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There is a perception that teaching space in universities is a rather scarce resource. However, some studies
have revealed that in many institutions it is actually chronically under-used. Often, rooms are occupied only
half the time, and even when in use they are often only half full. This is usually measured by the ‘utilization’
which is defined as the percentage of available ‘seat-hours’ that are employed. Within real institutions, studies
have shown that this utilization can often take values as low as 20–40%. One consequence of such a low
level of utilization is that space managers are under pressure to make more efficient use of the available
teaching space. However, better management is hampered because there does not appear to be a good underst-
anding within space management (near-term planning) of why this happens. This is accompanied, within
space planning (long-term planning) by a lack of expertise on how best to accommodate the expected low
utilizations. This motivates our two main goals: (i) To understand the factors that drive down utilizations, (ii)
To set up methods to provide better space planning. Here, we provide quantitative evidence that constraints
arising from timetabling and location requirements easily have the potential to explain the low utilizations seen
in reality. Furthermore, on considering the decision question ‘Can this given set of courses all be allocated
in the available teaching space?’ we find that the answer depends on the associated utilization in a way that
exhibits threshold behaviour: There is a sharp division between regions in which the answer is ‘almost always
yes’ and those of ‘almost always no’. Through analysis and understanding of the space of potential solutions,
our work suggests that better use of space within universities will come about through an understanding of
the effects of timetabling constraints and when it is statistically likely that it will be possible for a set of
courses to be allocated to a particular space. The results presented here provide a firm foundation for university
managers to take decisions on how space should be managed and planned for more effectively. Our multi-
criteria approach and new methodology together provide new insight into the interaction between the course
timetabling problem and the crucial issue of space planning.
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1. Introduction

In this paper, we are concerned with understanding the
efficient planning and management of teaching space alloca-
tion within academic (or similar) institutions. Teaching space
not only includes the usual lecture rooms, but also includes
rooms for tutorials, seminars, workshops, etc. Generally, the
efficiency of teaching space management is measured by the
‘Utilization’ U. Exact definitions will be given later but, basi-
cally, U is a simple measure of the fraction of the available
space that is actually used. A utilization of 100% corre-
sponds to every seat being occupied at all available times.
Unfortunately, and perhaps surprisingly, utilization figures
are often very low; often around 20–30% in practice. The
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‘Higher Education Funding Council for England’ (HEFCE)
has reported low utilizations (HEFCE, 1999), and two of the
authors have commercial experience of such low utilizations
from their work with Realtime Solutions Ltd (McCollum
and McMullan, 2004; McCollum and Roche, 2004). As
another example, in work at the University of Puget Sound
in the USA, Fizzano and Swanson (2000) report that the
registrar asked them space-related questions such as ‘How
many classrooms does the University need to hold the classes
it currently offers?’ They include, as one of their conclu-
sions, that ‘the university is not using all of its classroom
space as efficiently as it might’. Naturally, many institutions
would like to improve this situation in order to reduce costs,
improve services, or to identify teaching space that might be
converted to other uses (eg office space might be in higher
demand).

The overall area of usage of space can be divided into
two broad areas: ‘Space Management’ for the near-term
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usage of existing resources, and ‘Space Planning’ for long-
term decisions relating to the provision of space resources.
For example, space management handles the assignment of
people and activities to existing rooms, whereas space plan-
ning is concerned with decisions as to which rooms ought
to be built or re-allocated to different tasks. In particular,the
long-range nature of space planning implies that decisions
need to be made before the exact details of current timeta-
bles, student numbers, etc, become available. One approach
to cope with this incomplete information is to rely upon
some ‘tried-and-tested’ standard practice. This corresponds
to relying upon what are called ‘space norms’. An example
of a norm might be a physical objective such as ‘5m2 per
PhD student’, in which case it can form the basis for space
management. Norms of this form can provide the basis for
space management in Office Space Allocation (Landa-Silva,
2003). Such norms provide a basis for space planning: use
the norms to calculate the overall demand for office space,
and then design the supply of rooms to closely match the
demand. However, this works well for Office Space Alloca-
tion only because, generally, most offices are used by single
occupants without the transient use associated with teaching
space. Attempting to use similar norms for Teaching Space
Allocation is more difficult because the expected low utiliza-
tion implies that planners must build in a corresponding
excess capacity. Furthermore, expected utilizations are such
that this in built ‘safety margin’ has to be as much as a factor
of two, or more. This has an obvious and large impact on
costs.

Attempts to remedy this situation, and so to carry out better
space planning are hampered because there is not an agreed
or qualitative understanding of why utilization is so low in the
first place. Furthermore, the safety margins incorporated into
space norms are obtained from standard sources, the origin
of which is generally unclear, and might well be inappro-
priate for modern module systems, as the sizes of classes
will usually have changed significantly. Hence, we have two
primary goals:

1. To develop an understanding of the factors that lead to low
utilizations.

2. To develop methods to choose safety-margins that are more
cost-efficient: aiming to reduce the teaching space that
needs to be provided, while not increasing the risk of it
turning out to be inadequate.

To these ends, we first consider a simple ‘pure’ event allo-
cation problem in which we optimize utilization by taking
events from a pool of courses and assigning them to the
available timeslots. On the data sets we have available, this
immediately gave utilizations of 85–90%. This is far too high
to match reality, and so indicates that a model based purely on
space issues, and given free choice of courses, is inadequate
to reflect the problem of managing teaching space allocation
in real-world universities.

To extend the model we moved in two independent, and
complementary, directions:

Extra constraints: Event-allocation usually takes placewith-
in the context of many constraints on locations and timings of
events. Accordingly, we include within our model objectives
that are intended to provide a simplified approximation or
abstraction of real timetabling issue.

Threshold phenomena: We study notions arising from the
threshold phenomena (also called phase transitions) common
in many large systems. Such phenomena arise when typical
properties of a system tend to be reliably predictable, based
merely on overall properties of an instance; see for example
Bollobas (1985). (Phase transitions in course timetabling have
been studied from a different perspective in Ross and Corne
(1996); see Section 9.)

We find that the location and timetabling-based objectives do
indeed have the potential to drive down utilizations, when
performing trade-offs in the multi-objective sense. Also, the
achievable utilization measures are statistically predictable,
and this supports the case for reliable space planning.

The problem classes we use are not new within the general
area of course timetabling (for general surveys of the area
see de Werra, 1985; Bardadym, 1996; Schaerf, 1999; Carter
and Laporte, 1998; Burke and Petrovic, 2002; Petrovic and
Burke, 2004). The underlying problem that we will consider
is the event allocation problem. This is a well-known existing
problem and indeed often occurs as the classroom assign-
ment problem (Carter and Tovey, 1992) and within timetabling
problems in order to select feasible room assignments for
events.

In standard instances of the assignment problem the sets
of events and rooms are fixed within the statement of the
problem. This implies that the utilization is fixed from the
outset (see Section 2.2), the goal is to improve other objectives
such as avoidance of unpopular times, or avoiding unpopular
sequences of events. However, our intent is to study the factors
that impact on utilization and so we must in some way allow
the utilization to vary. This means that our methodology must
be different than for standard course timetabling. In this paper,
we will allow the set of allocated events to vary. Hence, a
novel feature of our approach is that it is not always a hard
constraint that all the events must be allocated. Instead, we
will use two modes:

Fixed-choice mode: Given a fixed set of courses, the solver
is not given freedom to select those that should be allo-
cated or not, but instead we want to know if we can allocate
them all. This is the mode that standard course timetabling
systems use.

Free-choice mode: The solver is allowed a free choice of
which courses to allocate when it is optimizing utilization,
U. In this mode the selection of events becomes part of the
solution.
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We work with both the free and fixed choice modes to
model the range of management possibilities. At one end of
the range, corresponding to fixed choice, the set of courses
to be offered is determined without respect to the resulting
efficiency of space usage. However, it is also possible that
the set of courses themselves are, to some extent, selected
within the university so as to improve space usage, and this
corresponds to our free choice mode. This is discussed further
in Section 4.

To the best of our knowledge, the free-choice mode differs
from all of the course timetabling literature in which it is a
hard constraint that every event must be allocated a place.
This motivated our implementation of a new solver rather than
attempting to use an existing one.

We strongly emphasize that this paper focuses on the nature
of the space of solutions, and the impact on utilization, rather
than on the algorithms used to discover this nature. Although
exploration of the solution space of course requires solution
algorithms, they are entirely secondary. Hence, descriptions
of algorithms are deferred until Section 3.

Another difference of our work from existing course
timetabling research lies in the focus and methodology for
using the problem instances and optimization algorithms.
Typically, timetabling research focuses on a small number
of instances, and attempts to obtain excellent solutions with
the intention of using the entire solution. In contrast, we
take a large number of problem instances, derive reasonable
solutions, and then take only ‘aggregate’ properties such as
utilization and frequency and discard the rest. We then look
at how these aggregate properties change as we manipulate
the overall resources, sizes, and other aggregate proper-
ties of the problem instances. Generally, we only need a
reason able solver as improving the solver will have minimal
difference on the patterns we are studying. We expect it is
more important for our solver to be robust, in the sense of
consistency between instances, than for it to be particularly
well-performing on a restricted set.

We use problem instances based on real data for courses
and rooms obtained from a University in Sydney Australia,
and so we expect our methods, and the broad picture of our
results, are likely to be applicable to other institutions.

In this paper, Section 2 covers the basics of the problem:
the terminology and algorithms used. For example,we will
see that maximization of utilization alone is a straightfor-
ward optimization problem often reducing to maximum
weight biartite matching. Section 3 covers the algorithms,
and the data instances. Section 4 displays the threshold
phenomena, and introduces the question of when a request
for a specific amount of utilization or frequency is likely to
be satisfied; which we will call safe versus unsafe requests.
Section 5 introduces specific location and timetable penal-
ties. Section 6 presents the Pareto fronts, or multi-objective
trade-off surfaces, for utilization, location and timetabling
objectives. Section 7 returns to the issue of safe or unsafe
requests, but this time in the presence of timetabling

constraints. Section 8 covers safety in the presence of location
constraints.

2. Background and basics

In this section, we cover the basic background needed for
the main results. We describe the terminology of the domain,
the constraints and the objective functions that measure the
space usage.

2.1. Basic terminology and the hard constraints

For each teaching room, assume that we are given:

1. Capacity: the maximum number of students that the room
can accommodate.

2. Timeslots: the number of times lots for which the room
is available during the week (or other relevant scheduling
time period).

3. Department: the department that ‘owns,’ oris most closely
associated with, the room.

An ‘event’ requires the following information:

1. Students: the number of students that must be accommo-
dated.

2. Department: the owning/associated department.

The primary task is to assign events to rooms so as to satisfy
the following hard constraints:

1. Room capacity: the size of an event (students) must not
exceed the room capacity.

2. The number of events allocated to a room must not exceed
the number of timeslots, as events cannot share room times-
lots.

In fixed-choice mode, there will also be a constraint saying
that every event/course must be allocated to some room.
However, in free-choice mode it is part of the problem to
find a set of events that are to be allocated so as to maximize
objectives.

2.2. Quantifying space usage

The simplest and most direct measure of the space usage is
to take the sum over all timeslots and rooms of the number
of students allocated to that room-slot, which we will refer
to as ‘seat-hours’ (though of course there is no implication
that the timeslots really need to bean hour long). The intent
is that ‘Utilization’ measures the fraction (typically expressed
as percentages) of the total available (or maximum) seat-hours
that are actually used:

Utilization = achieved seat-hours

available seat-hours
(1)

Let Ci be the capacity of room i, and Si,t the number of
students allocated to room i at timeslot t. Then the total
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number of seat-hours (denoted by B) is

B =
∑

i,t

Si,t (2)

Since we enforce

Si,t �Ci for all i, t (3)

we then have B�BM, where BM is the maximum number of
seat-hours and is simply defined as follows

BM =
∑

i,t

Ci (4)

Generally, the utilization is defined by means of ‘occupan-
cies’ and ‘frequencies’ (McCollum and McMullan, 2004;
McCollum and Roche, 2004). The occupancy Oi,t of room i
at time t is the fractional usage at that time

Oi,t = Si,t
Ci

(5)

The occupancy, Oi , of a room, i, is defined as the mean
of its occupancies over all occupied timeslots. Suppose that
for room i the number of timeslots is ti and the number of
occupied timeslots is tocci . Then the occupancy for room i is
defined as

Oi = 1

tocci

∑

t

Oi,t (6)

The frequency usage, Fi , for a given room, i, is defined as
the fraction of its timeslots to which some event is assigned:

Fi = tocci

ti
(7)

The utilization, Ui , of room i, is the product of its occu-
pancy and frequency:

Ui = Oi Fi (8)

and so

Ui =
∑

t Si,t∑
tCi

(9)

that is, Ui is simply the fraction of the room’s seat-hours
potential that is actually used. However, to obtain an overall
utilization we will need to combine the utilizations from
different rooms. We will take a weighted mean over the rooms

UW =
∑

iWiUi∑
iWi

(10)

where Wi is the weight assigned to room i. Usually, one just
finds an unweighted mean UUW corresponding to the special
case that Wi =1. However, a natural and simple choice is that
larger rooms have a larger weight; and so we take the weight

to be the room capacity, Wi =Ci . In this case, straightforward
manipulation yields

Ui =
∑

i,t Si,t∑
i,tCi

= B

BM
(11)

which is just the promised overall fractional usage of the seat-
hours. In our view, U as defined in 11 is preferable, as it is
conceptually simpler than UUW, at least as good a measure,
and that the practical differences will generally only be a
secondary effect. (In some experiments not presented here,
we looked at both U and UUW and found them to be tightly
correlated anyway.)

It is important to observe that the utilization is a function
only of the rooms and the events allocated. It does not depend
on the details of the allocation itself. As discussed in the
introduction, optimizing the allocation with respect to objec-
tives usually used within course timetabling has no effect on
the utilization. To study utilization, it is essential to allow the
events or the rooms to vary, and this motivated the free and
fixed choice modes.

We will also measure the overall frequency F of a solution,

F = timeslots used

timeslots available
(12)

We do not weight frequency by the size of rooms, because we
want a measure that is direct and simple to understand, and
also because F is a ‘counting measure’ that ought not in itself
take account of room sizes. Again, in any case, we would
expect other frequency measures to give similar results.

3. Optimization algorithms and data

As discussed in the introduction, this paper focuses on the
nature of the space of solutions rather than on the algorithms
that we employ. However, for completeness, we briefly
describe them: firstly, we use mathematical programming to
exploit cases that reduce to a max-weight matching problem,
and secondly we employ a local search algorithm. Firstly,
however, we briefly discuss some existing Timetabling algo-
rithms. We remark that recent work (Avella and Vasil’ev,
2005) on exact (probably optimal) solutions was limited to
relatively small instances of course timetabling; up to 69
courses and 15 rooms. For larger instances it is necessary to
use (meta)-heuristics. In this case, a general pattern of the
most successful studies is that firstly a constructive algo-
rithm is used in order to produce initial feasible solutions,
followed by improvement of the feasible solution using some
form of heuristic local search. For example, in the ‘Inter-
national Timetabling Competition 2002’ (Metaheuristics
Network, 2003) the top four solvers used were: (1) simulated
annealing (SA) (Kostuch, 2004), (2) tabu search (Cordeau et
al, 2003), (3) Dueck’s Great Deluge (Dueck, 1993) in Burke
et al (2003), and (4) Tabu search with shakes (Di Gaspero
and Schaerf, 2004). Also, in a comparison of performances
of different meta-heuristics (Rossi-Doria et al, 2003, it is
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noteworthy that the authors restricted themselves to local
search ‘in an evolutionary algorithm, and ant colony opti-
mization algorithm, and an iterated local search. An SA,
and a tabu search were restricted to the same neighbourhood
structure’. Hence, local search is the favoured method for
improving feasible solutions. Hybrid algorithms have also
been used successfully (Chiarandini et al, 2006). In our case,
because we do not have the hard constraint that all events
must be allocated a time and place, constructing an initial
feasible solution is trivial. Hence, our algorithm ‘only’ needs
to do improvement, and hence will do so using local search
(with SA).

3.1. Mathematical programming methods

Suppose we call each (room, timeslot) pair a ‘room-slot’, then
the event allocation problem is to assign events to room-slots,
and to maximize the allocated seat-hours. In the absence of
other constraints or objective functions, it is well known that
this is just a standard assignment problem, and reduces to
a maximum weight matching problem in a bipartite graph
(see, eg, Cormen et al, 2001). The events are taken to corre-
spond to one set of nodes in the graph, and room-slots to
the other set. The edges are the set of possible assignments
of events to room-slots for which the capacity is sufficient.
The weight, or value, of an edge is the contribution of the
assignment to the total seat-hours, hence, simply, the number
of students in the event. We are forced to have a bipartite
matching because events can be assigned to at most one
room-slot, and each room-slot can have at most one event
allocated to it. Max weight matching has polynomial time
complexity using the standard network flow algorithms. The
simple optimization of utilization for event-based assignment
is not a hard problem. For simplicity, we instead exploit
this by converting the assignment problem to a mathematical
programming formulation. We encode it as an (binary)integer
programming problem (see Nemhauser and Wolsey (1988),
or see Bosch and Trick (2005) for a recent brief introduc-
tion to mathematical programming), but then relax to a linear
programming (LP) problem, and will still expect to obtain
integer solutions, which are hence optimal for the integer
program as well. We use this to derive optimal solutions when
appropriate. This is used for checking that the local search is
working well.

In some cases, the problem reduces to the assignment
problem but with just an extra constraint which means that the
solutions from the LP are not necessarily integer. We exploit
a ‘rounding’ method as follows. We solve the problem as an
LP and extract the integer parts of the solution. The integer
parts are then added as constraints to the original problem,
which is then generally small enough to be solved as an IP.
That is, we take the variables that are set to 0/1 in the LP,
but leave the fractionally valued ones to be determined by the
integer program. In the very simplest cases, when we only
want to maximize utilization with no other constraints, it is

sufficient to use a simple greedy method of ‘scanning events
largest first and allocating whenever possible’. However, our
main aim is to solve instances with other constraints, and for
these the greedy method will fail to be optimal, and so we
use mathematical programming and local search.

3.2. The local search algorithm

Local search is performed on solutions in which some events
are allocated to room-slots and others are unallocated. Oper-
ators are used that maintain feasibility (do not break the hard
constraints such as capacity), and are as follows

1-swap-rand: Select two different rooms at random, and
from each room randomly select an allocated event. If it main-
tains feasibility, then swap the two events between the room-
slots.

2-swap-rand: Similar to 1-swap-rand except select four
rather than two events and swap them while maintaining feasi-
bility of the given solution.

Move-exterior-rand: Randomly selects an allocated and an
unallocated event. If it maintains feasibility, then the allocated
event is deallocated, and the previously unallocated one given
its room-slot.

Push-rand: Randomly select one unallocated event and one
room. Try to allocate the event to the room; selecting the
timeslot at random from those (if any) that would maintain
feasibility.

Pop-rand: Randomly select one event from a randomly
selected room and deallocate it.

Move-inner: Swap the timeslots of two randomly selected
events in a single randomly selected room.

The operators use random sampling because the underlying
neighbourhoods tend to be quadratic in the number of events
and too large to be searched completely.

The search itself is performed with either standard
Hill–Climbing (HC) or SA (Kirkpatrick et al, 1983). Each
move operator is assigned a static probability for selection.
On each iteration, we first select an operator according to
their probabilities. Multiple, but limited (we use 10), attempts
are then made to apply the operator in order to generate an
improving candidate move. An iteration ends when a move
is accepted or a pre-defined number of failures is reached.
In SA, worsening moves can be accepted depending in stan-
dard fashion on the temperature. In our experiments we use
standard geometric cooling with reheats.

When possible, the local search was compared against
optimal solutions derived from the LP solver. When this was
not possible, we compare standard runs of the SA against runs
using much slower cooling, and many more reheats. Our stan-
dard run using SA is four coolings, 4m iterations each, cooling
by a factor of 0.998 each 650 iterations, taking 20–60min,
and is chosen so that the search seems to become static at
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the end of each cooling. We take the best result obtained at
the end of each cooling, and found that the multiple reheats
do help. We have checked that even with much longer runs
(10 coolings, 15m iterations each, cooling of 0.9995 each
650 iterations, taking up to 3 h) the graphs presented do not
change significantly. This gives us confidence that the results
presented here are a good reflection of the underlying prop-
erties of the solution spaces, and have not been biased by the
search methods.

3.3. Problem instances

The real data set that we use arises from the ‘Appleby’
building of a university in Sydney, Australia. The data
contains many different space types; lectures, workshops,
seminars, etc. However, for the purposes of this paper we
are not covering the issues of splitting. We seek clarity, and
so we select only the lectures (and also eliminate one lecture
that is so large that it would need splitting). We have 20
rooms, and each has 50 timeslots. This gives a total of 1000
timeslots, whereas the lecture courses only have 608 events.
Also, the total seat-hours demand from the lecture courses is
69 983 whereas the total supply from the rooms is 202 650.
Hence, in the initial data set, the lectures are substantially
under-subscribed, in the sense that the total demand for seat-
hours and timeslots from the courses is much smaller than
the supply of seat-hours and timeslots from the rooms.

In order to explore a wider range of these supply-to-demand
ratios we need to do one or more of (i) add more courses,
(ii) reduce the number of rooms, or (iii) have fewer times-
lots per room. We opt against creating more courses, as it
would make the problems unnecessarily large. The options of
reducing rooms or reducing timeslots are similar in that they
reduce the available seat-hours. Eliminating rooms requires
a decision of which ones to remove, and it is hard to know
what counts as a fair reduction, especially as we suspect that
it is the distribution of room and course sizes that is the most
important, and so do not want to change it accidentally (and
this is also why we do not attempt to use a random gener-
ator for instances). So, instead, we uniformly reduce times-
lots for all rooms. Hence, we create ‘Lecture Room’ problem
instances, LR(T), with the timeslots per room reduced to T.
In the original data T = 50, but we also studied T = 10, 18,
and 30. The case T = 18 is the smallest T in which the seat-
hours demand could potentially still be met by the rooms.
The results were similar to those we present here. We have
now covered the basic terminology, algorithms and data sets
used, and so can move to the main methodology and results.

4. The safety of utilization and frequency requests

Suppose that we are carrying out space planning, and have
a proposal for a set of rooms and a reliable forecast for the
expected demand for total seat-hours from courses. We would
like to know whether we can be confident that it will be
possible to satisfy the demand, but we do not yet know exactly

how the demand for seat hours will break down into actual
courses. Instead we just expect that the demand will arise from
a subset of some much larger set of potential courses. Given
the set of rooms and so the supply of seat-hours, then the
expected seat-hours demand can be converted to a ‘requested’
utilization,UR. In the absence of low utilizations, we could be
confident that as long as UR�100% then we would be able to
satisfy all the demand; that is, the ‘achieved’ utilization, UA

would equal UR; but maybe this is no longer true when U is
expected to be low? Hence, in this section we build towards
answering the question

‘Under what conditions is a request for utilization fully
satisfiable?’

To answer this question, and as a general tool for analysis,
we introduce the idea of ‘Achievement Curves’. These will
represent the quality (either U or F) of valid solutions in terms
of the quality requested, UR or FR, that is the quality that
would have been achieved if the entire request could have
been satisfied, and compare to the quality, UA or FA, of the
Achievable solutions.

We find achievement curves using the following procedure:
for each value of probability p ∈ [0.01, 0.02, . . . , 1.0].

S := a random subset of the courses; taking each course
independently with probability p.

1. Sum the sizes of events in S to find the total requested
seat-hours, BR.

2. Optimize the utilization for S to determine the achieved
seat hours, BA.

We repeat this many times to generate more points.
The requested and achieved values for seat-hours are

converted into achieved and requested UtilizationsUR andUA.
We also measure the total number of requested and achieved
events to give the requested frequency (FR) and achieved
frequency (FA). Thus, each fixed, but randomly generated,
subset S, generates data points (UA,UR) and (FA, FR). Note
that we can request a U (as total seat-hours), or an F (as total
timeslots), but it does not seem to be useful to talk about a
‘Requested occupancy’. Although we have three measures,
U, F and O, only two of them are independent, as they are
related by ‘U = FO’. It seems simplest and clearest to select
the two independent measures to be U and F.

Figure 1(a) presents the results of following the above
procedure for the room data LR(10). We find that as well as
plotting UA versus UR it is also helpful to plot the ‘Fractional
Achievement Ratio’; that is the fractions of the requested U
or F that turn out to be achievable. The results in terms of
fractional achievement are given in Figure 1(b).

The first, and crucial result, is that the values of achieved U
and F, for given corresponding requests, tend to be ‘grouped
around the mean’. That is, the variation of UA between points
near to some value of UR is small compared to the value of
UA itself, and similarly for FA. This implies that properties
of the system are statistically predictable. In our case, take
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Figure 1 (a) Requested versus Achieved percentages for U and
F, for random subsets of the courses, and with the rooms LR(10).
The diagonal line, ‘Achieved = Requested‘, is given for reference
purposes. (b) Same data but for the ‘fractional achievement’, that
is, the y-axis is UA/UR or FA/FR.

for example, UR = 80% then the mean value for the achieved
utilization is UA ≈ 70% but, crucially, the variation between
instances in that region of the curve is relatively small. This is
important, because if the variation were very large we would
not be able to make reliable and fairly tight predictions of the
achievable utilization or frequency.

The second, and also crucial result from Figure 1, is that
we see a threshold phenomenon on U (see also Beyrouthy
et al, 2006b). There is a ‘critical value’, UC, for the requested
utilization,UR. In this case,UC ≈ 60%, and this value divides
the results into two distinct regions:

SAFE:UR <UC. Requests for seat-hours are almost always
totally satisfied.

UNSAFE: UR >UC. Requests for seat-hours are almost
never totally satisfied. Even in the cases when there are enough
seat-hours available, it turns out that the oversupply is actu-
ally unusable.

The region around UC between these, the ‘critical region’,
is relatively narrow and within it the satisfiability of requests
is less predictable.

This has important implications. When planning course
offerings, we cannot assume that we can simply count seat-
hours, but must account that we are unlikely to be able to
rely upon using more than 55% of the seats available (in this
case). But for UR >UC, we will (almost) inevitably find that
some of the events will need to be dropped.

We refer to a request for U as ‘safe’ when statistically there
is high probability (eg, with better than 95% chance) that it
will be possible to satisfy all of the request. We use the term
‘safe’ to imply ‘low-risk but not an absolute guarantee’.

Note that, in this case, the frequency is always maximally
satisfiable. Obviously requests FR > 100% are unachievable,
but here all requests FR�100% are safe. In this case, it
turns out that the frequency is the limiting factor. Even if
FR = 100% and all of the events are allocated, FA = 100%,
and all the timeslots are occupied then the overall utilization
is only around 50–60% because most of the rooms are not
fully filled. However, in general, maybe there are different
regimes according to the most important limiting resource,
whether it be seats, or timeslots, or something else.

The other interesting points on Figure 1(a) are the endpoints
at the largest values of requested U and F. These correspond
to taking all the courses, but allowing the solver to make a free
choice of which events are going to be allocated a room-slot.
Recall, the free-choice mode allows the solver to pick events
that are better suited to the room sizes, and so to increase U.
From Figure 1(a), for this data set and no extra constraints,
with free choice we can reach U ≈ 92% but with the ‘fixed
choice’ we are only safe up to U ≈ 57%. The real situation
would probably be somewhere in between these two extremes.

That is, using both the fixed- and free-choice modes gives
information about the range of utilizations possible. Roughly,
the fixed choice corresponding to the case that utilization is
not considered when deciding which courses (or modules)
are offered. Conversely, the free-choice mode can be taken to
model the case that utilization is the primary objective when
deciding on offerings.

If courses were selected from the pool with no regard to
overall utilization, then the safe choice would be limited to
U < 57%. However, in practice, there probably is an effect
(that accrues from term-to-term) that the sizes of the courses
will evolve towards being a better fit to the rooms. So,
arguably, a natural evolution might push us a little above
the safe point. However, it seems unlikely that such natural
evolution would be so strong as to achieve the highest ends
of the utilization values.

The ‘grouping about the mean’ and thresholds observed
here are fairly common properties of problem classes in which
instances are selected from a large set of possibilities. (It is
important to remember that the number of subsets is expo-
nentially large: with n courses there are 2n possible subsets.)
The phenomenon is analogous to that of phase transitions in
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physical systems (such as water into ice), and in computer
science is best known in the context of random graphs
(Bollobas, 1985). For example, a standard distribution for
random graphs is to take n nodes and add every potential
edge independently with probability p. In this case, many
properties of the graphs become statistically predictable from
the values of n and p, and boolean properties, such as ‘the
graph is connected’, will exhibit a threshold at some critical
values of p.

5. Introducing location and timetable objectives

In the example of the previous section, we found that the
safety requirements were F�100% and U < 57%. However,
this corresponds to using all timeslots, and the rooms being
more than half full, and is still unrealistically optimistic. We
suspect that, in practice, the need to take account of other
objectives and constraints will drive down the achievable U
and F. Real problems have many different constraints, and
we cannot consider all possibilities for constraints. Instead,
we focus on two standard ones. In this section, we introduce
specific ‘location’ and ‘timetabling’ objectives.

Location penalty (L): Even if the allocation decisions are
made by a central administration: lecturers and students will
generally prefer that the events they attend should be close
to their ‘home’ department. We decided to model this using
a simple penalty determined by the department ‘owning’ the
event, and the department ‘owning’ the room. Events allocated
to rooms from the same department receive zero penalty. If
the event department and room department are different then
the allocation is penalised. (Owing to the absence of specific
distance information, we arbitrarily selected values from
range and to mimic the likely range of distances involved.)

Note that such a location matching is a common desire
within course timetabling. For example, after their conclu-
sion that ‘the university is not using all of its classroom
space as efficiently as it might’, Fizzano and Swanson (2000)
continue:

‘Our results do not guarantee that there are practical schedules
that use the number of classrooms we determined because our
process does not consider things like teachers’ room preferences
or class location requirements (English classes might not end
up near the English department).’

It is important to note that the penalty depends only on the
room and event. This has an implication on the algorithms
that should be used. Any weighted linear combination of loca-
tion and utilization still corresponds to a maximum weight
bipartite matching. The combination of location penalty and
seat-hours together generate a new set of edge weights and
network flow methods give efficient solutions. However, if L
and U are treated as independent objectives we end up with a
bi-criteria matching problem which is harder due to the pres-
ence of unsupported solutions (Steuer, 1986; Tuyttens et al,
2000).

Timetable penalty (TT): In order to take some account of the
effects of timetabling, we introduce a conflict graph between
events. Enrollment or conflict data was not available and so
we used simple randomised generators for the conflict matrix.
Also, the conflicts are again based on the owning department
for each event. Specifically, we generate conflict matrices
using procedures denoted by ‘TT(p, q)’, and according to the
following:

1. conflicts between events from the same department are
generated (independently) and randomly with prob-
ability p,

2. conflicts between events from different departments are
generated independently and randomly with probability q.

This corresponds to expecting that events from the same
department are more likely to have students in common, or
simply that departments strongly prefer that their own events
do not clash. The penalty is simply taken to be the number of
edges in the conflict graph that are violated because the events
are allocated to the same time. We expect that the timetabling
constraints of this form will capture some of the broad effects
of real problems; though an important aspect of future work
will be to devise more realistic methods to produce conflict
matrices. A similar structure was used by Ross and Corne
(1996) where they had a ‘probability pw, for within-clump
constraints, or pb for between-clump constraints’. Their moti-
vation was that ‘Real timetabling problems are typically rather
more clumped than homogeneous. For example, exams within
an arts faculty may typically form a distinct clump, largely
separate from those within a science faculty.’

The case p=q corresponds to ignoring the department, that
is, a standard random graph (Bollobas, 1985), and will refer
to this as simply TT(p). Another simple case is TT(100,0):
the conflict graph has edges between any two events in the
same department but none otherwise.

6. Multi-objective optimization in the free-choice mode

Obviously, adding location or timetabling constraints and
penalties to a problem cannot increase utilization. Instead, it
is a natural expectation that they will drive it down. However,
the issue is the magnitude of such an effect. In particular,
it is important to know whether such effects are sufficiently
large to have the potential to cause the low values of utiliza-
tion seen in practice. To study this, we are first interested
in reducing the upper estimates on utilization. Recalling the
discussion in Section 4, this suggests that we first consider
free-choice mode. We take all the events, and allow the
solver to select those that will be allocated. We will treat the
system as a multi-objective problem using the utilizations,
and (the negatives of) the location penalty L, and timetable
penalty, TT, and determine the appropriate (approximate)
Pareto fronts (see Steuer (1986), Deb (2005) for descriptions
of the concepts of Pareto optimization).
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Figure 2 Pareto front between location L and Utilization, U, for
the data set LR(10). ‘LP: Scan’ and ‘LP: Rounding’ are obtained
from the mathematical programming methods. ‘LS: Scan’ uses the
local search method.

Figure 2 presents the results for the simple two-objective
case of the tradeoff surface, Pareto front, between Utiliza-
tion and Location objectives. For clarity, we plot −L rather
than the location penalty L itself, so that all axes corre-
spond to maximization problems. Also, we remove all Pareto-
dominated points.

Each of the first set of points, ‘LP: Scan’, are obtained
by a standard procedure of solving many different possible
linearizations of the problem. That is, each point is obtained
by giving each objective a weight and then solved using
linear programming (LP), as discussed in Section 3.1. Each
point in ‘LP: Scan’ is hence Pareto Optimal, but some Pareto
optimal solutions can be ‘unsupported’ meaning that are not
reachable with any set of weights (Steuer, 1986; Tuyttens
et al, 2000), and this leads to gaps in the front. To generate
unsupported solutions and to fill in such gaps, we used the
IP formulation together with an upper bound Lmax on the
location penalty. The resulting problem is now constrained
maximal matching and the LP relaxation no longer automat-
ically produces integer optimal solutions. However, in prac-
tice, the LP optimal solution contained very few non-integer
values (just 5–10 variables out of thousands). Hence, we used
the rounding method of Section 3.1 to convert these to give
the integer ‘LP: Rounding’ solutions in Figure 2; each point
being obtained from different choices for Lmax. There was
little difference in objective values between the LP relax-
ation and the solutions from rounding. This indicates that
the underlying problem is rather easy in this case (It was
also observed in the early days of the office space alloca-
tion problem (Ritzman et al, 1979) that the LP relaxations
of IP formulations can result in very few non-integer vari-
ables, and so the problems are relatively tractable for their
size.).

The final set of points ‘LS: Scan’ in Figure 2 are obtained
using our local search method (SA). It gives points that are
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Figure 3 The trade off between Utilization, U, and Timetable
Objectives, -TT, for the rooms LR(10).

also very close to the optimal ones from the LP methods—the
difference being small enough so as to not significantly change
the shape of the curve. Altogether, these results give us confi-
dence that (i) the Pareto Fronts are non-trivial and (ii) using
local search instead of an exact method is sufficient to obtain
a reasonable approximation to the front.

The primary result from Figure 2 is that incorporating the
location objective can indeed significantly reduce the utiliza-
tion: In this example, driving it down to about 50 from 93%.
Figure 3 gives the results of a similar experiment for the
trade-off curve between utilization and timetabling conflicts.
Conflicts are introduced using TT(100,0), and broken conflicts
are penalized. In this case, we do use an exact method, but only
the local search. We see that the reduction of the timetabling
penalty in this free-choice mode forces some events to be
left unallocated and so the utilization is significantly reduced.
In the case of hard conflict constraints, or zero timetabling
penalty, the most that can be achieved is a utilization of
32%. We have also studied the Pareto fronts obtained by
using all three utilization, location, and timetabling objectives.
Lack of space means they are not presented here. However,
they have a similar standard structure. For example, for the
LR(10) data set, forcing the penalties for both location and
timetabling to zero drives the utilization down even further,
to U ≈ 29%.

Altogether, our results support our hypothesis that the loca-
tion and timetable penalties have the potential to adversely
affect utilizations. These penalties provide some explanation
for low utilizations in the real world.

7. Fixed choice with various timetabling models

In the previous section, we found that the location and
timetable requirements can significantly reduce utilizations
within the free-choice mode. In this section, we investigate
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Figure 4 ‘Requested versus Achieved’ Curves for (a) Utiliza-
tion, U and (b) Frequency, F. In the presence of hard timetabling
constraints produced by TT(p, 0) with p= 100, 90, and 80% (but
with no restriction on location penalty).

the effect of timetabling within the fixed-choice mode. In
particular, we look at the effects of timetabling on the safety
of requests for utilization and frequency. The basic procedure
is the same as in Section 4, except that for each selected
subset of the courses we also generate a corresponding
conflict graph, and then the allocation problem is solved
treating the conflicts as hard constraints.

Figure 4 shows the effect on the achievement curves of
enforcing hard TT(p, 0) constraints. For comparison, Figure 1
corresponds to the case that p=0. We see that the introduction
of the conflict graphs has significantly reduced the utilizations
and, in particular, the critical utilizations. Furthermore, in the
absence of timetabling, Figure 1, it was the case that all legal
frequencies, F�100%, were safe, but this is no longer true.
The hard conflict constraints force some timeslots to remain
unfilled and the safely achievable frequency drops. Also, note
that the difference between TT(100,0) and TT(90,0) is quite
large, indicating that safety regions can be fairly sensitive to
the parameters of the model.
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Figure 5 The same as Figure 4 except that the hard timetabling
constraints are produced using TT(p, p) with densities p= 0, 10,
20, and 30%.

Figure 5 shows the effects on the achievement curves of
enforcing hard TT(p) = TT(p, p) constraints; the conflicts
are independent of the owning departments of the events.
Most notable from Figure 5(b) is that conflict densities
of 10% do not lower the safe region. In this instance,
the safe region for F only starts to become reduced when
the conflict density reaches about 15%. In this case, the
timetable conflicts have no effect on the safe regions until
the conflict density exceeds some value. Of course, the
details will depend on the particular problem instance, and
so the exact numbers obtained on this instance are not impor-
tant. Instead, the message is that safe regions may well be
insensitive to the imposition of ‘small’ amounts of other
objectives.

Given the TT(p, q) model, then the parameters p and
q correspond to a parameter space controlling the conflict
matrices. We have just seen that the critical values of U and
F can change rapidly in some regions of the parameter space,
but not at all in other regions. We believe that understanding
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such sensitivity effects will be important in safely using crit-
ical values within space planning.

8. Fixed-choice together with both hard L and TT

In this final section of experimental results, we briefly study
the effects of demanding that the assignments totally match
the location; that is, we treat location as a hard constraint
(L = 0). This can be taken to correspond to an institution
with very localized control of rooms or no sharing between
departments.

Figure 6 shows the achievement curves with both a
hard location constraint, and a hard timetabling, TT(90,0),
constraint. Again the achieved U and F are statistically
predictable in that they are ‘clustered about the mean’. At
first sight, it seems that the constraints have merely reduced
the safe regions as in previous cases. However, closer inspec-
tion of the achievement ratio, Figure 6(b), reveals that the
effect is more extensive. There is no safe region in which
we are almost always sure of satisfying all of the request.
Instead we get a ‘weakly-safe’ region, a region in which we
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are ‘only’ almost always sure of satisfying a large fraction
of the request. In particular, if we request any F less than
about 40% then we are very likely to be able to satisfy about
95–98% of the request, but not the 100% we would expect
in a safe region. We suspect that this indicates there is a
mismatch between rooms and events, and will explore such
cases in future work. Again, this serves as an example of what
can happen; but the exact details will of course depend on the
instance under consideration.

9. Related work

Room minimization: As mentioned in the introduction,
Fizzano and Swanson (2000) also studied space usage within
a university. They carry out room minimization by the
simple procedure of removing rooms whenever doing so
would not result in the problem no longer being solved by
their algorithm. After removing unneeded rooms, the overall
frequency increases correspondingly. Their constraints used
within are substantially different from the majority of the
course timetabling literature. Their time restrictions arise
because courses consisting of multiple events must take place
on some specified subset of the days of the week and with
the restriction that the course events must take place at the
same time of day, but they do not have the usual ‘conflict
matrix’. Also, they do not include the effects of location
objectives. However, the most important difference is that
they do not perform our multi-objective or phase transition
studies.

Computational hardness and phase transitions: Phase tran-
sitions in the area of course timetabling were studied by
Ross and Corne (1996). However, this was from the point
of view of the computational hardness rather than the posi-
tions of the phase transition (as a function of the controlling
parameters such as conflict density). Many systems have a
threshold, and it is well known that the computationally diffi-
cult decision problems, ‘hard problems’, typically occur at
the threshold; that is, at the phase transition between ‘almost
always yes’ and ‘almost always no’ regions (Cheeseman et al,
1991). (Possibly one of the most well-studied thresholds, and
associated hard problems, is the satisfiability transition in the
‘Random 3SAT’ domain (Mitchell et al, 1992; Parkes, 2002,
and many others).) However, in Ross and Corne (1996) the
instances themselves are generated in such a fashion as to
guarantee that they are solvable. Their focus is instead on
the hardness of the instances for a solver, and they do indeed
observe transitions in hardness. We differ in that we are not
investigating the hardness (in this paper) but rather the satis-
fiability of a request for a particular overall utilization. In our
studies, it is reasonable to expect that there will be a peak in
hardness for the satisfiability decision problem near the transi-
tion from safe to unsafe utilization requests, and this is under
investigation. However, conversely, we expect the hardness to
drop rapidly as we move away from the threshold. Somewhat
paradoxically, this means that it is generally not very hard
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to obtain a good approximation to the location of the critical
point.

10. Conclusions and future work

The issues of space allocation, space management and space
planning, are crucially important to universities in general,
and to companies acting as consultants (in particular, to Real-
time Solutions Ltd, to which two of the authors are affili-
ated). Accordingly, we have studied teaching space allocation
with two goals in mind. Firstly,we aimed to understand the
factors that have the potential to explain the low utilizations
and frequencies observed in real-world institutions. Secondly,
a requirement was to start to devise methods to determine the
safety margins that must be included within space planning
methods in order to compensate for the expected low utiliza-
tion figures when space is actually put into use.

In preliminary studies, it was clear that considering utiliza-
tion alone gives unrealistic results, in the sense that the
realized utilization was too close to the maximum possible
utilization. However, if we also include objectives to mimic
the effects of timetabling and physical location, and plot
the resulting multi-objective trade-off surfaces, then in some
regions the utilization falls to much more realistic and
observed levels, in the range of 20–40%.

We also introduced a new tool, ‘Achievement versus
Request curves’, for the analysis of potential room utiliza-
tions. The associated methodology detailed in Section 4, is
exemplified by the results on Figure 1. We found that when
selecting courses at random from a pool then whether or not
the selections are fully achievable (‘safe’) becomes statis-
tically predictable. This means that the typical behaviour
of different instances can be predicted. Also, the behaviour
displays threshold phenomena: There is a critical value of
requested utilization below which there is a high probability
of satisfying it all, but above which the probability drops
sharply.

The intended usage of the results are (i) to build a
better understanding of the factors that affect utilization and
frequency, a necessary first step to being able to improve
them in practice, (ii) to use the statistical predictions of safe
regions of U and F in order to give better, more cost-effective,
safety margins to be used in space planning.

Together the results give two effects that can lower
utilization:

Threshold effects: The finding of a critical utilization
placing an upper bound on safe utilization. Moving from free
choice to the more realistic fixed choice mode substantially
lowered utilization.

Constraints: Location or timetable conflicts further drive
down the utilization.

The observation that constraints lower utilization was
expected. However, the threshold effects are more interesting.

A positive effect of the thresholds is that the safely achievable
utilization might well be predictable—though in a statistical
sense rather than absolute sense.

The practical implication of the threshold results is that
it gives a methodology to generate a set of rooms with the
appropriate safety margins for space planning. Given a set
of potential events, the critical utilization will depend upon
the set of rooms. Hence, one should pick the best set of
rooms for which the critical utilization is at least the requested
utilization.

This work has provided an important foundation for a range
of research issues that need to be explored. We emphasize that
we are developing a methodology, and it is not the details of
the algorithm or the exact detailed numbers in the results that
are important. For example, we believe that the universality
of threshold phenomena in large systems (Bollobas, 1985;
Huberman and Hogg, 1987, and others) will lead to wide
applicability of the methods.

This work is foundational and so opens many avenues for
future work, in particular in extending the model and making
the algorithms more efficient. We believe that our model of
events and rooms in Section 2 captures enough of the real
world for the purposes of this research study (our belief
is based on our dealing with universities through Realtime
Solutions Ltd). A more complete model would include other
effects such as spacetypes and splitting. Rooms often have a
‘spacetype’ that gives their intended usage: lecture, seminar,
workshop, etc, and a fuller model would allow the mixing of
spacetypes. Courses are typically not single ‘atomic’ events,
but instead might need multiple timeslots. Also, courses can
need splitting into smaller events, called sections, because
they are too large for the rooms or there is a recommended
section size. We study this ‘splitting problem’ in Beyrouthy
et al, 2006a.

A particularly important future research direction is to
try and improve methods to generate timetabling constraints.
This will rely upon developing statistical characterization of
timetabling constraints in an institution, and to do this without
relying on details that will not be available at the space plan-
ning stage. The main challenge is to see whether useful statis-
tical information can be produced without having to resort
to full simulations. Simulations are conceptually straightfor-
ward, but often difficult in practice because of the lack of
relevant data.

Other important aspects of future work will be to carry
out a comprehensive series of comparisons against other real
problems. Also, an important aspect of space planning is to
determine how ‘room size profiles’—the distribution of room
sizes—affect these results. Finally, we note that our current
implementations are rather inefficient—many of the graphs
here needed many hours of CPU time-and so we will be
implementing more efficient methods to produce the trade-off
surfaces and achievement versus request curves, for example,
to use the methods of Gandibleux et al (2001) for finding
Pareto fronts.
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