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Abstract. In many real-world scheduling problems (eg. machine schedul-
ing, educational timetabling, personnel scheduling, etc.) several criteria
must be considered simultaneously when evaluating the quality of the so-
lution or schedule. Among these criteria there are: length of the schedule,
utilisation of resources, satisfaction of people’s preferences and compli-
ance with regulations. Traditionally, these problems have been tackled as
single-objective optimisation problems after combining the multiple cri-
teria into a single scalar value. A number of multiobjective metaheuristics
have been proposed in recent years to obtain sets of compromise solutions
for multiobjective optimisation problems in a single run and without the
need to convert the problem to a single-objective one. Most of these tech-
niques have been successfully tested in both benchmark and real-world
multiobjective problems. However, the number of reported applications
of these techniques to scheduling problems is still relatively scarce. This
paper presents an introduction to the application of multiobjective meta-
heuristics to some multicriteria scheduling problems.

1 Introduction

Scheduling is the arrangement of entities (people, tasks, vehicles, lectures, ex-
ams, meetings, etc.) into a pattern in space-time in such a way that constraints
are satisfied and certain goals are achieved [120]. Constructing a schedule is the
problem in which time, space and other (often limited) resources have to be con-
sidered in the arrangement. The constraints are relationships among the entities
or between the entities and the patterns that limit the construction of the sched-
ule. Constraints can be classified as hard or soft. Hard constraints must not be
violated under any circumstances. Solutions which satisfy such constraints can
be called feasible. It is desirable to satisfy as many soft constraints as possible
but if one of them is violated, a penalty is applied and the solution is still con-
sidered to be feasible. In practice, the scheduling activity can be regarded as a
search problem for which it is required to find any feasible schedule or as an
optimisation problem for which the best feasible schedule is sought. The best so-
lution is often defined to be the one with the lowest penalty (for violation of the
soft constraints). In real-world problems, expressing the conditions that make a
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schedule more preferable than another and incorporating this information into
an automated system, is not an easy task. In addition, the combinatorial na-
ture of these problems implies exploring huge search spaces [93, 123] and human
intervention is often necessary to bias the search towards promising regions.

The class of scheduling problems includes a wide variety of problems such
as machine scheduling, events scheduling, personnel scheduling and many others
(eg. see [10, 14, 96, 120]). Many real world scheduling problems are multiobjec-
tive by nature, i.e. several objectives should be achieved simultaneously (eg. see
[4, 55, 92, 113, 114]). Examples of such objectives are: minimise the length of the
schedule, optimise the utilisation of the available resources, satisfy the prefer-
ences of human resources (personnel scheduling), minimise the tardiness of orders
(production scheduling), maximise the compliance with regulations (educational
timetabling) and there are many others. Over the years, there have been several
approaches used to deal with the various objectives in such problems. Tradition-
ally, the most common approach has been to combine the multiple objectives
into a single scalar value by using weighted aggregating functions according to
the preferences set by the decision-makers and then, to find a solution that sat-
isfies these preferences [9, 87, 113]. However, in many real scenarios involving
multiobjective scheduling problems, it is preferable to present various compro-
mise solutions to the decision-makers, so that the most adequate schedule can
be chosen. Although this can be achieved by performing the search several times
using different preferences each time, another approach is to generate the set of
compromise solutions in a single execution of the algorithm. The latter strat-
egy has attracted the interest of researchers for investigating the application of
Pareto optimisation techniques to multiobjective scheduling problems (eg. [4, 5,
13, 71, 89]). The aim in Pareto optimisation (which is discussed in some detail
below) is to find a set of compromise solutions that represent a good approx-
imation to the Pareto optimal front [100, 107]. In recent years, the number of
algorithms proposed for Pareto optimisation has increased tremendously mainly
because multiobjective optimisation problems exist in almost any domain (eg.
see [55, 60, 77, 110, 125]).

Voss et al. describe a metaheuristic as “an iterative master process that guides
and modifies the operations of subordinate heuristics to efficiently produce high-
quality solutions” [118]. Metaheuristics include tabu search [65], simulated an-
nealing [1], variable neighbourhood search [67], genetic algorithms [84], neural
networks [98], ant colony optimisation [52] and many others (see also [2, 42, 64,
118]). Many metaheuristics that were first applied to solve single-objective op-
timisation problems have also been extended to multiobjective variants. Among
these, multiobjective evolutionary algorithms have received particular attention
because some researchers argue that these methods are well suited to deal with
multiobjective optimisation problems [41, 50]. Also, some multiobjective meta-
heuristics based on local search, such as simulated annealing and tabu search
have been proposed recently (eg. [8, 48, 61, 66, 75, 108, 115]). In the context of
single-objective combinatorial optimisation problems and in particular schedul-
ing problems, it is often the case that local search is incorporated into evolution-
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ary algorithms in order to improve the results obtained with these methods (eg.
[33, 16, 30, 40, 99]). Such methods are sometimes called memetic algorithms. This
appears to be true also in the multiobjective case given the evidence reported by
researchers in the field (eg. [16, 53, 62, 71, 72, 74, 76, 109]). Although there are a
considerable number of proposed algorithms for Pareto optimisation, the num-
ber of reported applications of these techniques to multiobjective scheduling
problems is still relatively scarce. This is particularly true for event scheduling
(timetabling) and personnel scheduling (rostering) problems, for which the ma-
jority of the recent publications still consider the use of aggregating functions to
combine the multiple criteria into a single value (eg. see [18, 25, 105]).

This paper is organised as follows. Section 2 gives an introduction to con-
cepts in multicriteria decision-making and multiobjective optimisation. This
work seeks to present a brief (but not exhaustive) overview of the recent (from
1996 onwards) reported literature on multiobjective scheduling and timetabling.
We concentrate in particular on the application of metaheuristic approaches.
The modeling of multiobjective scheduling and timetabling problems is outside
the scope of this paper and the reader is referred to the relevant literature when
appropriate. Nevertheless, some descriptions of multiobjective scheduling and
timetabling problems are discussed in order to facilitate the understanding of
the approaches we consider. An introduction to machine scheduling problems is
given in Sect. 3 while a description of educational timetabling problems and a
discussion of their multiobjective nature are presented in Sect. 5. One aim of
this paper is to identify the strategies that have been successful in the multi-
objective optimisation (using metaheuristics) of some multicriteria scheduling
problems. Therefore, Sect. 4 and Sect. 6 describe some of the multiobjective
metaheuristics that have been proposed to tackle machine scheduling problems
and educational timetabling problems respectively. Also, some applications of
multiobjective metaheuristics to personnel scheduling are described in Sect. 7.
Another aim here, is to identify promising research directions that may be inter-
esting to explore in order to strengthen the application of modern multiobjective
metaheuristics to these and related problems. This is done in Sect. 8. Finally,
remarks are presented in Sect. 9.

2 Multicriteria Decision-Making and Multiobjective
Optimisation

2.1 Introduction

The general multiobjective combinatorial optimisation problem can be formu-
lated as follows:

Minimise or Maximize F (x) = (f1(x), f2(x), . . . , fk(x)) s.t. x ∈ S . (1)

where x is a solution, S is the set of feasible solutions, k is the number of
objectives in the problem, F (x) is the image of x in the k-objective space and
each fi(x) i = 1, . . . , k represents one (minimisation or maximisation) objective.
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In many problems, the aim is to obtain the optimal arrangement of a group of
discrete entities in such a way that the additional requirements and constraints
(if they exist) are satisfied [93, 98]. If the problem is a multiobjective one, various
criteria exist to evaluate the quality of solutions and there is an objective (min-
imisation or maximisation) attached to each of these criteria [114]. It is often the
case that some of the criteria are in conflict, i.e. an improvement in one of them
can only be achieved at the expense of worsening another. Moreover, some of the
criteria may be incommensurable, i.e. the units used to measure the compliance
with each of the criteria are not comparable at all. The incommensurability of
criteria adds to the difficulty of the problem because the aggregation or compar-
ison of different objectives is not straightforward. Let us illustrate some of these
issues using a timetabling problem as example. For an examination timetable,
two of the criteria (among others) that may be used to express the quality of the
schedule are its length and the satisfaction of students’ preferences (eg. see [16]).
The objectives would be to produce the shortest schedule possible and to satisfy
most of the requests from students respectively. These objectives are conflicting
because students usually prefer to have the longest time possible between exams
and this of course, implies a longer schedule. The length of the schedule is ex-
pressed in number of timeslots and this metric may not be the most appropriate
to indicate the level of compliance with the preferences of students. To express
the degree at which the schedule satisfies the students’ requests, other aspects
such as the spread and balance of the schedule and the location of difficult exams
within the schedule would be more adequate.

2.2 Search and Decision-Making

The first decision that has to be made when dealing with a multiobjective op-
timisation problem is on how to combine the search and the decision-making
processes. This can be done in one of three ways [107]:

Decision-making and then search (a priori approach). The prefer-
ences for each objective are set by the decision-makers and then, one or various
solutions satisfying these preferences have to be found.

Search and then decision-making (a posteriori approach). Various
solutions are found and then, the decision-makers select the most adequate. The
solutions presented should represent a trade-off between the various objectives.

Interactive search and decision-making. The decision-makers intervene
during the search in order to guide it towards promising solutions by adjusting
the preferences in the process.

Another important decision is how to evaluate the quality of solutions, be-
cause the conflicting and incommensurable nature of some of the criteria makes
this process more complex. Also here, there are several alternatives [41]:

Combine the objectives. This is one of the “classical” methods to eval-
uate the solution fitness in multiobjective optimisation. It refers to converting
the multiobjective problem into a single-objective one by combining the various
criteria into a single scalar value. The most common way of doing this is by
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setting weights to each criterion and add them all together using an aggregating
function.

Alternating the objectives. This is another “classical” approach. It refers
to optimising one criterion at a time while imposing constraints on the others.
The difficulty here is on how to establish the ordering in which the criteria should
be optimised, because this can have an effect on the success of the search.

Pareto-based evaluation. In this approach, a vector containing all the
objective values represents the solution fitness and the concept of dominance
is used to establish preference between solutions [107]. A solution x is said to
be non-inferior or non-dominated if there is no other solution that is better
than x in all the criteria. Suppose two distinct vectors V = (v1, v2, . . . , vk) and
U = (u1, u2, . . . , uk) containing the objective values of two solutions for a k-
objective minimisation problem, then:

– V strictly dominates U if vi < ui, for i = 1, 2, . . . , k.
– V loosely dominates U if vi ≤ ui, for i = 1, 2, . . . , k and vi < ui, for at least

one i.
– V and U are incomparable if neither V (strictly or loosely) dominates U nor

U (strictly or loosely) dominates V .

Minimisation is considered here mainly because most of the scheduling prob-
lems are of this type (minimise processing time, minimise soft constraints vi-
olation, minimise schedule length, etc.), but the above definition is altered in
the obvious way for the case of maximisation problems. It is important to note
that, using strict or loose dominance can have an effect on how the search is
performed. This is because if a solution x1 is strictly dominated, it means that
it is outperformed by the other solution x2 in all criteria. But, if the solution
x1 is loosely dominated it means that it is outperformed in some of the criteria
but it is as good as x2 in at least one of them. Then, finding a new solution that
strictly dominates the current one may be more difficult than finding a solution
that loosely dominates it. This is particularly true in some combinatorial prob-
lems in which the connectedness of the search space is such that some solutions
are more difficult to reach from the current one. Examples of such problems
are the spanning tree problem and the shortest path problem (see [56]). Also,
given the set of solutions in the neighbourhood N(x) of a solution x, some of
the solutions in that set will (strictly or loosely) dominate x while others will be
(strictly or loosely) dominated by x. However, it is true that the set of solutions
in N(x) that loosely dominate x is a superset of the set of solutions in N(x)
that strictly dominate x. Therefore, by using loose dominance, it is more likely
that attractive (dominating) neighbouring solutions can be visited during the
neighbourhood search. However, using loose dominance could be inappropriate
in those cases in which the solution space contains too many loosely dominating
solutions because the search algorithm would spend too much time visiting these
solutions.
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2.3 Pareto Optimisation

When the aim is to obtain a set of compromise (non-dominated) solutions (search
and then decision-making), these solutions should represent a good approxima-
tion to the Pareto optimal front. The Pareto optimal front is the set of all non-
dominated solutions in the multiobjective space [107]. Pareto optimisation refers
to finding the Pareto optimal front or a set that represents a good approximation
to that front. Pareto optimisation is appealing because in most multiobjective
optimisation problems there is no such single-best solution and it is also very
difficult to establish preferences among the criteria before the search. Even when
this is possible, it may be that these preferences change and therefore having a
set of solutions eases the decision-making process. A problem may have several
objectives but we usually consider it to be multiobjective if the criteria are in
conflict. Two objectives can be considered to be in conflict if the complete sat-
isfaction of one of them prevents the complete satisfaction of the other. If any
improvement in one of the objectives induces a detriment on the other, then the
objectives can be said to be strictly conflicting [4]. It has expressed that even if
the conflicting nature of the criteria is not proved, Pareto-based metaheuristics
would be able to find the ideal solution that is the best in all criteria [58].

Another important aspect to consider is how to evaluate the quality of the
obtained non-dominated front. This is a multicriteria problem on its own be-
cause several aspects have to be considered to determine how good the obtained
front is. Among these aspects there are [50]: 1) the number of non-dominated
solutions obtained, 2) the closeness between the obtained front and the Pareto
optimal front (if known) and 3) the coverage of the Pareto front, i.e. the spread
and distribution of the non-dominated solutions. Several methods have been
proposed to evaluate the quality of the obtained non-dominated front in Pareto
optimisation and assess the performance of multiobjective optimisers (see [79,
127]). Since the Pareto optimal front is defined with respect to the objective
space, it is common that most of the metrics proposed are also defined with re-
spect to this space. One aspect that is frequently overlooked, is the diversity of
the obtained front with respect to the solution space. In fact, when researchers
report on the quality of the obtained non-dominated sets, they do not usually
provide information about the diversity of the solutions in the solution space.
This is extremely important, because although the obtained non-dominated so-
lutions may be well spread and distributed over the front in the objective space,
it may be that either the solutions are also structurally different (diverse) or
very similar between them. Considering diversity in the solution space when
assessing the quality of the obtained front becomes even more important in real-
world multiobjective combinatorial optimisation problems. This is because the
similarity among solutions directly relates to how different the arrangement of
the discrete entities is between the solutions. For example, consider the problem
of creating an examination timetable where the two criteria used to evaluate
the quality of solutions are the lenght of the timetable and the satisfaction of
student’s preferences. Then, the decision-makers may require solutions that are:
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Similar in structure and in objective values. Schedules that are very
similar and although each of them is non-dominated, perhaps the decision-
makers are interested in a certain part of the trade-off surface. For example,
they may prefer a set of similar timetables that have a short lenght and the
satisfaction of student’s preferences is high enough.

Similar in structure but very different in objective values. The sched-
ules are very similar but the decision-makers want solutions from all over the
trade-off surface. In this case, a set of solutions representing a wide range of
trade-off between the lenght of the timetable and the satisfaction of student’s
preferences is required. However, the decison-makers would like the timetables
to be similar.

Diverse in structure and in objective values. Solutions from all over
the trade-off surface are required, but the schedules must be very different in
structure (i.e. timetables that do not look too similar).

Diverse in structure but similar in objective values. The decision-
makers require schedules of certain similar quality with respect to the trade-off
between objectives but they want to see solutions that actually represent very
different schedules. For example, the decison-makers may want timetables that
satisfy most of the students’ preferences and have a lenght within a given range.
However, they would like these timetables not to be very similar (perhaps to
discuss the implications of implementing them).

Large multiobjective combinatorial optimisation problems are particularly
difficult to tackle. One reason for this, is that the size of the search space grows
exponentially as the problem size increases, making impracticable the applica-
tion of exact optimisation algorithms [55, 93, 98]. Also, in many multiobjective
combinatorial optimisation problems there is no notion of the localization and
shape of the Pareto optimal front [114]. Considering the fact that many real-
world combinatorial optimisation problems are also highly constrained, the sce-
nario is even more complex. Many real-world scheduling problems are examples
of combinatorial optimisation problems that involve multiple criteria and almost
always are highly constrained.

3 Machine Scheduling Problems

3.1 Introduction

Machine scheduling refers to problems where a set of jobs or tasks have to
be scheduled for processing in one or more machines [96]. Each job or task
consists of one or more operations (sub-tasks) and usually, a number of additional
constraints must also be satisfied. Examples of such constraints are precedence
relations between the jobs and limited availability of resources (eg. workforce,
machine processing time, materials, etc.). Machine scheduling problems arise
across a range of applications. This is perhaps the class of scheduling problems
that has attracted the most attention from researchers and practitioners in this
area. Two important types of machine scheduling problems are shop scheduling
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[11, 96, 113] and project scheduling [14]. In shop scheduling, a set of jobs have
to be processed through a number of machines while project scheduling is more
concerned with the execution of activities within a project (shop scheduling
problems can be modeled as special cases of project scheduling problems, see
[14]).

3.2 Some Types of Machine Scheduling Problems

Shop scheduling problems are common in many applications such as industrial
production and multiprocessor computer systems. A notation which is commonly
used to formulate shop scheduling problems is based on three fields: α|β|γ. In
this notation, α describes the machine environment, i.e. the structure of the
problem. The field β describes the constraints in the problem and other process-
ing conditions. The third element γ describes the criteria to be optimised. There
are many configurations of shop scheduling problems and hence, many different
mathematical formulations. Below, we illustrate the use of the above notation
with a few well-known configurations of shop scheduling problems. For a more
detailed presentation of this notation, including precise models and formulations
of other problem configurations, refer to [96, 113]. The following notation is of
relevance here:

– n is the number of jobs or tasks.
– m is the number of machines available.
– p(i, j) is the time that takes to process job j on machine i.
– d(j) is the due date of job j, i.e. the committed completion time.
– c(j) is the completion time of job j, i.e. the time taken to finish the job.
– e(j) is the earliness of job j, i.e. how much time the job was completed before

the due date, e(j) = max(0, d(j) − c(j)).
– l(j) is the lateness of job j, i.e. the delay on the completion of the job with

respect to the due date, l(j) = c(j) − d(j).
– t(j) is the tardiness of job j, i.e. the time that the job is actually completed

late, t(j) = max(0, c(j) − d(j)).
– r(j) is the release date of job j, i.e. the earliest time at which the processing

of the job can begin.
– Cmax is the makespan or total completion time which is equal to the com-

pletion time of the last job, Cmax = max(c(j)) for j = 1 . . . , n.

The characteristics that define the problem structure (α) include:

– single machine vs. multiple machines,
– whether the sequence of operations within the jobs are fixed,
– identical vs. different machines,
– existence or not of parallel machines, etc.

Among the constraints that can exist (β) there are [11, 83, 116]:

– pre-emption allowed or not, i.e. whether the processing of jobs can be inter-
rupted and resumed,
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– splitting allowed or not, i.e. whether the operations in a job can be split in
several parts,

– waiting times between the operations in the same job are permitted or not,
– whether special processing conditions (due dates, setup times, removal times,

etc.) are specified or not and if these are deterministic or stochastic,
– availability or resources is limited or not, fixed or flexible, etc.
– whether the capacity input and output buffer are finite,
– consideration of material handling operations or not,
– fixed or dynamic arrival of jobs, etc.

The criteria (γ) used to evaluate the quality of the schedule include:

– minimum total completion time or makespan Cmax,
– maximum earliness Emax = max(e(j)) for j = 1 . . . , n,
– maximum lateness Lmax = max(l(j)) for j = 1 . . . , n,
– maximum tardiness Tmax = max(t(j)) for j = 1 . . . , n,
– the total number of late jobs (i.e jobs for which t(j) > 0), etc.

Most of the research reported in the literature is focused on the single ob-
jective case of shop scheduling problems, in which the makespan should be min-
imised. Some researchers have investigated machine scheduling problems from a
multiobjective perspective (eg. [4, 113]) but the amount of literature in this area
is still scarce compared to the single-objective case.

Four of the most well-known types of shop scheduling problems are the single-
machine problem, the flowshop problem, the jobshop problem and the openshop
problem, which are briefly described below.

Single-Machine Scheduling. This is the simplest case of machine schedul-
ing problems, in which the set of n jobs have to be processed in a single machine.
The problem is to find the sequencing of jobs that optimises the given criteria.
For example, 1|dj |Lmax denotes a single machine configuration in which the jobs
have a due date and the criterion used to evaluate the quality of the schedule is
the maximum lateness.

Flowshop Scheduling. There are n jobs or tasks that have to be processed
in each of the m machines, i.e. each job consists of m steps or operations. The
processing of each job is carried out in the same sequence through the processing
stages, i.e. from the first to the last machine. After the processing of the job is
finished in machine i the job joins the queue in machine i+1. Then, each machine
i is used to process step i of each job. The problem is to find the sequence in
which the jobs should be processed so that the given objectives are achieved. For
example, Fm|p(i, j) = p(1, j)|Cmax denotes a flowshop configuration in which
each job has equal processing times for all its operations and the objective is to
minimise the makespan.

Jobshop Scheduling. This is a more general case of the flowshop schedul-
ing problem, in which the sequencing of each job through the machines is not
necessarily identical. As in a flowshop, there are also n jobs consisting of m op-
erations and m machines are available. The sequence of operations within each
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job are predefined and fixed. For example, Jm|dj |Cmax denotes a jobshop con-
figuration in which all jobs have a due date and the objective is to minimise the
makespan.

Openshop Scheduling. The openshop is a more general case of the jobshop
scheduling problem. As before, there are n jobs consisting of m steps to be
processed in m machines. The sequencing of each job through the machines can
be different and finding the optimal sequencing for each of the n jobs is also part
of the problem. Since the sequence of steps within each job has to be determined
in addition to the jobs processing schedule, the search space is even larger than
in the jobshop scheduling problem. For example, O3|pmtn, rj |(Cmax + Lmax)
denotes a 3-machine openshop configuration in which pre-emption (pmtn) is
allowed, all jobs have a release date and the criteria used to evaluate the quality
of the schedule is a sum of the makespan and the maximum lateness.

4 Multiobjective Approaches for Machine Scheduling

4.1 Introduction

Heuristic techniques are applied to obtain an acceptable schedule in a reasonable
amount of processing time. Reviews of some of the specialised heuristics for
job scheduling problems can be found in [11, 83, 96, 116]. Almost every type
of metaheuristic has been applied to machine scheduling problems (see [11, 83,
116]). However, the design of efficient search operators, selection of adequate
solution representations, tuning of parameters, etc. is still an art. When applying
metaheuristics to machine scheduling problems, researchers have found that it
is essential to incorporate knowledge about the problem domain, constraint-
handling techniques, specialised operators and local search heuristics in order
to obtain good results (eg. [54, 69, 90, 116, 117]). In this paper we are concerned
with the application of multiobjective metaheuristics.

Most of the reported applications of multiobjective metaheuristics to multi-
criteria machine scheduling consider two or three objectives and many have con-
centrated on flowshop scheduling problems. A literature survey on multicriteria
scheduling problems up to 1995 is available in [92]. More recently, T’kindt and
Billaut provided a good framework on multicriteria scheduling for any researcher
and practitioner interested in this field [113]. In their book, the authors describe
relevant concepts and ideas in the fields of multicriteria decision-aid and schedul-
ing. They provide notations, formulations and a topology for single-criterion and
multicriteria scheduling problems. They also describe several algorithms (exact
and heuristic) for these problems.

4.2 Measuring the Effectiveness of Local Search

Marett and Wright presented a study on the application of three techniques
based on local search to multiobjective flowshop scheduling problems [85]. Al-
though their aim was not Pareto optimisation, we decided to include their work
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in this introductory paper because they made interesting observations regard-
ing the effect of the complexity of these problems on the performance of local
search heuristics. Since almost all the proposed multiobjective metaheuristics for
scheduling include some form of local search, the results presented by Marett
and Wright are of relevance to us. They assessed the performance of a simple de-
scendent method, a tabu search technique and a simulated annealing algorithm
according to the complexity of various multicriteria flowshop problems. They
considered the following four criteria: total setup time (tst), total setup cost
(tsc), total holding time (tht) and total late time (tlt). For each of these criteria,
the minimisation of the corresponding cost value was taken as the objective.
Test problems with 4 (all of the above criteria), 3 (tst, tsc and tht), 2 (tst and
tsc) and 1 (each of the above criteria) objectives were created. All problems had
30 jobs and 3 machines. In the problems with more than 1 objective, a weighted
sum of the cost values for each criterion was used as the total solution cost. For
each criterion, a weight was set for each of the three machines (i.e. 12 weights
in total) in order to produce total costs of the same order of magnitude in all
test problems. Marett and Wright assumed problems with more objectives to be
more complex (and hence harder to solve) than problems with a smaller number
of objectives. One neighbourhood structure was used in the three techniques
investigated: the swap or exchange of two jobs. The neighbourhood sampling
was carried out in a systematic fashion using a set order without replacement.
At the start of each algorithm, the order in which the neighbours are generated
is made random and the whole ordering has to be used before it could be re-
used, even if any move to a new solution has been made by the method. They
observed different performances of the three techniques for different degrees of
problem complexity (assumed as explained above). But in general, they noted
that exploring not all but a subset of neighbours produced much better results,
an observation that was also made in [90] for single-objective flowshop problems.

Marett and Wright also proposed two metrics to measure the complexity
of a combinatorial optimisation problem: the mean steepest descent length and
the first autocorrelation. The first metric is a measure of the number of complete
neighbourhoods that need to be examined before a local optimum is found. They
made an estimation of this metric for each problem by executing a repeated
steepest descent heuristic until a thousand descents had been made. The second
metric is based on a random walk through the solution space and then observing
the rate of improvements made. An estimate of the κth correlation is given by

rκ =
∑q−κ

t=1 (yt − ȳ)(yt + κ − ȳ)∑q
t=1(yt − ȳ)2

. (2)

where y1 , y2 . . . ,yq are the successive values of the q solutions visited dur-
ing the random walk and ȳ is their average. Then, rκ measures the correlation
between the total cost of the current solution and the cost of the current so-
lution κ moves ago. The authors used only the first autocorrelation r1 in their
experiments.
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Marett and Wright recognised that it was not completely clear how the above
metrics should vary with the complexity of the problem. However, they observed
that a high value of the mean steepest descent implies that very few local minima
exist and therefore, it would be hard for a neighbourhood search algortihm to find
them. If this value is small, it is an indication of the existence of too many local
optima, and the neighbourhood search technique would find difficult to identify
the good ones. For the first autocorrelation, a value close to 1 is an indication
of the existence of large plateaux in the solution space with few good solutions
which are difficult to find. A value close to 0 implies that the solution space looks
like a very spiky surface with lots of mountains and valleys. Then, the search
algorithm would find it difficult to uncover any structure in the solution space.
Marett and Wright proposed to use these metrics to obtain an indication of how
difficult it is to carry out local search, and use this information to select the
most appropriate local search technique to tackle each particular multiobjective
problem.

4.3 Multiobjective Genetic Algorithms

Murata et al. proposed a multiobjective genetic algorithm for the flowshop prob-
lem with two and three objectives [91]. The criteria considered were: makespan,
total tardiness and total flow time. Before selection, a vector of weights is gen-
erated at random and all the individuals in the population are evaluated using
that vector. Then, two individuals are selected according to a probability func-
tion before applying the genetic operators to produce one offspring. A secondary
population of non-dominated solutions is maintained and some individuals from
this elite population are copied to the next generation. The randomly generated
weights aim to specify different search directions towards the Pareto optimal
front. In addition to the secondary population, elite individuals with respect to
each of the k objectives are maintained. The two-point crossover and the shift
mutation were used because they observed that these worked well in their pre-
vious work [90]. For the two-objective case, the weights were generated (evenly
distributed over the interval [0,1]) according to (3) and the solution fitness calcu-
lated using (4) as shown below, where Nselection is the number of selection steps
in each generation of the algorithm, i.e. Nselection individuals are produced in
each generation.

w1 =
i − 1

Nselection − 1
and w2 = 1 − w1 for i = 1, 2, . . . , Nselection . (3)

f(x) = w1f1(x) + w2f2(x) . (4)

For the k-objective case, Murata et al. proposed to generate the weights and
calculate the solutions fitness according to (5) and (6) respectively, where rndi

and rndj are non-negative random numbers.

wi =
rndi∑k

j=1 rndj

for i = 1, 2, . . . , k . (5)
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f(x) = w1f1(x) + . . . + wkfk(x) . (6)

Then, k weights are generated in each of the Nselection selection steps to
choose a pair of parents for recombination. Murata et al. found that their ap-
proach with variable weights was capable of approximating the Pareto optimal
set in non-convex fronts and produced better results than the vector evalu-
ated genetic algorithm (VEGA) [104]. The VEGA algorithm is considered to
be among the first genetic algorithms in which the concept of dominance was
implemented for the evaluation and selection of individuals. In each generation,
a group of individuals is selected according to one of the k objectives in the
problem until k groups are formed. That is, each group of individuals excels in
one of the k criteria. Then, the k groups are shuffled together and the genetic
operators are applied to produce the new population.

4.4 Extensions to the Multiobjective Genetic Algorithm

The multiobjective genetic algorithm described above, was later hybridised with
local search in [69] and applied to multiobjective flowshop scheduling problems
in [68]. The new version used the strategy of specifying different random search
directions for each selection of parents according to (5). But now, after each
offspring is generated using the genetic operators, local search is applied to the
new individual in order to improve it. The mutation operator was also used to
explore the neighbourhood in the local search phase. The same vector of weights
generated to select the parents was used to guide the local search and if no par-
ents exist (an initial generated solution), random weights are used. The number
of neighbours explored during the local search was a subset of the whole neigh-
bourhood as suggested in [90] as a way of controlling the computation time spent
by the local search. The elitist strategy was slightly modified so that the local
search is also applied to some randomly selected individuals from the elite pop-
ulation. The authors compared their approach against the VEGA and against
a genetic algorithm with fixed weights and found that the proposed algorithm
outperformed these two methods. Ishibuchi and Murata also carried out experi-
ments to assess the dependence of the their hybrid algorithm to parameters such
as the number of neighbours examined in the local search, the number of non-
dominated solutions copied from the secondary population and the multipliers
used for the normalisation of objectives. From their results, they concluded that
the algorithm was sensitive to these parameters.

The above multiobjective genetic local search algorithm was extended to a
multiobjective cellular genetic local search algorithm [88]. In a cellular algorithm,
each individual resides in a cell of a spatially structured space. A different weight
vector is assigned to each cell so that for a k-objective problem the space is struc-
tured in a k-objective weight space. This cellular structure used by Murata et
al. is similar to the concept used in the Pareto archived evolutionary strategy
(PAES) of Knowles and Corne for diversity and niching [78]. The PAES algo-
rithm uses an adaptive grid that divides the objective space to evaluate how
much crowded the region in which each solution lies is (see [78] for full details).
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Later, Murata et al. proposed a proportional weight specification method and
incorporated it into the multiobjective genetic algorithm and into the cellular
variant in order to examine the effect of this new mechanism on the perfor-
mance of these algorithms in multiobjective flowshop scheduling problems [89].
The weights were generated systematically (not randomly as before) in order to
allocate cells of uniformly distributed weight vectors. The distance between cells
with weights w = (w1, w2, . . . , wk) and v = (v1, v2, . . . , vk) is measured with the
Manhattan distance given by (7) and the neighbourhood of a cell is given by (8),
where D is a predefined distance that is set as a parameter of the algorithm.

distance (w, v) =
k∑

i=1

|wi − vi| . (7)

neighbourhood(w) = {v|distance(w, v) ≤ D} . (8)

To generate an individual in a cell, two parents are selected from its neigh-
bourhood. The fitness during the selection of the neighbours is calculated using
the weighted vector of the cell to which the individual is being generated. The
cellular structure restricts the genetic operations to be performed on individuals
that are not too far away. Murata et al. applied their algorithm to flowshop
scheduling problems with two and three objectives. They compared their new
cellular multiobjective genetic algorithm against their previous multiobjective
genetic algorithm with random weights and with weights generated by the new
proposed mechanism. They observed that the new weights generating method
improved the performance of the algorithms and also found that the level of re-
striction in the genetic operations (D, the distance for neighbouring solutions) in
the cellular approach had an effect on the performance of the algorithm. Later,
Ishibuchi et al. modified the multiobjective genetic local search algorithm by
selecting only good individuals for applying the local search phase instead of
applying it to all the offspring [71]. In this new version of the algorithm, the
authors addressed the two difficulties that they found when hybridising genetic
algorithms with local search: how to specify the objective function and how to
establish the balance between local search and genetic search. The two modifi-
cations proposed in the new version of their algorithm were:

1. Only a few good offspring are selected for applying local search.
2. The local search direction is specified according to the localization of the

solution in the objective space.

Basically, they modified the step for selecting individuals for local search.
A random vector of weights is generated and then, using tournament selection
with replacement, one solution from the population is selected and added to the
local search pool. Once this pool is complete, a number NLS of solutions are se-
lected from this set for applying local search. The local search direction of each
solution is specified by the weighted vector used in the selection of that solu-
tion when constructing the local search pool. The new population of solutions is
composed by the improved NLS solutions and the other non-selected solutions in
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the local search pool. Ishibuchi et al. compared this version with their previous
ones: without local search and applying local search to all offspring and found
that the new version was more effective. They also compared the new proposed
version against the strenght Pareto evolutionary algorithm (SPEA) [126] and
the improved non-dominated sorting genetic algorithm (NSGA-II)[51]. Ishibuchi
et al. observed that their modified algorithm was competitive with these two
contemporary algorithms in terms of solution quality. In terms of computation
time efficiency, their algorithm was better. They also analysed the effect of the
number of solutions selected for local search on the performance of the algorithm
and they noted that it was necessary to tune this parameter in order to obtain
better results. In summary, the authors proposed the specification of an appro-
priate search direction for the local search by using tournament selection and
the application of local search to only good solutions as additional strategies for
establishing a good balance between local search and genetic search.

In [72] Ishibuchi et al. carried out additional experiments to assess a hybrid
version of the SPEA that incorporated the same local search components as in
their multiobjective genetic local search algorithm. In general, they concluded
that the appropriate balance between local search and genetic search depends
on two aspects: the algorithm and the available computational time. Recently,
Ishibuchi et al. presented an updated version of their previous work where they
included a hybrid version of the NSGA-II that also incorporates their local search
components [73]. In a related paper, Ishibuchi and Shibata investigated the use
of mating restriction in the SPEA and NSGA-II algorithms as a way to limit
the crossover between solutions in the flowshop problem [70]. They found that,
selecting dissimilar parents improved the search ability of these algorithms in
small problems while selecting similar parents was beneficial in larger instances.
They also observed that, although mating restriction seems to be beneficial, this
depends not only on the problem size but also on the algorithm.

It can be noted that, since the implementation of the multiobjective genetic
algorithm proposed in [91], additional strategies have been incorporated to cre-
ate different versions of the algorithm and improve the results on multiobjective
flowshop scheduling problems. It is noted that, the suggested modifications range
from the adequate selection of genetic operators to fine-tuning the balance be-
tween local search and genetic search. In general, those papers have illustrated
the importance of local search for the good performance of these algorithms
when tackling multiobjective flowshop scheduling problems.

4.5 A Hybrid Multiobjective Evolutionary Algorithm

A hybrid evolutionary algorithm was proposed for the flowshop scheduling prob-
lem with two objectives (minimisation of makespan and total tardiness) by Talbi
et al. [109]. The hybrid applied a genetic algorithm to obtain an approximation
to the Pareto front and then employed local search to the obtained front. So,
once a non-dominated front is obtained using the genetic algorithm, the local
search explores neighbours of the solutions in this front and updates the set



16

accordingly until no new non-dominated neighbours are found. The neighbour-
hood exploration was carried out using the mutation operator of the genetic
algorithm. The crossover and mutation operators used were those employed in
[91]. An interesting aspect of the study presented by Talbi et al. is that the
authors investigated the following selection criteria:

1. The combination of objectives using weights.
2. The parallel selection strategy used in the VEGA algorithm [104].
3. The selection strategy used in the NSGA algorithm [106].
4. A non-dominated sorting selection.
5. A weighted average ranking, where individuals are ranked according to the

different objectives separately.
6. An elitist method, where a population of non-dominated individuals is main-

tained and it participates in the selection for reproduction.

Talbi et al. observed in their experiments that elitist selection was the most
beneficial and that the non-Pareto based selection schemes (combination using
weights and weighted average ranking) seemed not to be suitable for the problem.
They also found that, tuning the elitism pressure was important because high
pressure intensifies the exploitation tendency of the good solutions while low
elitism pressure favours exploration of new regions in the search space. Another
interesting aspect of the study by Talbi et al. is that they compared three ways of
fitness sharing: genotypic sharing, phenotypic sharing and a combined approach.
In the solution space (genotypic sharing) the distance between two individuals x
and y is measured according to the distance between the schedules (represented
by a permutation) given by (9).

dist1(x, y) = |{(i, j) ∈ J × J |i precedes j in the solution x

and j precedes i in the solution y }| . (9)

In the two-objective space (phenotypic sharing) the distance between two
individuals x and y was given by (10).

dist2(x, y) = |f1(x) − f1(y)| + |f2(x) − f2(y)| . (10)

The third approach combined the distances in both spaces, where γ1 and γ2
are parameters set to 4.0 and 1.0 respectively:

sh(x, y) = 1 − dist1(x, y)
γ1

if dist1(x, y) < γ1 , dist2(x, y) ≥ γ2 . (11)

sh(x, y) = 1 − dist2(x, y)
γ2

if dist1(x, y) ≥ γ1 , dist2(x, y) < γ2 . (12)

sh(x, y) = 1− dist1(x, y)dist2(x, y)
γ1γ2

if dist1(x, y) < γ1 , dist2(x, y) < γ2 . (13)
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Talbi et al. noted that when their algorithm used phenotypic sharing, it
produced closer approximations to the Pareto front. But when using genotypic
sharing, solutions were found in some areas that the other variant did not cover.
They decided to use the combined sharing approach in their final implementation
because it appeared to outperform the other two methods by helping to obtain
closer approximations to the Pareto front and a better coverage of this front. In
their experiments, they also observed that their hybrid evolutionary algorithm
performed better as the problem size increased.

4.6 Dynamic Mutation Pareto Genetic Algorithm

Basseur et al. presented a method called dynamic mutation Pareto genetic al-
gorithm and applied it to the flowshop scheduling problem with two objectives:
minimisation of total makespan and minimisation of total tardiness [7]. The dis-
tinctive feature of their algorithm is that it uses different genetic operators in
a simultaneous and adaptive manner during the search. In their approach, sev-
eral mutation operators are given the same probability at the beginning of the
search and then, they are chosen dynamically during the search. The individ-
uals are evaluated before and after the application of the mutation operators.
Then, for each mutation operator, an average growth value is calculated and
used to adjust the probability assigned to each mutation operator. After apply-
ing a mutation operator M , a solution M(x) is generated from a solution x.
The progress of a mutation operator M applied to a solution x is 1 if the solu-
tion x is dominated by M(x), 0 if x dominates M(x) and 0.5 otherwise. Then,
the average Progress(M(i)) is calculated by summing all the progresses of the
mutation operator M and dividing it by the number of solutions to which the
mutation operator was applied. The probability of each mutation operator is
adjusted using (14) where η is the number of mutation operators and δ indicates
the minimal ratio value permitted for each operator. That is, δ is a parameter
that permits to keep each operator even if the progress of the operator is too
poor.

PM(i) =
Progress(M(i))∑η

j=1 Progress(M(j))
× (1 − η × δ) + δ . (14)

In their implementation, Basseur et al. used two mutation operators: an ex-
change (swap) between jobs and the insertion operator, which is the same as
the shift change operator used in [91]. They used fitness sharing with a combi-
nation of the distance in the solution and decision spaces (see also [109]). Their
hybrid consisted of a genetic algorithm followed by a memetic algorithm applied
only during a few generations due to its more expensive computational cost.
They found improvements over the previous results reported in [109] in both the
proximity to the Pareto front and the diversity of the solutions found.
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4.7 A Semi-Exact Population Heuristic

Gandibleux et al. proposed the idea of first generating the set of supported (non-
dominated solutions produced using weighted vectors) solutions using an exact or
heuristic method and then, use these solutions to improve the front by applying
a population heuristic [62]. The supported solutions are considered to hold good
genetic information. These solutions help to achieve a faster convergence to the
Pareto front and also to maintain the diversity of the population. They applied
their concept to two bi-criteria combinatorial optimisation problems. One was
the single machine scheduling problem (namely permutation scheduling) with
two objectives: the minimisation of the total flow time and the minimisation
of the maximum tardiness. The other problem was the bi-ojective knapsack
problem. The main features of the population heuristic that they used in the
second phase of their approach are:

– All solutions ranked one with the non-domination ranking mechanism are
copied to the next generation.

– During selection, some good solutions with respect to each objective are
copied to the new population as in the VEGA algorithm.

– Among the solutions not selected as above, tournament selection is applied
based on dominance with sharing.

– In the initial population, besides the solutions generated randomly, some
good solutions with respect to each objective are computed and added to
the initial population.

– Local search is applied to all elite individuals except to those that already
received local search in the previous generations.

Gandibleux et al. noted that seeding elite solutions permitted the propaga-
tion of the superior genetic information to other individuals during the evolution
process. Also, when all supported solutions were used to seed the search, the com-
putation time and the number of generations needed was reduced considerably.
They suggested that this two-phase method or semi-exact approach can be very
useful in problems for which efficient methods exist to solve the single-objective
version of the problem or for problems for which efficient greedy algorithms exist.

4.8 Implementations of the Non-Dominated Sorting Genetic
Algorithm

Bagchi applied the original NSGA and also an extension of that algorithm to
multiobjective flowshop, jobshop and openshop scheduling problems in [4, 5].
The extended approach, called the elitist non-dominated sorting genetic algo-
rithm (ENGA), was an elitist version of the original algorithm in which the
selection mechanism was modified to consider the parents and the offspring to
form the next generation. Bagchi observed that the non-dominated sorting mech-
anism augmented with elitism was capable of improving the speed of convergence
towards Pareto optimal solutions.
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Brizuela et al. also applied the NSGA to the flowshop scheduling problem
with three objectives: minimisation of the makespan, minimisation of the mean
flow time and minimisation of mean tardiness [13]. They studied the effect of
the genetic operators used on the dominance properties of the solutions gener-
ated. They compared three mutation operators and observed an influence of the
operator used on the quality of the non-dominated solutions generated. They
suggested that this effect can be translated into a concept of non-dominated
local search. Here, the neighbourhood search operators can be adapted during
the search according to their influence in the quality of non-dominated solutions
produced. A second set of experiments was carried out using three crossover
operators. The aim of these experiments was to determine whether or not the
distance between parents in the solution space had an influence in the domi-
nance relation between the parents and the offspring after the crossover. They
observed that a combination of the genetic operators used in [91] performed the
best. They also used two distance measures, one in the solution space and the
other in the objective space. For measuring the distance between two solutions x
and y in the solution space, a matrix n x n is associated with each permutation
of the n jobs representing a schedule. Each element of the matrix aij = 1 if job
j is scheduled before job i and aij = 0 otherwise. Then, the normalised domain
distance between two individuals x and y is given by (15) where ⊕ represents the
exclusive-or logical operation and n(n − 1) is the maximum number of different
elements between two given associated matrices:

dn(x, y) =

∑n
j=1

∑n
i=1 aij(x) ⊕ aij(y)
n(n − 1)

. (15)

The Euclidean distance was used to measure the difference between individ-
uals in the objective space. The objective function distance (ofd) between two
solutions x and y with k objectives is given by (16).

ofd(x, y) =

√√√√
k∑

j=1

(fj(x) − fj(y))2 . (16)

Brizuela et al. applied the selected operators to the NSGA and outperformed
the results obtained by the modified version of [4]. They noted that their ex-
periments offered an insight into how non-dominated local search can be per-
formed. This is because different operators produce different results with respect
to non-dominance and this could be a first step in an analysis of the landscape
in multiobjective combinatorial optimisation problems. A recent related study
by Brizuela and Aceves revealed that an order-based crossover operator outper-
formed the other operators tested when implemented in the NSGA algorithm
and applied to flowshop scheduling problems with three criteria: makespan, mean
flow time and mean tardiness [12].
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5 Timetabling Problems

5.1 Introduction

Timetabling is the activity of scheduling a set of meetings or events in such a way
that certain requirements and constraints are satisfied (see [49]). A common fea-
ture of many real world timetabling problems is that there are a certain number
of constraints (soft and hard). In timetabling, the allocation of resources other
than people and locations for the meetings is usually not considered to be a part
of the problem. In many timetabling problems, the meetings to be scheduled are
already specified and the problem is to schedule them into the available timeslots
and locations. However, in some timetabling problems the creation of meetings
(relationships between the entities such as teacher-class or exam-invigilator) is
also part of the timetabling activity. There has been significant recent research
in the area (eg. see [17, 18, 25, 32]). Timetabling problems include: educational
timetabling (university and school timetabling), sports timetabling, employee
timetabling, transport timetabling and others such as conference timetabling.
This Sect. concentrates on educational timetabling, which is a particularly well
investigated problem.

5.2 Educational Timetabling Problems

An effective timetabling in academic institutions is crucial for the satisfaction
of educational requirements and the efficient utilisation of human and space
resources [97]. Educational timetabling problems have many variants including
the school timetabling problem (class-teacher timetabling), the university course
timetabling problem and the university examination timetabling problem. Many
models and formulations have been proposed to describe educational timetabling
problems. This Sect. presents a brief description of some educational timetabling
problems. For a more detailed analysis refer to [38, 46, 49, 102].

School timetabling. In general terms, this problem usually refers to as-
signing timeslots and locations so that meetings between teachers and classes
can take place (eg. see [6]). The main two features of this type of problem are: 1)
the students are grouped in fixed classes and, 2) the meetings and the number of
them are predefined, i.e. the curricula of each class is usually known and fixed.
Teachers are usually pre-assigned to courses and the number of sessions of each
course that the classes have to take is also known. The groups of students are
not necessarily disjoint but in general most of them are.

University course timetabling. This activity refers to the assignment of
timeslots and locations so that meetings between lecturers and students can
take place (eg. see [37, 10]). University students usually have a range of optional
courses and therefore, they are not pre-assigned to meetings. The assignment of
locations for the lectures may also be considered to be a part of the problem
because the size and requirements of each group of students varies more than in
the school timetabling problem.
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University examination timetabling. This activity refers to the assign-
ment of timeslots and locations so that students can take exams (eg. see [35, 36,
24]). There are some distinct differences between university course timetabling
and university examination timetabling. This difference can be illustrated by
noting that it is common to assign several exams to one (large) room at the
same time. This is clearly nor possible for course timetabling.

5.3 Feasibility and Timetable Quality

The feasibility of solutions in the above timetabling problems varies according
to the particular instance. Different institutions have very different ideas about
what constitutes a good timetable (eg. see [24]). In general, hard constraints
must be satisfied. For example, no person (teacher, lecturer or student) can be
present in two meetings at the same time. Soft constraints are those which are
desirable but not essential. Examples include spread, compactness and balance
of the timetable, free timeslots between meetings, meetings-free days, similar-
ity with previous timetables, timetable flexibility, etc. Blakesley et al. studied
the problem of constructing educational timetables from a very interesting per-
spective: the student’s needs [10]. They noted that constructing timetables that
satisfy faculty and student preferences may have an unanticipated negative ef-
fect on the students needs because the availability of courses is reduced and the
course completion time could be enlarged as a consequence. The number and
variety of constraints (hard and soft) existing in educational timetabling prob-
lems makes it almost impossible to list all of them. For details of soft constraints
across all broad classes of educational timetabling problems see [6, 10, 24, 36, 37,
49, 102].

6 Multiobjective Approaches for Educational
Timetabling

6.1 Introduction

Although it is generally acknowledged that multiple criteria exist to evaluate so-
lutions in educational timetabling problems, few multiobjective metaheuristics
have been applied to this class of problems. It has been pointed out that in the
real-world, decision-makers prefer to have a selection of possible timetables from
which to choose the most appropriate one [35]. However, the vast majority of
approaches use a weighted sum of penalties for evaluating the fitness of solutions
and only one timetable (the one with the lowest total penalty) is produced as
a result. The goal is usually to attempt to obtain a lower penalty according to
criteria defined in the algorithm. But the workability of a timetable depends on
how complete and realistic these criteria are. In practical problems, there are
three main reasons for the imperfection of timetables: inaccurate prediction of
student enrollment, mistakes in the events list or resources availability, and in-
adequate selection of weights for the soft and hard constraints [97]. Some papers
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have reported on the application of strategies for producing various alterna-
tive solutions. For example, the combination of graph colouring techniques with
heuristics was one of the first approaches that were used to produce several (not
simultaneously) reasonable timetables [119]. This is overviewed in [22].

6.2 Multi-Phased Approaches

Thompson and Dowsland implemented a multi-phased simulated annealing al-
gorithm for timetabling examinations [111, 112]. The authors modelled the prob-
lem as a graph colouring problem and the neighbourhood structure used was the
change of colour in a single vertex that corresponds to moving an exam from
one timeslot to another. In their approach, the first phase is used to tackle the
first objective: the satisfaction of all the hard constraints while the second phase
is used to optimise the secondary objective: the minimisation of soft constraints
violations. Since the decisions made in previous phases have an influence in the
solutions that can be reached in later phases (the solution space may be discon-
nected), their multi-phased simulated annealing algorithm permits the alteration
of decisions made in earlier phases as long as the quality of the solutions with
respect to earlier objectives does not deteriorate. In our opinion, the papers by
Thompson and Dowsland are among the best reported studies on using sim-
ulated annealing for timetabling problems and among the few that approach
these problems as multicriteria optimisation problems. A similar study of the
application of a multi-phased approach to examination timetabling and practi-
cal lab sessions timetabling was reported in [53]. In that investigation, the author
pointed out that the decision on which objectives or constraints are to be tackled
in each phase depends not only on the importance of the objective but also on
the difficulty to achieve it and on its relation with the neighbourhood structure
defined (this has also been noted by other researchers [85]).

Ideally, when treating objectives in phases, one objective has to be tackled in
each phase in order to eliminate the use of weights. However, this is not always
possible in timetabling problems because the number of different objectives can
be very large. Therefore, like in the multi-phased approaches described above,
the constraints have to be grouped and each group is tackled in each stage of
the algorithm. This originates the problem of still having to determine weights
to reflect the relative importance of the constraints in the same group. Another
drawback of multi-phased methods, is that the solution obtained in an early
phase is usually fixed and this may lead to poor solutions in later phases because
the solution space may be drastically reduced. A strategy to avoid this can be
the implementation of backtracking mechanisms as proposed in [111].

Another multi-phased approach was described in [3] for the course timetabling
problem in Spanish universities. The first phase is an interactive process in which
students select their courses and the second phase uses a tabu search algorithm
for constructing the timetable. In the assignment phase, the following criteria
were used to measure the quality of timetables: students course selections must
be respected (this is the only hard constraint imposed), section enrollments
should be balanced, sections maximum capacities must not be exceeded, clashes
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in students timetables should be avoided, students timetables should be as good
as possible (measured in terms of number of lectures per day, number and length
of holes in the timetable and moves between buildings), student language prefer-
ences should be respected. The construction of the timetables is divided into two
steps. In the first step, the best set of timetables is constructed for each student
according to their selection of courses and without taking into consideration the
balance of the course sections. In the second step, a global timetable is con-
structed by combining the timetables of all students to obtain balanced section
enrollments and minimise the decrease of the quality of each student timetable.

6.3 Multicriteria Decision-making Techniques

Burke et al. approached the multicriteria examination timetabling problem by
grouping nine different constraints into three categories: 1) room capacity, 2)
proximity of exams and 3) time and order of exams (see [16] for full details).
The nine considered criteria are incommensurable and partially or totally con-
flicting (at least in their problems). Only one hard constraint was considered in
their problems: that conflicting exams must be scheduled in different timeslots.
As in the multi-phased approaches described in the previous Sect., the approach
by Burke et al. also requires the setting of weights for expressing the relative
importance of the different criteria within the same group. They used compro-
mise programming as the basis for their solution method [124]. In compromise
programming, the strategy is to find compromise solutions that are close to the
ideal point. An ideal point is defined in the criteria space as the vector containing
the best possible value for each criterion. Their algorithm uses two phases. In
the first one, timetables of high quality are constructed using a graph-colouring
heuristic. The second phase attempts to improve the timetables by using a hill-
climber and a heavy mutation operator. In each step of the preference space
search, multiple applications of the hill-climber are followed by one application
of the mutation operator until the distance between the solution and the ideal
point has not decreased for a predefined number of iterations. One final solution
is chosen from the set of obtained timetables. This is the one with the minimum
distance from the ideal point. The authors noted in their experiments that the
weights for each criterion, and some parameters of the function to measure the
distance from each solution to the ideal point, had a significant influence on the
quality of the solutions obtained. This permits the decision-makers to express
their preferences before the search. Petrovic and Bykov proposed an approach
based on the specification of trajectories in the objective space to tackle mul-
ticriteria examination timatabling problems [95]. In their method, the decision
makers express their preferences by specifying a point in the k-objective space.
Then, a line is drawn between the image of a randomly generated solution and
the reference point. A local search is conducted, following the defined trajectory
in order to find a solution that is as good as (or better than) the reference solu-
tion. Weights are dynamically varied during the search in order to maintain the
new solutions close to the defined trajectory. Petrovic and Bykov suggested that
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their method is more transparent to the decison-makers because it allows them
to express their preferences without the need for setting weights.

6.4 Multiobjective Evolutionary Algorithms

One of the few applications reported in the literature of Pareto-based genetic
algorithms to timetabling problems is the one by Carrasco and Pato [34]. In
that paper, the authors tackled a bi-objective school timetabling problem with a
modified version of the NSGA described in [106]. The two conflicting objectives
were the minimisation of soft constraint violation from two competitive perspec-
tives: teachers and classes. Penalties were assigned to the violation of constraints
and the authors observed that the algorithm was very sensitive to the selection
of these penalties. Since the NSGA uses fitness sharing, a measure of distance
between two timetables xi and xj is required. Carrasco and Pato used (17) for
this purpose.

d(xi, xj) =
∑L

k=1 t(k, xi, xj)
L

. (17)

where L is the total number of lessons and t(k, xi, xj) equals 1 if the lesson
k occupies the same period in both solutions xi and xj and 0 otherwise.

They used a direct representation in which a bi-dimensional matrix repre-
sents the timetable. Each row represents one room and each column represents
one timeslot. Then, each cell in the matrix contains the lesson that will be taught
in the given room at the given period. The creation of meetings (teacher-lesson-
class) is carried out before the construction of the timetable. A constructive
heuristic that starts scheduling the most difficult lessons first (in terms of les-
son duration and the preferences of teachers and classes) was used to initialise
the population. An elitist secondary population, composed of some of the non-
dominated solutions from the main population was used. Specialised crossover
and mutation operators were designed for the chromosome representation de-
scribed above. The crossover operator was specially designed to create two off-
spring, one teacher-oriented and the other class-oriented. That is, their specific
crossover operator attempts to produce elite timetables with respect to each of
the objectives. A repair operator was employed to fix the overlaps that are nor-
mally created by the crossover. The mutation operator consisted of removing a
number of lessons from the timetable. Then, these lessons are re-scheduled so
that the total penalisation is minimised. Although the authors mentioned that
several experiments were carried out to assess the effect of the fitness sharing
mechanism and the secondary population in the genetic algorithm, a detailed
discussion of these effects was not provided. However, they observed that the
use of the secondary population was helpful and the algorithm found better
timetables than those constructed manually.

Another application of a Pareto-based genetic algorithm was reported by
Paquete and Fonseca [94] where the authors implemented a multiobjective evo-
lutionary algorithm [59] for the examination timetabling problem. In that paper,
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the authors used a direct chromosome encoding and a mutation operator with
an independent mutation probability for each gene in the chromosome (no re-
combination operator was implemented). Each gene in the encoding represents
an exam. The mutation probability for each gene is calculated according to the
number of timeslots available for each exam and the degree of involvement of that
exam in the violation of constraints. Their experiments sought to compare three
aspects: Pareto ranking against linear ranking, independent mutation against
single-position mutation and different levels of mutation bias. They reported
that: the use of Pareto ranking produced better performance in the algorithm,
no difference was observed between the two mutation strategies and although a
difference was observed between groups of mutation rates, no more details were
provided. One interesting aspect in the study by Paquete and Fonseca, is that
experiments were carried out considering the execution time as an additional ob-
jective and the independent mutation operator produced better performance in
these experiments. Another interesting observation made by Paquete and Fon-
seca, was that each objective handling technique performed better in its own
case. That is, Pareto ranking provided better coverage of the objective space
while linear aggregation was more effective in minimising the total number of
constraint violations across the runs. This may represent an important clue for
the implementation of non-dominated local search (see Sect. 4.8) in timetabling
problems.

7 Multiobjective Approaches for Personnel Scheduling

Personnel scheduling refers to the construction of shift patterns for employ-
ees and it is also known as rostering or employee timetabling [120]. Personnel
scheduling problems are multicriteria problems that have certain similarities (but
also distinct differences) with educational timetabling problems. They also in-
volve the construction of a schedule that satisfies as much as possible a number
of diverse criteria. The criteria are also usually incommensurable and in conflict
as they represent the interests of employees and employers and also working reg-
ulations. Like in educational timetabling, few multiobjective metaheuristics have
been applied to personnel scheduling problems. This Sect. attempts to describe,
in a brief manner, some of these approaches.

Jaszkiewicz applied the Pareto simulated annealing algorithm to a multiob-
jective nurse scheduling problem in Polish hospitals [74]. This algorithm is a
population-based extension of simulated annealing proposed for multiobjective
combinatorial optimisation problems [48]. The population of solutions explore
their neighbourhood similarly to the classical simulated annealing, but weights
for each objective are tuned in each iteration in order to assure a tendency to
cover the trade-off surface. The weights for each solution are adjusted in order
to increase the probability of moving away from its closest neighbourhood in a
similar way as in the multiobjective tabu search algorithm of Hansen [66]. In
the nurse scheduling problem tackled by Jaszkiewicz in [74], five objectives were
identified, four minimisation objectives and one maximisation objective. One
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initial solution was generated by a constraint-based programming technique and
multiple copies of this solution formed the initial population. Three types of
neighbourhood structures were defined. In each iteration, one of these structures
was selected at random to generate the candidate solutions. Only feasible so-
lutions were explored and if the chosen move violated any constraint another
move was tried. The results were reported on a small test problem and the goal
of producing better schedules that those generated manually was achieved.

A similar multicriteria approach to the one in [16] also using compromise
programming was presented for the nurse scheduling problem in [19]. The main
algorithm (based on tabu search) constructs a feasible schedule and iterative
improvement of this initial schedule is tried by moving shifts between nurses and
never accepting infeasible solutions. The ideal and anti-ideal points are estimated
in order to make the mapping from the criteria space onto the preference space.
Each personal schedule is considered separately and the sum of distances is used
to measure the schedule fitness.

El Moudani et al. described a bi-criterion approach for the airline crew roster-
ing problem [57]. This airline crew rostering problem refers to assigning crew staff
to a set of pairings covering all the scheduled flights. A pairing is a sequence of
flights that starts and ends at the same airline base while meeting all relevant le-
gal regulations. In this problem, hard constraints include the regulations of Civil
Aviation and the airline’s internal agreements. Soft constraints include: internal
company rules, union agreements, office duties, holidays, assignment preferences
and others. The authors tackled the airline crew rostering problem from a bi-
criterion perspective in which the first goal was to minimise airline operations
cost and the second goal was to maximise the crew staff overall degree of satisfac-
tion. The initial population of solutions was generated using a greedy heuristic
specially designed to attempt the maximisation of the overall degree of satis-
faction regardless of the operation costs. After this initial population is created,
genetic operators are applied to generate new solutions with reduced operations
cost at the expense of perhaps reduction on the degree of crew satisfaction. A
direct chromosome representation was used, in which each gene represents the
pairing and the allele represents the crew member that has been assigned to that
pairing. Three specific domain operators were implemented: crossover, mutation
and inversion. A local search heuristic was designed to restrict the search space
of the mutation and the inversion operators in order to speed-up the discovery
of promising solutions. The authors reported that the application of the greedy
heuristic to initialise the population required a very short computation time.
However, in the subsequent application of the genetic operators, these operators
did not show equivalent performance. They noted that the crossover operator
was very time consuming (mainly because the set of constraints to be checked
was large) and it did not contribute too much to produce new promising so-
lutions. On the other hand, the mutation and inversion operators appeared to
be more efficient in the generation of new promising solutions with relatively
moderate computing times.
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8 Other Relevant Research

8.1 Introduction

This Sect. discusses some of the research recently reported in the literature and
that seems to be relevant for future research on multiobjective combinatorial
optimisation in general and multiobjective scheduling problems in particular.
One aspect that has been recently investigated, is the complexity of the landscape
in multiobjective combinatorial optimisation problems. Another aspect is the
effect that the evaluation method, used to discriminate between solutions during
the search, has on the performance of the algorithm. The adaptation of operators
during the search is another interesting issue discussed here.

8.2 Complexity of the Landscape

The paper by Wright and Marett was one of the first attempts to assess the
performance of local search algorithms according to the complexity of the land-
scape in multiobjective problems [122]. To study the shape of the landscape,
they measured the correlation between the sum of objectives’ improvements and
the sum of objectives’ detriments when reaching local optima in a steepest de-
scent run. When this correlation is close to +1, there is some conflict between
the objectives. When the correlation is close to 0, the objectives are dissimilar
or not affecting each other. When the correlation is close to −1, the objectives
cooperate or reinforce each other. In multiobjective optimisation problems, some
objectives may reinforce each other, conflict or be completely uncorrelated. Also,
the improvement and detriment of each objective may be different and not con-
stant during the search, not only in their value, but also in the frequency in which
they change. These two aspects are related to the properties of the landscape
and by studying them, an idea of the complexity of multiobjective combinatorial
optimisation problems can be obtained. Another contribution in this direction
is the study carried out by Knowles and Corne to analyse the landscape of the
multiobjective quadratic assignment problem (mQAP) [80]. They proposed some
metrics to measure the correlation between nearby optima in the mQAP. Then,
they proposed to use this information to decide which hybrid strategy (incorpo-
rating local search) would be more appropriate to approach the Pareto front: 1)
to approach the Pareto front and then spread around from there, 2) start the
search repeteadly from random solutions or, 3) use a gradual approach towards
the Pareto front from all directions in parallel.

8.3 Effect of the Evaluation Method

Another important aspect that has been investigated by some researchers, is the
effect of the evaluation method used to discriminate between solutions during
the search in Pareto optimisation. The use of subcost guided search was pro-
posed by Wright to deal with compound-objective timetabling problems [121].
In that approach, an improvement of a subcost (objective) is preferred even
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if the overall cost or solution fitness is not improved at all or it is worsened.
The hope is that the detriment suffered will be repaired later on in the process.
This is because the improvement in one aspect of the solution (a subcost), al-
low us to conduct a kind of guided diversification towards promising areas of
the solution space. Wright carried out experiments with simulated annealing
and threshold acceptance and found that the use of subcost guided search im-
proved the performance of both algorithms. Kokolo et al. proposed the concept
of α-dominance, which is a relaxed dominance relation [81]. In α-dominance, a
small detriment in one or more of the objectives is permitted if an attractive
improvement in the other objective(s) is achieved. The hope is that by accept-
ing α-dominating solutions, the search can be widened and the connectedness of
the search space can be improved because α-dominating solutions may serve to
reach more non-dominated solutions. Burke and Landa Silva applied this con-
cept of relaxed dominance to the multiobjective optimisation of space allocation
problems in academic institutions [26, 29]. They compared the performance of
an evolutionary annealing algorithm and the PAES approach with respect to the
form of dominance used. They found that when using the relaxed dominance,
both algorithms obtained better non-dominated fronts. Additional experiments
showed that this behaviour was not observed in the algorithms when the hard
constraints in the test problems where treated as soft constraints. That is, when
the conditions of feasibility were relaxed so that it was easier to visit feasible
solutions. Laumanns et al. proposed the concept of ε-dominance (ε-dominance
uses the same concept as the α-dominance proposed earlier by Kokolo et al., i.e
a relaxed from of dominance) [82]. They suggested this form of dominance to
implement better archiving strategies that overcomes the difficulty of multiob-
jective evolutionary algorithms have in converging towards the optimal Pareto
front and maintain a wide diversity in the population at the same time.

8.4 Use of Adaptive Operators

Applying different operators or heuristics at different stages of the search, or
according to the localisation of the solutions with respect to the Pareto optimal
front, may also be beneficial. For example, Salman et al. proposed an approach
based on a co-operative team of simple heuristics that generate non-dominated
solutions for the multiple knapsack problem in a short computation time [101].
The team of heuristics co-operate in such a way that the solutions generated by
one heuristic can be improved by another one, or the adequate team of heuristics
can be formed to generate solutions for the given problem. Another option is to
implement a set of local searchers that attempt to achieve self-improvement
and ask for the help of other searchers in the population (perhaps by mating
or sharing information) when they cannot achieve further improvement [27]. In
this way, the interactions between individuals are minimal and they are carried
out in an asynchronous manner. Therefore, the need for niching and fitness
sharing strategies to maintain diversity is also reduced. In another example of
co-operating heuristics, Burke et al. investigated hyperheuristics (heuristics to
select heuristics) to solve two different timetabling problems (course timetabling
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and nurse rostering [21]. A hyperheuristic as a strategy that is able to choose
between a set of so-called low level heuristics [20]. This selection is based solely
on performance indicators and not in the knowledge of the problem. Then, the
hyperheuristic decides which heuristic to call at each moment during the search.
The application of hyperheuristic approaches for Pareto optimisation has been
proposed in [28].

9 Final Remarks

It is not within the scope of this paper to present a comprehensive review of
multiobjective scheduling problems. It must be stressed that, in particular for
machine scheduling problems, there exist in the literature very complete studies
on the multiobjective optimisation of these problems (eg. [4, 113]). This paper is
focused on the application of modern multiobjective metaheuristics for the opti-
misation of some types of multiobjective scheduling problems including machine
scheduling, educational timetabling and personnel scheduling. The following con-
cluding remarks can be made:

Problem formulation. The conditions of feasibility and the criteria used to
measure the quality of solutions in multiobjective scheduling problems vary enor-
mously between the different problem classes (machine scheduling, educational
timetabling and personnel scheduling) and between particular instances. Ma-
chine scheduling problems (considering the single-objective case too) are among
the scheduling problems for which more benchmark theoretical models and test
problems exist. Contrary to this, educational timetabling and personnel schedul-
ing problems lack a very large set of widely accepted benchmark models and test
problems. In multiobjective machine scheduling problems several criteria have
been clearly identified (makespan, tardiness, earliness, lateness, etc.). In educa-
tional timetabling and personnel scheduling problems, the criteria that define
the multiobjective nature of the problem vary largely between instances.

The application of modern multiobjective metaheuristics. The ap-
plication of these techniques, and in particular multiobjective evolutionary algo-
rithms, to multicriteria scheduling problems is scarce. This is particularly true
for educational timetabling and personnel scheduling. Multiobjective machine
scheduling problems (and in particular multiobjective flowshop scheduling) are
the problems for which more reports on the application of modern multiobjective
metaheuristics exist in the literature. Within educational timetabling problems,
the variant that has received more attention from the multiobjective perspective
appears to be examination timetabling.

Useful strategies. Several strategies can be identified in the applications
considered in this paper. The importance of local search and problem domain
knowledge is evident for obtaining good results. Even in recent approaches,
local search continues to play an important role, particularly when tackling
educational timetabling and personnel scheduling problems. Weighted aggre-
gating functions are still widely used in many approaches and they appear to
be adequate when problems are highly constrained. Graph colouring heuris-
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tics are widely used in methods for educational timetabling problems and they
can be implemented as operators in more elaborated approaches. In educational
timetabling and personnel scheduling problems, due to the existence of lots of
hard constraints, accepting infeasible solutions during the search has been help-
ful to improve the connectedness of the solution space and to widen the search
in a number of applications. Also, the use of elite solutions according to each of
the criteria has been helpful in some recent approaches.

Problem domain knowledge. In the few reported implementations of mul-
tiobjective evolutionary algorithms to multicriteria scheduling problems, several
components such as representation schemes, initialisation strategies, genetic op-
erators and repairing mechanisms need to be specially designed using problem
domain knowledge. Also, in many approaches, only mutation operators are used
within evolutionary algorithms for scheduling problems. It is often the case that
these operators are in fact, very elaborate heuristics designed to bias the search
towards promising regions.

Some promising research directions in the field of multiobjective scheduluing
and timetabling are proposed below.

A. Exploit the experiences obtained from research in some of these prob-
lems (such as multiobjective flowshop) to produce successful approaches in other
multiobjective scheduling problems. For example, the use of weighted vectors to
specify search directions towards the Pareto optimal set, the tuning of local
search, the selection of adequate genetic operators, the balance between local
search and genetic search in hybrid approaches, the use of elitist strategies,
the study of the impact of selection mechanisms and diversity measures on the
performance of the algorithm, the adaptation of genetic operators probabilities
during the search, the use of exact methods or heuristics to quickly approximate
the Pareto optimal front followed by heuristics designed to improve the quality
of this approximation, etc.

B. Given the importance of local search in this context, it would be interest-
ing to put more effort into studying the landscape of multiobjective scheduling
problems in order to design better local search components. Also, some strategies
that have been proposed to improve local search for single-objective combinato-
rial optimisation could be incorporated into multiobjective metaheuristics. For
example, the use of various neighbourhood structures or teams of local search
heuristics according to the objective being optimised might be useful. Another
example is changing the fitness landscape for improving the connectedness of
the solution space. Using different evaluation methods to discriminate solutions
during the search (aggregating functions and relaxed forms of dominance) can
help to obtain better results for multiobjective scheduling problems.

C. Multicriteria educational timetabling and personnel scheduling problems
need to be investigated in order to identify the criteria that should be consid-
ered when tackling these problems from a multiobjective perspective. It is also
important to investigate the conflicting and incommensurable nature of these
criteria.
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