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1 Introduction 

In multiobjective optimisation the aim is to find solutions that represent a compromise between 
the various (sometimes conflicting) criteria used to evaluate the quality of solutions. A solution 
x is said to be non-dominated with respect to a set of solutions S if there is no other solution in S 
that is, as good as x in all the criteria and better than x in at least one of the criteria. In Pareto 
optimisation the goal is to find a set of solutions that is representative of the whole trade-off 
surface, i.e. non-dominated solutions that are a good approximation to the Pareto optimal front 
[5]. The present work proposes the use of hyperheuristics to improve the ability of local 
search-based metaheuristics to produce non-dominated fronts that are uniformly distributed over 
the desired trade-off surface. A hyperheuristic can be thought at as, basically, a heuristic that 
manages the application of a set of heuristics in order to solve an optimisation problem [1]. By 
using a hyperheuristic approach, the neighbourhood exploration can be targeted in order to 
guide the search towards the desired regions of the trade-off surface. This strategy takes into 
consideration the localization of the current solution(s) in the objective space and the ability of 
each neighbourhood exploration heuristic to achieve improvements on each of the objectives. 
That is, a hyperheuristic systematically tries to apply the neighbourhood exploration heuristic 
that improves on 'poor' objectives while maintaining the quality of 'rich' objectives on a given 
solution. This is a novel approach for tackling the problem of achieving a good coverage of the 
desired trade-off surface in multiobjective combinatorial optimisation. 
 

2  Techniques for Improving the Distribution of Non-Dominated Sets 

One of the issues of major concern when developing metaheuristics for Pareto optimisation is 
how to ensure that the algorithm produces a uniformly distributed non-dominated front at the 
end of the search. Several strategies that aim to improve the distribution of non-dominated 
solutions have been proposed. For example, the search can be directed towards the desired area 
of the trade-off surface by tuning weights [eg. 12]. Clustering or niching methods attempt to 
achieve a good distribution by assigning fitness to solutions based on the density of solutions in 
a given area [5]. Fitness sharing is a clustering technique that reduces the fitness of solutions in 
proportion to the number of solutions that are close together [5]. Cellular structures and adaptive 
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grids are also clustering techniques that aim to uniformly distribute the solutions over the 
trade-off surface [15,17]. Restricted mating sets the probability of recombining two solutions 
according to the degree of similarity between these solutions in order to avoid the generation of 
new solutions that are 'too-similar' to the recombined solutions [5]. Relaxed forms of the 
dominance relation [2,14] and entropy metrics [9] have also been proposed to improve the 
ability of multiobjective metaheuristics to achieve a good coverage of the trade-off surface. Also, 
fuzzy logic has been used to provide different degrees of Pareto optimality within 
non-dominated sets [8]. Most of the above techniques attempt to 'restrict' the likelihood of 
generating solutions in 'crowded' regions of the trade-off surface and 'boost' the likelihood of 
generating solutions in 'under populated' regions. From these techniques, the specification of the 
search direction by tuning weights is the method that directly attempts to 'push' the current 
solution(s) towards the desired region of the trade-off surface. The hyperheuristic approach 
proposed here follows this same strategy, but attempts to do it in a more 'intelligent' way by 
applying the neighbourhood search heuristic that is more likely to 'push' the solution in the 
desired direction. 
 

3  Hyperheuristics for Multiobjective Optimisation 

 
It has been shown that the use of various 'simple' neighbourhood heuristics (eg. variable 
neighbourhood search [10] and cooperative teams of heuristics [16]) can be beneficial when 
tackling complex combinatorial optimisation problems. Hyperheuristics have been described as 
strategies designed to control the application of a set of heuristics during the search process [1]. 
At each time during the search, the selection of the next heuristic to be used is based on the past 
performance that each of them has exhibited. An important feature of hyperheuristics is that the 
set of heuristics that are applied during the search can be simple neighbourhood exploration 
heuristics (similar to [10] and [16]) or more elaborate algorithms such as metaheuristics. Various 
hyperheuristic approaches have been developed over the past ten years or so (eg. [6,7,11] ). 
 
The performance of a given neighbourhood exploration heuristic may depend on the problem 
domain, the particular instance of the problem domain and the present conditions of the search 
process. For some multiobjective combinatorial optimisation problems, a set of simple 
neighbourhood exploration heuristics can be developed. Then, the approach proposed here 
selects the most appropriate neighbourhood heuristic at certain points during the search in order 
to 'push' the solution in the desired direction towards the Pareto optimal front. An 'intelligent' 
way to do this is by 'learning' how well each simple heuristic achieves improvements on each of 
the objectives of a given solution. Then, having a hyperheuristic that systematically chooses the 
best strategy to explore the neighbourhood of the current solution(s), can help to maintain a 
uniformly distributed set of non-dominated solutions. The ‘learning’ mechanism can be 
implemented using a simple choice function that rewards and/or penalises each simple heuristic 
according to its performance on the optimisation of each objective [7]. Another method 
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(described later in section 4) to store this historical knowledge is to maintain a list of the 
heuristics and control their application during the search following the principles of tabu search. 
 
Our method measures the performance of each simple neighbourhood exploration heuristic and 
adapts it according to the knowledge gained during the search and during previous runs of the 
algorithm. The aim of this adaptation is to approximate the trade-off surface in a more efficient 
way by using those moves that are more promising according to the current quality of the 
various objectives and the historical knowledge stored. This is illustrated in figure 1, where a 
two-objective minimisation problem is considered. The desired trade-off surface and three 
non-dominated solutions are shown. Solutions A and B are 'good' with respect to the objective u 
but are 'bad' with respect to the objective v. On the other hand, solution C is 'good' with respect 
to objective v but it is 'bad' with respect to the objective u. The region of the trade-off surface 
enclosed in the rectangle can be considered to be under populated because no solutions have 
been found in that area. Table 1 shows how each of eight neighbourhood heuristics could 
perform with respect to each objective. Then, in order to aim a better coverage of the trade-off 
surface, the following strategy can be used: maintain solutions A and C in their current locations 
and 'push' solution B towards the under populated region. This can be achieved by applying 
heuristics H2 and H3 to solutions A and C and applying heuristic H5 to solution B. 
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Figure 1: Towards a better coverage of the trade-off 

surface. Solutions in crowded regions of the trade-off 

surface (such as solution B) are pushed towards the 

under populated regions (such as the region enclosed 

by the rectangle).  

Table 1: Directed neighbourhood search for a better 

coverage of the trade-off surface. The adequate 

heuristics can be applied to push one solution from 

one region of the trade-off surface to another region 

(see figure 1).

4  Preliminary Results and Ongoing Research 

We have applied the ideas described above to develop hyperheuristic approaches for the 
two-objective space allocation problem. This problem consists of distributing the available room 
space among a set of entities (staff, research students, computer rooms, lecture rooms, etc.) in 
such a way that the misuse of room space (represented by F1) and the violation of soft 
constraints (represented by F2) are minimised. Soft constraints are restrictions that limit the 
ways in which the entities can be allocated to the rooms (eg. entities that should not share a 
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room, entities that should be allocated together, etc.) and that are penalised if violated. See [4] 
for a more detailed description of this problem. Several neighbourhood exploration heuristics 
have been designed based on three moves: relocate, swap and interchange. A relocate move 
changes one entity from one room to another. In a swap move, the assigned rooms between two 
entities are swapped. The third move interchanges all the entities between two rooms. There are 
nine neighbourhood exploration heuristics (three for each neighbourhood structure or move). 
For example, there are three heuristics based on the relocate move. RelocateRndRnd selects an 
allocated entity and a room at random. RelocateRnd-BestRnd selects an allocated entity at 
random, then explores a number of randomly selected rooms evaluating the suitability of each 
of them to relocate the selected entity. Then, the chosen entity is allocated to the best of the 
subset of explored rooms. In the RelocatePnty-BestRnd heuristic the allocated entities are 
sorted in non-increasing order of their individual penalties (violation of soft constraints). In each 
iteration, the allocated entity with the highest penalty is selected and the room in which to 
relocate this entity is chosen with the same procedure as in the heuristic RelocateRnd-BestRnd. 
 
Experiments were carried out in order to assess the performance of each neighbourhood search 
heuristic with respect to the two objectives. Three test instances: nottl, nott1b and trent1 
(described in detail and available at http://www.cs.nott.ac.uk/~jds/research/spacedata.html) were 
used in these experiments. For each test instance, three populations (of size 20) PU, PL and PC 
were generated. To initialise one solution, an unallocated entity is chosen at random. Then, a 
number of randomly selected rooms are evaluated and the best of this set is chosen to allocate 
the entity. The PU population contained solutions with low values of F1 and high values of F2 
(i.e. solutions near to the upper part of the trade-off surface). The PL population contained 
solutions with high values of F1 and low values of F2. The PC population contained solutions 
with moderate values of F1 and F2. Each of the neighbourhood exploration heuristics was 
applied on its own (in a simple iterative improvement strategy) to each of the solutions in the 
three populations of the tests instances. It was observed that the improvements that each 
heuristic achieves in each of the two objectives depend not only on the problem instance but 
also on the localization of the current solution. For example, for the nottl instance, the heuristics 
based on the swap move achieve large improvements in both objectives for solution in PL. These 
heuristics achieve negligible improvements in both objectives for solutions in PC or PU. The 
same group of swap heuristics perform differently on the trentl instance. For solutions in PL, 
large improvements are achieved in both objectives. For solutions in PC, moderate 
improvements are achieved in F2 and negligible improvements are obtained in F1. If the 
solutions are near to the upper part of the trade-off surface, i.e. in PU, the improvements 
produced in F2 are very small while F1 is not improved at all or it is even worsened. 
 
A simple hyperheuristic approach was designed to choose the strategy for exploring the 
neighbourhood of a given solution during the search. The approach first generates a set of initial 
solutions and then, iteratively improves these solutions by selecting the most appropriate 
heuristic for neighbourhood exploration in order to aim for a good coverage of the trade-off 
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surface. The results obtained so far in our experiments show that this technique is suitable for 
achieving a uniformly distributed set of non-dominated solutions. At present, we are carrying 
out experiments using other multiple-criteria combinatorial optimisation problems such as 
timetabling and personnel scheduling in order to produce more evidence of this. We are also 
investigating the application of a more elaborate hyperheuristic approach based on the tabu 
search metaheuristic. In this tabu search hyperheuristic there is a set of n neighbourhood search 
heuristics and each of them competes against the others in order to be selected [3]. The 
competitions rules are inspired from the principles of reinforcement learning [13]. At the 
beginning of the search each simple heuristic has a score of zero points associated to each of the 
k objectives in the multiobjective optimisation problem. When a heuristic has been applied, a 

change ∆i may be observed in the value of the ith objective (i = 1,..,k) from the previous solution 
to the new one. If this change is positive, i.e. an improvement in the ith objective was obtained, 
the corresponding score of the heuristic is increased. If the change is negative reflecting a 
detriment in the ith objective, the corresponding score is decreased. In addition, a tabu list of 
simple neighbourhood search heuristics is maintained, which excludes some heuristics from the 
competition for a certain duration. The purpose of this tabu list of heuristics is to prevent a 
heuristic that did not perform well from being chosen too soon (even if it has a high rank). 
 

5  Summary and Final Remarks 

The problem of obtaining a uniformly distributed set of non-dominated solutions is of great 
concern in Pareto optimisation. This work proposes the application of hyperheuristics for 
achieving a good coverage of the trade-off surface in Pareto optimisation. The central idea is to 
develop a strategy that selects the most promising neighbourhood search heuristic in order to 
guide the search towards the desired areas of the trade-off surface. This technique has the 
advantage that it can be applied to single-solution and population based algorithms because no 
population statistics are required like in some clustering techniques. Experiments have been 
carried out in the space allocation problem and other timetabling and personnel scheduling 
problems. The results obtained show that hyperheuristic approaches are capable of obtaining 
non-dominated sets that represent a good coverage of the trade-off surface. 
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