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Abstract— In this paper, we propose a population-based
implementation of simulated annealing to tackle multi-objective
optimisation problems, in particular those of combinatorial
nature. The proposed algorithm is called Evolutionary Multi-
objective Simulated Annealing Algorithm (EMOSA), which
combines local and evolutionary search by incorporating two
distinctive features. The first feature is to tune the weight
vectors of scalarizing functions (i.e., search directions) for
selection during local search using a two-phase strategy. The
second feature is the competition between members of the
current population with similar weight vectors. We compare
the proposed algorithm to three other multi-objective simulated
annealing algorithms and also to the Pareto archived evolution-
ary strategy (PAES). Experiments are carried out on a set of
bi-objective travelling salesman problem (TSP) instances with
convex or nonconvex Pareto-optimal fronts. Our experimental
results demonstrate that the two-phase tuning of weight vectors
and the competition between individuals make a significant
contribution to the improved performance of EMOSA.

I. INTRODUCTION

Multi-objective optimisation problems (MOPs) arise in
many real-life applications, such as engineering, finance,
logistics, etc. The optimal solutions to MOPs are the best
trade-offs among the objectives, known as Pareto optimal
solutions. The number of Pareto-optimal solutions might
be huge but in practice, decision-makers are usually inter-
ested in a set of finite Pareto-optimal solutions with good
spread in the objective space (i.e., a good approximation
to the Pareto-optimal front). Over the past twenty years,
metaheuristics have gained increasing popularity in multi-
objective optimisation [1]. One of the main advantages of
these metaheuristics is that multiple Pareto-optimal solutions
can be found in a single simulation run.

Simulated annealing (SA) is a stochastic local search based
metaheuristic for global optimisation [2]. It is inspired by
the physical process of heating and controlled cooling of
a material. During local search, non-improving moves are
allowed with some probability when the temperature is not
zero. As a result, this method has a chance to escape local
optima and find promising areas of the search space. As the
temperature goes to zero, the probability of accepting only
improving moves increases so that search in the promising
areas is intensified.

A number of multi-objective simulated annealing algo-
rithms (MOSAs) have also been developed to tackle MOPs
[3][4][5][6][7][8][9]. Unlike single objective simulated an-
nealing algorithms, the acceptance functions in these MOSAs
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are based on either the aggregation of objectives (i.e., scalar-
ization) or Pareto dominance. In order to find a diverse set
of nondominated solutions, some MOSAs optimise multiple
distinct weighted scalarizing functions, of which the weight
vectors are either fixed or dynamically changed during the
search procedure. Although these MOSAs maintain a popula-
tion of solutions and optimise multiple scalarizing functions
at the same time, each scalarizing function is optimised by
one solution separatively without cooperation with others.

A multi-objective evolutionary algorithm based on decom-
position, called MOEA/D, was proposed in [10]. It optimises
multiple subproblems (scalarizing functions) simultaneously
by using an evolutionary algorithm. Each subproblem is
associated with one solution, which is the best solution
found previously regarding the related scalarizing function.
The offspring solution for a certain subproblem is produced
by recombining those solutions with similar weight vectors.
During the replacement, the algorithm updates not only the
current solution of this subproblem but also those neigh-
bouring solutions. This is so-called cooperation between
subproblems in MOEA/D, which has been proved to be very
effective for solving benchmark MOPs with continuous or
discrete search space [10].

Inspired by the strategies for maintaining a diverse set
of weight vectors in previous MOSAs and cooperation be-
tween individuals with similar weight vectors in MOEA/D,
we propose a multi-objective simulated annealing algorithm
called Evolutionary Multi-objective Simulated Annealing
(EMOSA). It combines the strengths of both local and
evolutionary search. The main contributions of this paper are
as follow.

• We propose a two-phase strategy for maintaining the
diversity of search directions in EMOSA. This strategy
uses both fixed (first phase) and adaptive (second phase)
search directions during the search in order to examine
the multi-objective space more effectively.

• We compare the performance of EMOSA and three
other MOSAs and PAES [11] on a set of bi-objective
TSP instances with convex or nonconvex Pareto-optimal
fronts. We also assess the effectiveness of the proposed
adaptive and competitive search direction mechanism
and demonstrate that it significantly helps to improve
the performance of the proposed algorithm.

The remainder of this paper is organised as follows. Sec-
tion II introduces some basic definitions of multi-objective
optimisation. In Section III, simulated annealing approaches
for multi-objective optimisation are described. Section IV
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presents the proposed EMOSA algorithm. In the following
section, multi-objective travelling salesman problems are for-
mulated. In Section VI, the experimental results are presented
and discussed. Finally, Section VII concludes the paper.

II. BASIC DEFINITIONS IN MULTI-OBJECTIVE

OPTIMISATION

A multi-objective optimisation problem (MOP) with min-
imisation objectives can be stated as:

minimize F (x) = (f1(x), . . . , fm(x)) (1)

s.t. x ∈ Ω

where x is the vector of decision variables, Ω is the feasible
region of search space, F ∈ R

m is the vector of m objective
functions fi : Ω → R, i = 1, . . . ,m. If Ω consists of
a discrete set of solutions, then the MOP in (1) is called
a multi-objective combinatorial optimisation problem (MO-
COP). MOCOPs can be very challenging due to huge search
space, complex constraints, and many local optimal solutions.

For any two objective vectors u and v in R
m, u is said

to dominate v, denoted by u ≺ v, if and only if ui ≤ vi

for all i ∈ {1, . . . ,m} and there exists at least one index
j ∈ {1, . . . ,m} satisfying uj < vj . For any two solutions x
and y in Ω, x is said to dominate y if F (x) dominates F (y).
A solution x∗ is said to be Pareto-optimal (efficient) if no
solution in Ω dominates x∗. The set of all Pareto-optimal
solutions in Ω is called Pareto-optimal set. The objective
vectors of all solutions in the Pareto-optimal set is called
Pareto-optimal front, denoted by PF.

A Pareto-optimal solution x∗ is supported if it is the unique
global minimum of the following problem [12]

minimize g(ws)(x, λ) =
∑m

i=1 λifi(x) (2)

s.t. x ∈ Ω

where λ = (λ1, . . . , λm) is a normalized weight vector
satisfying 0 ≤ λi ≤ 1, i = 1, . . . ,m and

∑m

i=1 λi = 1.
Optimising the problem in (2) is also called weighted sum
approach. It is a commonly-used method for fitness as-
signment in many multi-objective approaches. However, the
weighted sum approach cannot solve MOPs with nonconvex
Pareto-optimal fronts [13]. In contrast, the weighted min-max
approach can overcome this weakness [12]. It needs to find
the optimal solution of the following problem.

minimize g(mm)(x, λ) = maxi∈{1,...,m} λifi(x) (3)

s.t. x ∈ Ω

where λ is the same as above. Note that the property of the
weighted min-max approach is similar to that of weighted
Tchebycheff approach, which needs a reference point. Here,
we call the functions in (2) and (3) weighted scalarizing
functions. Many other scalarizing functions are also available
[12].

III. MULTI-OBJECTIVE SIMULATED ANNEALING

ALGORITHMS

The basic idea in simulated annealing is to reduce the
possibility of getting trapped in local optima by allowing
local search moves from a current solution to its inferior
neighbours. In multi-objective optimisation, the acceptance
functions are often chosen as weighted scalarizing functions
g(x, λ), such as weighted sum function g(ws) in (2) or
weighted min-max function g(mm) in (3). Given a current
solution x and its neighbourhood N(x), the probability of
moving x to its neighbour x′ ∈ N(x) can be defined by:

P (x, x′, λ, T ) =

{
1 if Δg(x, x′, λ) < 0

e
−Δg(x,x′,λ)

T otherwise.
(4)

where
• T > 0 is the temperature level.
• Δg(x, x′, λ) = g(x′, λ) − g(x, λ) is the difference of

acceptance function values between x and x′.
The temperature T changes as the search progresses.

Initially, T is set to a high value. At this stage, many inferior
neighbours could be accepted because the probability P is
high. Then, T is decreased gradually to a low value during
the search. Thus, the probability of allowing non-improving
moves is also reduced gradually. At the final temperature
value, nearly all inferior neighbours are rejected.

O

P F

starting so lution

Fig. 1. Random search directions in Serafini’s MOSA

Serafini [7] developed a simulated annealing approach
for solving MOCOPs. Like many single objective simulated
annealing algorithms, Serafini’s MOSA is a single-point
method. At each step, it optimises one weighted scalar-
izing function, which acts as the acceptance function in
local search moves. To diversify the nondominated solutions
found, the weight vector of scalarizing function is modified
slightly and randomly during the search. Fig 1 illustrates the
search direction in Serafini’s MOSA.

Ulungu et al. [3] suggested a population-based MOSA,
which optimises multiple scalarizing functions but each of
them is optimized by a single SA run. To maintain the
diversity of resultant nondominated solutions, a set of fixed
evenly-distributed weight vectors are used. Unlike Serafini’s
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Fig. 2. Fixed search directions in Ulungu’s MOSA
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Fig. 3. Adaptive search directions in Czyzak’s MOSA

MOSA, Ulungu’s MOSA has an equal chance to optimise
each weighted scalarizing function (see Fig 2).

Czyzak et al. [4] proposed a MOSA with adaptive search
directions. It also uses a population of solutions to optimise
multiple weighted scalarizing functions at the same time. To
find the solutions in the unexplored area of the Pareto-optimal
front, this approach adaptively tunes the weight vector of
each solution during the search according to the closeness
to its neighbours. Fig 3 illustrates the search direction in
Czyzak’s MOSA.

IV. THE PROPOSED EVOLUTIONARY MULTI-OBJECTIVE

SIMULATED ANNEALING ALGORITHM

A. Motivations

Both Ulungu’s and Czyzak’s MOSAs are population-based
algorithms and maintain multiple weight vectors during the
search. The weight vectors in both algorithms are either fixed
or adaptively changed during the whole search procedure.
However, the strategies for maintaining multiple weight
vectors in both algorithms have their weaknesses. Firstly, the
optimal solutions of scalarizing functions with fixed weight
vectors might not be able to cover the whole Pareto-optimal
front well due to some reasons, such as the scalability of
objectives, the shape of the Pareto-optimal front, and small
population size. In this case, it is necessary to tune the search
directions of solutions in order to find the nondominated

solutions in the unexplored area of the Pareto-optimal front.
Secondly, it is not effective to tune the weight vectors locally
when the current population is not close to the true Pareto-
optimal front. The fluctuation of search directions in the early
phase of the search may slow down the convergence speed.
In this phase, more computational effort should be spent
on finding solutions near the Pareto-optimal front instead of
seeking a diverse set of solutions along the Pareto-optimal
front.

It should be noted that no competition between mem-
bers of the population is considered in both Ulungu’s and
Czyzak’s MOSAs. That is, there is no cooperation between
individuals during selection even if some of them are clearly
superior to the others in terms of their related scalarizing
functions. As studied in [10], the optimisation of a certain
scalarizing function is helpful for that of its neighbouring
scalarizing functions, and the competition between solutions
with different scalarizing functions can benefit the conver-
gence of the search. However, this issue was not considered
in the MOSAs mentioned above.

B. The Description of EMOSA

Based on the above motivations, an evolutionary multi-
objective simulated annealing algorithm (EMOSA) is pro-
posed in this paper. A two-phase strategy for tuning the
search direction of each solution is considered in EMOSA.
The competition between members of population is also a
key feature of the proposed algorithm. EMOSA maintains
a population of solutions x1, . . . , xpop. Each solution xi is
associated with a weight vector λi. Here, we assume that
the weighted sum approach is used in the selection of local
search moves. The EMOSA approach is described in Fig 4.

In Step 2.1, a neighbouring solution x′ is chosen from
the neighbourhood N(xi) of xi. It should be noted that
the definition of neighbourhood is problem-specific. Step 2.2
updates NDS if x′ is not dominated by the current solution
xi. All members in NDS dominated by x′ are removed and
x′ is added to NDS if it is not dominated by any member of
NDS. In Step 2.3, the neighbouring solution x′ is accepted
as the current solution with probability P (xi, x′, λi, T ). In
Step 2.4, x′ is also used to replace other similar members
of the current population if x′ is better with respect to the
related scalarizing function. The similarity between solutions
is measured by the Euclidean distance between their weight
vectors. After local search moves are performed K times for
each member of the population, the current temperature is
modified in Step 3. Once the temperature has been reduced
to the value below Tc, Step 4 modifies the weight vector of
each solution in CS. The basic idea in this step is to move
the members of CS away from their closest nondominated
neighbours in the population. Maintaining the maximal size
of NDS is optional. This is necessary when the number of
Pareto-optimal solutions is too large or infinite (as in the
case of continuous problems). The commonly-used strategies
for maintaining the diversity of a set of solutions in multi-
objective optimisation can be found in the literature [14].
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Input : starting temperature value (T0), final
temperature value (Tmin), temperature value
for tuning weight vectors (Tc), temperature
cooling rate (α), population size: (pop),
number of local search moves for each
solution between two consecutive temperature
levels (K), radius of the neighbourhood of
each weight vector (rw).

Output: A set of nondominated solutions - NDS
Step 1: Initialization

Step 1.1 Generate the initial population CS of
x1, . . . , xpop randomly and evaluate them;
Step 1.2 Produce pop distinct weight vectors
λ1, . . . , λpop with uniform spread;
Step 1.3 Form NDS by the nondominated members
of the initial population CS and set T := T0.

Step 2: Population Evolution
foreach i ∈ {1, . . . , pop} do

c := 0;
repeat

Step 2.1 Generate a neighbor x′ ∈ N(xi) and
evaluate it. Set c := c + 1;
Step 2.2 Update the external population NDS if
xi does not dominate x′;
Step 2.3 Replace the current solution xi by x′

with probability P (xi, x′, λi, T );
until c ≥ K ;
Step 2.4 Compete with similar members in CS as
follows:
foreach j ∈ {1, . . . , pop} do

Set xj = x′ if g(ws)(x′, λj) < g(ws)(xj , λj) and
d(λi, λj) < rw.

end
end
Step 3: Temperature Change

Decrease the temperature by setting T := T − α. If
T < Tc, go to Step 4; otherwise, go to Step 5.
Step 4: Search Direction Adaption
foreach i ∈ {1, . . . , pop} do

Find the closest nondominated neighboring solution
x̄ of xi from CS.
foreach k ∈ {1, . . . ,m} do

if x̄ exists then
If fk(xi) < fk(x̄), λi

k = min{1, λi
k + 1

pop
};

otherwise, λi
k = max{0, λi

k − 1
pop

}
else

λi
k equals to min{1, λi

k + 1
pop

} or λi
k =

max{0, λi
k − 1

pop
} with the probability 0.5.

end
end
Normalize λi by setting λi

k = λi
k/
∑m

s=1 λi
s,

k = 1, . . . ,m.
end
Step 5: Stopping Criteria

If T < Tmin, stop and return NDS; otherwise, go
to Step 2.

Fig. 4. The framework of EMOSA

O

P F

initial population

Fig. 5. Fixed-then-adaptive search directions in EMOSA

C. Connections Between EMOSA and Relevant Algorithms

• The main differences between EMOSA and other two
population-based MOSAs (i.e., Ulungu’s and Czyzak’s
MOSAs) lie in Step 2.4 and Step 4. Ulungu’s MOSA
can be regarded as a variant of EMOSA without Step 2.4
and Step 4. In Czyzak’s MOSA, the change of weight
vector is performed after each local search move instead
of Step 4 and no Step 2.4 is needed.

• In EMOSA, a two-phase strategy for modifying weight
vectors is adopted, which is the combination of the
strategies in Ulungu’s and Czyzak’s MOSAs. In the
first phase (T ≥ Tc), all weight vectors remain un-
changed. This is the same as in Ulungu’s MOSA.
In the second phase (T < Tc), weight vectors are
adaptively changed according to the closeness to their
nondominated neighbour in the population. This is the
same as that in Czyzak’s MOSA [15]. This two-phase
strategy is illustrated in Fig 5.

• Similar to MOEA/D in [10], EMOSA also measures the
similarity between xi and xj by the Euclidean distance
between their weight vectors - λi and λj . That is,
xi is the neighbour of xj if λj is the neighbour of
λi (i.e., d(λi, λj) < rw). EMOSA competes x′ with
all xj if their weight vectors λj are the neighbour
of λi. However, all other MOSAs only compare x′

with xi. In MOEA/D, the current solution of each
subproblem is updated only if better offspring solutions
are produced by recombining similar mating parents.
In contrast, EMOSA generates new solution from the
neighbourhood of current solution and accepts worse
solution with some probability during the selection.

V. MULTI-OBJECTIVE TRAVELLING SALESMAN

PROBLEM

The travelling salesman problem is a well-known NP-hard
combinatorial optimisation problem [16]. It has been widely
used to test the performance of many metaheuristics, such
as simulated annealing, tabu search, ant colony algorithm,
and memetic algorithm (e.g. [17][18]). The objective in TSP
is to find the shortest Hamiltonian circuit, which visits each
city only once. Recently, some researchers have shown some
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interest in the multi-objective version of TSP [19][20][21].
Given a set {c1, . . . , cn} of n cities, each pair {ci, cj} of
cities corresponds to a vector (d1

i,j , . . . , d
m
i,j) of distances.

The objectives of multi-objective TSP can be formulated as:

minimize fi(φ) =

n−1∑
j=1

di
φ(j),φ(j+1) + di

φ(n),φ(1)

i = 1, . . . ,m. (5)

where φ is a permutation of {1, . . . , n}. In this paper, we
only consider the symmetric multi-objective TSP satisfying
dk

i,j = dk
j,i for 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.

According to the results reported previously [20][21],
the shapes of the Pareto-optimal fronts for the known bi-
objective TSP instances are convex1. To study the perfor-
mance of the proposed algorithm for solving MOCOPs with
nonconvex Pareto-optimal fronts, we suggest the variant
of bi-objective TSP problems with the following objective
functions:

f̄1(x, φ) = A1t(x) + |B1f1(φ) + C1(t)f2(φ) + D1| (6)

f̄2(x, φ) = A2S(t(x)) + |B2f1(φ) + C2(t)f2(φ) + D2| (7)

where

• x = (x1, . . . , xd) ∈ {0, 1}d is a binary string and φ is
the permutation of {1, 2, . . . , n}.

• t : {0, 1}d → [0, 1] is the function of x and S : [0, 1] →
R is the function of t. In this paper, we use

t(x) =

∑d

i=1 xi · 2i−1

2d − 1
.

• Ai > 0, Bi,Di, i = 1, 2 are constants, and Ci(t), i =
1, 2, are functions of t.

In the above bi-objective TSP, S(t(x)) is used to con-
trol the shape of the Pareto-optimal front. The values of
|B1f1(φ)+C1(t)f2(φ)+D1| and |B2f1(φ)+C2(t)f2(φ)+
D2| in a Pareto-optimal solution should be as small as
possible, ideally equal to zero. In this case, each Pareto-
optimal solution corresponds to the intersection points of two
straight lines in the objective space.

In this paper, we consider the following two examples of
S(t(x)):

• Pareto-optimal front with nonconvexity

S(1)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 +

√
1
9 − t2 if 0 ≤ t < 1

3

2
3 −

√
1
9 − (t − 2

3 )2 if 1
3 ≤ t < 2

3√
1
9 − (t − 2

3 )2 otherwise.

(8)

• Pareto-optimal front with clusters (i.e., discontinuity)

S(2)(t) = 1 − 0.5
√

t − 0.5t sin(10πt) (9)

1In this paper, the Pareto-optimal front is said to be convex if the shape
of the front formed by all supported solutions is convex.

VI. EXPERIMENTAL STUDIES

A. Performance Metric

We use two metrics - inverted generation distance (IGD)
[22] and hypervolume [14] to evaluate a set of nondominated
solutions found by the algorithms under consideration.

• Inverted Generational Distance (IGD)
Given a reference set A∗, the IGD value of a set A ⊂
R

m is defined as:

IGD(A,A∗) =
1

|A∗|
∑

v∈A∗

{min
u∈A

d(u, v)} (10)

where d(u, v) is the Euclidean distance between u and v
in R

m. The IGD metric measures the average distance
from the reference set A∗ to the nearest solution in A.
The lower the value of IGD, the better the quality of A.
Since the true Pareto-optimal fronts of the bi-objective
TSP test instances used in this paper are unknown in
advance, A∗ is alternatively formed by all nondominated
solutions found by all approaches collected over all
runs.

• Hypervolume (Ψ)
Given a reference point y∗ ∈ R

m, the hypervolume of
a set A ⊂ R

m can be defined by:

Ψ(A, y∗) = Λ

(⋃
u∈A

{y|u ≺ y ≺ y∗}
)

(11)

where Λ is the Lebesgue measure of a set. This metric
describes the size of the objective space that is domi-
nated by the points in A and dominates y∗. In this paper,
y∗ is chosen as y∗

i = maxu∈PF ui, i = 1, . . . ,m. The
larger the value of hypervolume, the better the quality
of A.

B. Experimental Settings

• Test Instances
In our experiments, we used two 50-city bi-objective
TSP test instances (KROAB50 and KROBC50) and
two 100-city bi-objective instances (KROAB100 and
KROBC100)2. Two more test instances were created by
incorporating KROAB50 and the functions in (8) and (9)
into (6) and (7). We call these new instances KROAB50-
A and KROAB50-B respectively. The dimensionality d
of the binary string is 8. The constants in these two test
instances are set to A1 = A2 = 80000, B1 = B2 = 2,
C1(t) = −1 − 3t, C2(t) = 2, D1 = 0, and D2 =
160000.

• Algorithms in Comparison
We compared EMOSA with four other algorithms - Ser-
afini’s MOSA (SMOSA), Ulungu’s MOSA (UMOSA),
Czyzak’s MOSA (CMOSA), and PAES. All algorithms
except PAES are SA-based multi-objective algorithms.
PAES uses Pareto dominance for its selection in local
search moves while the others use scalarizing functions.

2The data of these four test instances can be found at http://www-
idss.cs.put.poznan.pl/∼jaszkiewicz/
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We include PAES in the comparison because this is an
evolutionary algorithm but also based on local search
and regarded as successful in many difficult MOCOPs.

• Neighbourhood in Local Search
In our experiments, a neighbouring solution at each step
is generated by exchanging the positions of two ran-
domly selected cities in the tour (i.e., 2H-opt exchange).
For two TSP test instances with nonconvex Pareto-
optimal fronts, we apply the same 2H-opt exchange to
mutate φ and bit-flip to modify the binary string x in
the solution with probability 0.01.

• Initialisation of Weight Vectors
In the three population-based MOSAs, the set Δ of
pop normalized weight vectors with uniform spread is
generated as follows. Firstly, we create a large set Γ of
1000 random weight vectors and add one of them into
Δ chosen at random. Then, the weight vector unselected
in Γ with the largest distance to the set Δ is added into
Δ. Repeat this process until the size of Δ equals to pop.

• Parameter Settings
The starting (T0) and final (Tmin) temperature values
are set to 100 and 5, respectively, in four MOSAs. The
cooling rate (α) for lowering the temperature level is 5.
The number K of local moves between two consecutive
temperature levels in three population-based MOSAs is
500 for 50-city test instances and 2500 for 100-city
instances. The population size (pop) in these algorithms
is 50 for all test instances. To have a fair comparison,
the two non-population based algorithms - SMOSA and
PAES use the same number of function evaluations
as the three population-based MOSAs for each test
instance.
In the proposed EMOSA, the temperature value (Tc)
for tuning weight vectors is 50 and the radius (rw)
of the neighbourhood of each weight vector is 0.2. In
PAES, 20 × 20 grids are used to estimate the density
of each member in the external population containing
nondominated solutions found during the search.

C. Results and Discussion

TABLE I

THE MEANS OF IGD-METRIC VALUES (×10
4)

Instance EMOSA UMOSA CMOSA SMOSA PAES
KROAB50 0.2843 0.3015 1.2370 0.3934 1.2513
KROBC50 0.2272 0.3082 1.5338 0.5803 1.9063

KROAB100 0.4056 0.5443 4.6600 2.6470 2.1171
KROBC100 0.3617 0.5159 4.5885 2.6938 2.0313

KROAB50-A 0.3466 0.4331 3.2475 0.7883 2.0072
KROAB50-B 0.4442 0.4637 1.0885 0.3962 2.2717

1) TSP Instances with Convex PFs: The mean IGD values
of the nondominated solutions found by each algorithm on
KROAB50, KROBC50, KROAB100, and KROBC100 are
summarized in Table I. The mean values of hypervolume
metric of these solutions are provided in Table II. Figs 6 and
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Fig. 6. The nondominated solutions found by all five algorithms in 20 runs
on KROAB50 and KROBC50.
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Fig. 7. The nondominated solutions found by all five algorithms 20 runs
on KROAB100 and KROBC100.
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TABLE II

THE MEANS OF HYPERVOLUME METRIC (×10
10)

Instance EMOSA UMOSA CMOSA SMOSA PAES
KROAB50 0.2839 0.2827 0.2169 0.2743 0.1953
KROBC50 0.2809 0.2758 0.2085 0.2674 0.1771

KROAB100 1.9060 1.8641 1.3453 1.6081 1.5717
KROBC100 1.9392 1.8827 1.3986 1.6394 1.5758

KROAB50-A 0.1951 0.1932 0.0399 0.1731 0.1073
KROAB50-B 0.2139 0.2168 0.1645 0.2174 0.0931

7 show the nondominated solutions found by each algorithm
after 20 runs on the 50-city and 100-city test instances.

The experimental results in Tables I and II show that
EMOSA and UMOSA clearly perform better than the other
algorithms in minimising the mean IGD and maximising the
mean hypervolume. However, the performance of EMOSA
is better than that of UMOSA on all test instances in terms
of both metrics. The same observations can be made from
the plots of nondominated solutions in Figs 6 and 7.

Among the four MOSAs, SMOSA and CMOSA are
clearly the worst. The poor performance of SMOSA lies in
the fact that it uses a single search direction at each step. It
has no ability to approximate the whole Pareto-optimal front
simultaneously. In contrast, the spread of nondominated so-
lutions found by CMOSA on all test instances is satisfactory.
However, CMOSA clearly performs worse than EMOSA and
UMOSA in the convergence to the Pareto-optimal front. This
might be caused by two reasons. Firstly, CMOSA changes the
search direction for each member of the population at every
local search move. We believe that this change of search
directions is too frequent and unnecessary and it affects the
convergence speed of the population towards the Pareto-
optimal front. Secondly, individuals in the population do not
compete amongst them during the search even if one indi-
vidual is better than others regarding the related scalarizing
functions. Since EMOSA takes the above factors into account
during the search, its performance is significantly superior
to the other algorithms considered in this paper on all test
instances.

2) TSP Instances with Nonconvex Pareto-optimal Fronts:
Fig 8 plots the nondominated solutions found by the five
algorithms on KROAB50-A and KROAB50-B after 20 runs.
It is evident that EMOSA and UMOSA are able to find the
solutions in both the convex and the nonconvex parts of the
Pareto-optimal fronts. This is mainly because both algorithms
use an external population to store all nondominated solu-
tions found along the search. Therefore, the nondominated
solutions in the nonconvex part of the Pareto-optimal fronts
found previously, can be retained in the external population.
Fig 8 and the results in Table I and Table II, show that
EMOSA and UMOSA also perform better than the other
three algorithms on these two test instances.

3) The Impact of Two-phase Strategy and Competition
in EMOSA: Do the two-phase strategy for tuning search
directions and the competition between individuals in the
population have a significant impact on the performance of
MOSAs? To answer this question, we compared EMOSA
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Fig. 8. Comparison of MOSAs with the weighted sum approach on
KROAB50-A and KROAB50-B.

with its other variants on the KROAB50 instance. These
variants are the versions of EMOSA without Step 2.4
(no competition) or Step 4 (fixed search directions). The
weighted sum function was used in the selection for local
search moves. All parameters remain same as before.
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Fig. 9. Comparison of three versions of EMOSA on KROAB50.

Fig 9 plots the evolution of the mean IGD values of the
nondominated solutions found by three versions of EMOSA
vs the temperature levels. As we can see from this figure,
EMOSA with fixed directions performs worst in minimising
IGD values. This means that tuning the search directions in
the second stage (i.e. after T < Tc) is very necessary in
EMOSA. It is also evident that the two versions of EMOSA
with competition between individuals converge much faster
early in the search. It is clear that EMOSA with both features
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performs best among the three versions. Therefore, we can
conclude that both the competition between the members of
population and the two-phase strategy for tuning the search
directions help to improve the performance of the proposed
EMOSA algorithm.

VII. CONCLUSIONS

We have proposed an evolutionary multi-objective
simulated annealing algorithm, called EMOSA, which
incorporates two distinctive features. One feature is a
two-phase strategy for tuning search directions and the other
feature is a competition scheme between individuals with
similar search directions. We also compared the performance
of the proposed EMOSA to other four algorithms (three
MOSAs and PAES) on four benchmark bi-objective TSP
test instances. Our experimental results demonstrated that
EMOSA clearly outperforms all other algorithms on the
TSP test instances with convex Pareto-optimal fronts.
We have also suggested two variants of bi-objective TSP
instances with nonconvex Pareto-optimal fronts. From our
experimental results, we observed that EMOSA with the
weighted sum approach solves the TSP instances with
nonconvex Pareto front well. This is mainly because the
solutions in the nonconvex part of the Pareto-optimal front
are retained in an external population during the search.
Furthermore, we showed that the two-phase strategy for
tuning weight vectors and the consideration of competition
between solutions do improve the performance of MOSAs
substantially. In the proposed EMOSA, two parameters
Tc and rw were introduced. In future work, we intend
to investigate the influence of these parameters on the
performance of EMOSA and apply our method to solve
many-objective optimization problems.
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[1] X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, Metaheuris-
tics for Multiobjective Optimisation. Springer, 2004.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[3] E. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens, “MOSA method:
A tool for solving multiobjective combinatorial optimization prob-
lems,” Journal of Multi-Criteria Decision Analysis, vol. 8, no. 4, pp.
221–236, 1999.

[4] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing - a meta-
heuristic technique for multiobjective combinatorial optimization,”
Journal of Multi-Criteria Decision Analysis, vol. 7, no. 1, pp. 34–37,
Dec 1998.

[5] E. K. Burke and J. D. Landa-Silva, “The influence of the fitness evalu-
ation method on the performance of multiobjective search algorithms,”
European Journal of Operational Research, vol. 169, no. 3, pp. 875–
897, 2006.

[6] B. Suman and P. Kumar, “A survey of simulated annealing as a tool
for single and multiobjective optimization,” Journal of the Operational
Research Society, vol. 57, no. 10, pp. 1143–1160, 2006.

[7] P. Serafini, “Simulated annealing for multiple objective optimization
problems,” in Proceedings of the 10th International Conference on
Multiple Criteria Decision Making, vol. 1. Berlin: Springer-Verlag,
1994, pp. 283–294.

[8] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: AMOSA,”
IEEE Transactions on Evolutionary Computation, 2008, in press.

[9] K. Smith, R. Everson, J. Fieldsend, C. Murphy, and R. Misra,
“Dominance-based multiobjective simulated annealing,” IEEE Trans-
actions on Evolutionary Computation, 2008, in press.

[10] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.

[11] J. Knowles and D. Corne, “Approximating the nondominated front us-
ing the pareto archived evolution strategy,” Evolutionary Computation,
vol. 8, no. 2, pp. 149–172, 2000.

[12] K. Miettinen, Nonlinear Multiobjective Optimization. Boston, USA:
Kluwer Academic Publishers, 1999.

[13] I. Das and J. Dennis, “A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multi-criteria
optimization problems,” Structural Optimization, vol. 14, no. 1, pp.
63–69, 1997.

[14] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, UK: John Wiley & Sons, 2001.

[15] A. Jaszkiewicz, “Multiple objective metaheuristic algorithm for combi-
natorial optimization,” Ph.D. dissertation, Poznan University of Tech-
nology, 2001.

[16] E. L. Lawler, J. K. Lenstra, A. Kan, and D. B. Shmoys, The Travelling
Salesman Problem. Chichester, UK: John Wiley & Sons, 1985.

[17] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the travelling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[18] C. Voudouris and E. Tsang, “Guided local search and its application
to the traveling salesman problem,” European Journal of Operational
Research, vol. 113, no. 2, pp. 469–499, 1999.

[19] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European Journal of Operational Research, vol. 137,
no. 1, pp. 50–71, 2002.
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