

VD15 8.9(11.8) 13.5(10.9) 5.1(6.0) 4.9(6.5)

VD20 17.3(13.5) 15.3(18.4) 9.3(10.1) 10.5(10.7)

VD25 20.7(23.3) 49.4(40.6) 14.1(10.1) 14.2(8.7)

VD30 78.1(37.3) 94.0(22.8) 14.3(8.0) 46.1(39.5)

VD5 PD 83.1(7.7) 84.0(7.2) 82.3(5.2) 78.7(12.6)

VD10 51.6(21.0) 51.6(16.6) 60.2(17.4) 53.5(19.1)

VD15 25.6(17.9) 23.7(16.7) 27.9(14.2) 29.1(16.6)

VD20 16.2(15.5) 22.1(17.4) 20.3(13.0) 22.9(16.9)

VD25 24.7(24.1) 47.4(42.4) 18.8(9.1) 15.6(11.0)

VD30 77.8(37.0) 95.4(17.6) 17.6(7.8) 43.7(41.1)
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PD VD5 VD10 VD15 VD20 VD25 VD30

(a) 250-700

PD VD5 VD10 VD15 VD20 VD25 VD30

(b) 350-500

PD VD5 VD10 VD15 VD20 VD25 VD30

(c) 250-2688

PD VD5 VD10 VD15 VD20 VD25 VD30

(d) 350-1920

Fig. 4. Performance of PD and VD on SPEA2 for 4-objective knapsack

problem based on size of the space covered metric S. Each graph label

indicates the population size - the number of generations
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Fig. 7. Performance of PD and VD on NSGA2 for 4-objective knapsack

problem based on size of the space covered metric S. Each graph label

indicates the population size - the number of generations
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VI. FINAL REMARKS

In this paper we proposed volume dominance, a new form

of relaxed Pareto dominance, which is based on comparing

the dominated volume of solutions in order to establish

preference. We carried out extensive experiments to compare

the performance of our proposed volume dominance and

Pareto dominance when using three well-known MOEAs

namely SEAMO2, SPEA2, and NSGA2. Our results show

that for the 4-objective knapsack problem with 750 items,

the performance of our volume dominance using high ratios

rSV is quite similar to that of Pareto dominance. However, we

obtained promising results by using lower ratios rSV. Volume

dominance using low ratios rSV is capable of obtaining

smoother trade-off fronts and is also able to ‘push’ the trade-

off front in a more uniform manner than the conventional

Pareto dominance, i.e. the trade-off front converges as a

whole without bias on a particular objective.

We believe that volume dominance provides an alternative

approach to assign fitness to solutions in a multiobjective

context. Our results suggest that volume dominance can be

regarded as more robust than Pareto dominance because

it helps the three algorithms implemented here to shown

more consistent performance. By adjusting the rSV ratio,

users could obtain results driven by different criteria, such

as a better coverage, a better size of space covered or

a better distribution of the objective values. Future work

contemplates comparing different forms of relaxed Pareto

dominance in the literature (e.g. ε-dominance, α-dominance,

etc.) using SEAMO2, SPEA2, NSGA2 on the multiple knap-

sack problem and perhaps other constrained combinatorial

optimisation problems. Designing a strategy to automatically

adjust the rSV ratio during the search process might further

improve the performance of volume dominance. Finally, we

believe that our proposed volume dominance is relatively

simple to implement but efficient. This new form of relaxed

Pareto dominance is worth of further investigation.
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