
Chapter 1

MULTI-OBJECTIVE HYPER-HEURISTIC
APPROACHES FOR SPACE ALLOCATION
AND TIMETABLING

E.K. Burke, J.D. Landa Silva, E. Soubeiga

School of Computer Science and Information Technology
University of Nottingham, UK
{ekb,jds,exs}@cs.nott.ac.uk

Abstract An important issue in multi-objective optimisation is how to ensure
that the obtained non-dominated set covers the Pareto front as widely
as possible. A number of techniques (e.g. weight vectors, niching, clus-
tering, cellular structures, etc.) have been proposed in the literature for
this purpose. In this paper we propose a new approach to address this
issue in multi-objective combinatorial optimisation. We explore hyper-
heuristics, a research area which has gained increasing interest in recent
years. A hyper-heuristic can be thought of as a heuristic method which
iteratively attempts to select a good heuristic amongst many. The aim
of using a hyper-heuristic is to raise the level of generality so as to be
able to apply the same solution method to several problems, perhaps
at the expense of reduced but still acceptable solution quality when
compared to a tailor-made approach. The key is not to solve the prob-
lem directly but rather to (iteratively) recommend a suitable heuristic
chosen because of its performance. In this paper we investigate a tabu
search hyper-heuristic technique. The idea of our multi-objective hyper-
heuristic approach is to choose, at each iteration during the search, the
heuristic that is suitable for the optimisation of a given individual ob-
jective. We test the resulting approach on two very different real-world
combinatorial optimisation problems: space allocation and timetabling.
The results obtained show that the multi-objective hyper-heuristic ap-
proach can be successfully developed for these two problems producing
solutions of acceptable quality.

Keywords: multi-objective optimisation, Pareto optimisation, hyper-heuristic, local
search, diversity preservation.

2

1. Introduction
In multi-objective optimisation the aim is to find solutions that repre-

sent a compromise between the various (sometimes conflicting) criteria
used to evaluate the quality of solutions. A solution x is said to be
non-dominated with respect to a set of solutions S if there is no other
solution in S that is, as good as x in all the criteria and better than
x in at least one of the criteria. In Pareto optimisation the goal is to
find a set of non-dominated solutions that is representative of the whole
trade-off surface, i.e. a non-dominated set that is a good approximation
to the Pareto optimal front (Steuer 1986; Rosenthal 1985).

A hyper-heuristic can be viewed as a heuristic that (iteratively) chooses
between given heuristics in order to solve an optimisation problem (Burke
et al. 2003). One of the main aims of exploring hyper-heuristics is to
raise the level of generality at which most current meta-heuristic systems
operate. A hyper-heuristic is not concerned with solving a given prob-
lem directly as is the case with most meta-heuristic implementations.
Instead, a hyper-heuristic solves the problem indirectly by recommend-
ing which solution method (e.g. heuristic) to apply at which stage of the
solution process. The search is on a heuristic search space rather than
a search space of potential problem solutions. One of the motivations is
that the same hyper-heuristic method can be applied to a range of prob-
lems. For each application problem, our hyper-heuristic only needs a set
of heuristics and a formal means for evaluating solution quality (Burke
et al. 2003b). The goal is to raise the level of generality of decision
support methodology perhaps at the expense of reduced - but still ac-
ceptable - solution quality when compared to tailor-made meta-heuristic
approaches. Over the past decade or so, hyper-heuristics have been suc-
cessfully investigated for a number of optimisation problems (e.g. Ayob
and Kendall 2004; Burke et al. 2003b; Burke and Newall 2004; Cowling
et al. 2000; Cowling et al. 2002; Cowling et al. 2002b; Han and Kendall
2003; Gaw et al. 2004; Ross et al. 2002; Ross et al. 2003). An un-
derlying principle in using a hyper-heuristic approach is that different
heuristics have different strengths and weaknesses and it makes sense
to try and combine them (the heuristics) in an intelligent manner so
that the strengths of one heuristic can compensate for the weaknesses of
another (Burke et al. 2003).

This paper proposes the use of hyper-heuristics to help guide the
search towards the optimisation of the different individual objectives.
This would help to improve the ability of meta-heuristics based on lo-
cal search to produce non-dominated fronts to better approximate the
Pareto front. By using a hyper-heuristic approach, a heuristic is chosen

Multi-objective Hyper-heuristics 3

in order to guide the search towards the desired regions of the trade-off
surface. This strategy takes into consideration the localization of the
current solution(s) in the objective space and the ability of each neigh-
bourhood exploration heuristic to achieve improvements on each of the
individual objectives. That is, a hyper-heuristic systematically tries to
apply the neighbourhood exploration heuristic that improves on ‘poor’
objectives while maintaining the quality of ‘rich’ objectives on a given
solution. This is a novel approach for tackling the problem of achiev-
ing a good coverage of the desired trade-off surface in multi-objective
combinatorial optimisation.

2. Techniques for Improving the Distribution of
Non-dominated Sets

Among the meta-heuristics proposed for Pareto optimisation there
are single-solution approaches and population-based approaches (Coello
Coello et al. 2002; Deb 2001; Jones et al. 2001). One of the issues of ma-
jor concern when developing meta-heuristics for Pareto optimisation is
how to ensure that the algorithm produces a uniformly distributed non-
dominated set of solutions at the end of the search. Researchers have
shown the importance of maintaining a good distribution of solutions
along the trade-off surface for the good performance of population-based
meta-heuristics for Pareto optimisation (e.g. Laumanns et al. 2001).
Several strategies that aim to improve the distribution of non-dominated
solutions have been proposed. For example, the search can be directed
towards the desired area of the trade-off surface by tuning weights (e.g.
Czyzak and Jaszkiewicz 1998; Ishibuchi et al. 2002; Ulungu et al. 1999).
Clustering or niching methods attempt to achieve a good distribution
by assigning fitness to solutions based on the density of solutions in a
given area (e.g. Knowles and Corne 2000; Lu and Yen 2002; Socha and
KisielDorohinicki 2002). Fitness sharing is a clustering technique that
reduces the fitness of solutions in proportion to the number of solutions
that are close together (e.g. Horn 2003; Talbi et al. 2001; Zhu and Leung
2002). Cellular structures and adaptive grids are also clustering tech-
niques that aim to uniformly distribute the solutions over the trade-off
surface (Murata et al. 2001; Toscano Pulido and Coello Coello 2003).
Restricted mating sets the probability of recombining two solutions ac-
cording to the degree of similarity between these solutions in order to
avoid the generation of new solutions that are ‘too-similar’ (Ishibuchi
and Shibata 2003; Kumar and Rockett 2002). Relaxed forms of the
dominance relation (e.g. Burke and Landa Silva 2002; Burke and Landa
Silva 2005; Deb et al. 2003; Laumanns et al. 2002; Mostaghim and

4

Teich 2003; Jin and Wong 2003) and entropy metrics (Gunawan et al.
2003) have also been proposed to improve the ability of multi-objective
meta-heuristics to achieve a good coverage of the trade-off surface. Also,
fuzzy logic has been used to provide different degrees of Pareto optimal-
ity within non-dominated sets (Farina and Amato 2003).

Most of the above techniques attempt to ‘restrict’ the likelihood of
generating solutions in ‘crowded’ regions of the trade-off surface and
‘boost’ the likelihood of generating solutions in ‘under-populated’ re-
gions. From these techniques, the specification of the search direction
by tuning weights is the method that directly attempts to ‘push’ the
current solution(s) towards the desired region of the trade-off surface.
The hyper-heuristic approach proposed here follows this same strategy,
but attempts to do it in a more ‘intelligent’ way by applying the neigh-
bourhood search heuristic that is more likely to ‘push’ the solution in
the desired direction.

3. A Multi-objective Hyper-heuristic Approach
In this section we first give a brief overview of the work presented

in the literature related to hyper-heuristics. Then, we describe our pro-
posed hyper-heuristic approach for multi-objective combinatorial optimi-
sation. Next, we develop four multi-objective hyper-heuristic algorithms
based on the tabu search framework proposed by (Burke et al. 2003b)
for single-objective optimisation.

Related Work
It has been shown that the use of various ‘simple’ neighbourhood

heuristics can be beneficial when tackling complex combinatorial optimi-
sation problems. For example, variable neighbourhood search is based
on the systematic change of the neighbourhood structure during the
search (Hansen and Mladenovic 2001). Salman et al. proposed a
cooperative team of heuristics to generate non-dominated solutions for
the two-objective sparse knapsack problem (Salman et al. 2002). In
that approach, an asynchronous architecture was implemented in which
a number of heuristics (constructors, improvers and destroyers) evolve a
shared population of solutions. The heuristics work in an asynchronous
fashion and each one decides when to work, on which solutions to work,
and how to generate or improve solutions.

Hyper-heuristics are designed to control the application of a set of
heuristics during the search process (Burke et al. 2003). At each time
during the search, the selection of the next heuristic to be used is based
on the past performance that each of them has exhibited. Note that an

Multi-objective Hyper-heuristics 5

important feature of hyper-heuristics is that the set of heuristics that
are applied during the search can be simple neighbourhood exploration
heuristics (as in Hansen and Mladenovic 2001 and Salman et al. 2002)
or more elaborate algorithms such as meta-heuristics. The idea of using
hyper-heuristics is that the resulting method should be able to produce
solutions which are ‘soon-enough, good-enough, cheap enough’, while
remaining competitive with problem specific techniques. Although the
term hyper-heuristic has been proposed in recent years (see Burke et al.
2003), a number of these approaches have been developed particularly
in the past ten years or so. For example, Hart and Ross used a genetic
algorithm based hyper-heuristic to solve the job-shop scheduling problem
(Hart and Ross 1998). In their approach, the chromosome represents
which method to use in order to identify conflicts amongst schedulable
operations and which heuristic to use in order to select an operation
from the conflicting sets. Cowling et al. applied a genetic algorithm
based hyper-heuristic to tackle the trainer scheduling problem in which
the chromosome represents the ordered sequence of simple heuristics
to be applied during the search process (Cowling et al. 2002). The
application of hyper-heuristics using a simple choice function to rank
a set of simple heuristics has been reported in (Cowling et al. 2000;
Cowling et al. 2001; Cowling et al. 2002).

The Proposed Approach
The multi-objective hyper-heuristic approach proposed here is based

on a tabu-search hyper-heuristic method which was developed in (Burke
et al. 2003b) for single-objective optimisation. The performance of a
given neighbourhood exploration heuristic may depend on the problem
domain, the particular instance of the problem domain and the present
conditions of the search process. For some multi-objective combinato-
rial optimisation problems, a set of simple neighbourhood exploration
heuristics can be developed fairly quickly. Then, the approach proposed
here selects the most appropriate neighbourhood heuristic at certain
points during the search in order to ‘push’ the solution in the desired di-
rection towards the Pareto optimal front. An ‘intelligent’ way to do this
is by ‘learning’ how well each simple heuristic achieves improvements on
each of the objectives of a given solution. Having a hyper-heuristic that
systematically chooses the best strategy to explore the neighbourhood
of the current solution(s) can help to obtain a uniformly distributed set
of non-dominated solutions. The ‘learning’ mechanism can be imple-
mented so as to ‘reward’ well-performing heuristics and ‘punish’ badly-
performing ones. The hyper-heuristic therefore maintains a list of the

6

under populated region

A

B

C

objective u

objective v

a)

b)

 improves v deteriorates v
 small large small large

improves u
small
large

H2 H3

H1 H8

H6
H7

deteriorates u
small
large

H5
H4

Figure 1.1. a). Towards a better coverage of the trade-off surface. Solutions in
crowded regions of the trade-off surface (such as solution B) are pushed towards the
under-populated regions (such as the region enclosed by the rectangle). b). Directed
neighbourhood search for a better coverage of the trade-off surface. Each heuristic
might produce an improvement or detriment on each particular objective. Then, the
adequate heuristics can be applied to improve upon specific objectives and hence, to
push the solution from one region of the trade-off surface to another region.

heuristics and controls their application during the search following the
principles of tabu search (Glover and Laguna 1997). The tabu search
hyper-heuristic measures the performance of each simple neighbourhood
exploration heuristic and adapts it according to the knowledge gained
during the search and during previous runs of the algorithm. The aim
of this adaptation is to approximate the trade-off surface in a more ef-
ficient way by using those moves that are more promising according to
the current quality of the various objectives and the historical knowledge
about the search process.

The idea described above is illustrated in Fig. 1.1, where a two-
objective minimisation problem is considered. The desired trade-off sur-
face and three non-dominated solutions are shown. Solutions A and B
are ‘good’ with respect to the objective u but are ‘bad’ with respect to

Multi-objective Hyper-heuristics 7

the objective v. On the other hand, solution C is ‘good’ with respect to
objective v but it is ‘bad’ with respect to objective u. The region of the
trade-off surface enclosed in the rectangle can be considered to be under-
populated because no solutions have been found in that area. Figure 1.1
shows how each of eight neighbourhood heuristics could perform with
respect to each objective. Then, in order to obtain a better coverage
of the trade-off surface, the following strategy can be used: maintain
solutions A and C in their current locations and ‘push’ solution B to-
wards the under-populated region. This can be achieved by applying
a heuristic which yields a large improvement on objective v (possibly
with a small deterioration on objective u). Heuristics H1, H8, and H5

of Fig. 1.1 can be considered good candidate heuristics to achieve this.
The challenge for the hyper-heuristic is to choose the right heuristic for
the right operation at the right time during the search. It should be
noted that the hyper-heuristic thus operates in the heuristic space as
opposed to most implementations of meta-heuristics which operate in
the solution space.

The Tabu Search Hyper-heuristic Framework
The basic idea of the tabu search hyper-heuristic framework was ini-

tially introduced in (Burke et al. 2003b). In this framework, the
heuristics can be thought of as competing with one another. The com-
petition rules are inspired from the principles of reinforcement learning
(Kaelbling et al. 1996; Sutton and Barto 1998). At the beginning
of the search each heuristic k has a score of 0 points (i.e. rk = 0).
These scores are allowed to decrease and increase - within the interval
[rmin, rmax], where rmin, rmax are respectively the lower and upper rank-
ings - to reflect the performance of the corresponding heuristics. Let ∆
represent the change in the objective function value from the previous
solution to the new one. If the application of a given heuristic results in
an improvement of the current solution (i.e. ∆ > 0) then the score of
the heuristic is increased, e.g. rk = rk + α. Otherwise it is decreased,
e.g. rk = rk − α, where α is a positive number. There are several ways
to choose α. Here we choose α = 1 (see Burke et al. 2003b).

In addition to this ranking scheme, a tabu list of heuristics is main-
tained, which excludes certain heuristics from the competition for a cer-
tain duration. The basic idea of the tabu list is to prevent a heuristic
which did not perform well from being chosen too soon (even if it has
the highest rank). More precisely, we include heuristic k in the tabu
list (on a ‘First In - First Out’ basis) if ∆ is non-positive. Furthermore,
heuristics already in the tabu list are released if ∆ is positive. The idea

8

is that there is no point in keeping a heuristic tabu once the current
solution has been improved (e.g. when ∆ ≥ 0). Thus we employ a
variable-length dynamic tabu list of heuristics. The basic tabu search
hyper-heuristic can be outlined by the following pseudocode:

Do
1- Select the heuristic, k, with highest rank and apply it.
2- If ∆ > 0 then rk = rk + α and empty TABULIST.
3- Else rk = rk − α and include k in TABULIST.
Until Stopping condition is met.

Multi-objective Tabu Search Hyper-heuristic
Algorithms

In this paper we propose to adapt the above single-objective hyper-
heuristic approach to multi-objective optimisation. Consequently, the
following modifications are made:

1 The performance of each heuristic is no longer evaluated with re-
spect to a single objective (or aggregate objective) but instead with
respect to individual objectives. This implies that ∆ is replaced
with ∆u and rk is replaced with rk(u) where u = 1, 2, ...q and q is
the number of objectives in the problem.

2 As a result of the above change, we also have to decide (choose)
which individual objective to deal with at any one time.

3 A third level of design concerns the tabu list. It is obvious that
instead of one tabu list, we may now have several (i.e. one tabu
list for each of the q objectives).

We implemented three algorithms with different combinations of the
above three modifications. Within the three algorithms, heuristic per-
formance is evaluated with respect to each objective.

Single Tabu Random Uniform (TSRandUnif). In this al-
gorithm the individual objective is chosen uniformly at random. Here,
there is only one tabu list. The algorithm works as shown in the pseu-
docode below. The on-line non-dominated set contains all the non-
dominated solutions that are obtained in each iteration of step 2. That
is, for each solution in the initial population. The off-line non-dominated
set contains the non-dominated solutions obtained from the P on-line
non-dominated sets.

Multi-objective Hyper-heuristics 9

1- Randomly generate an initial population of P solutions.
2- For each solution in the initial population, Do

2.1- Select an individual objective u uniformly at random.
2.2- Select the heuristic, k, with highest rank rk(u) and apply it to the

current solution.
2.3- If ∆u > 0 then rk(u) = rk(u) + α and empty TABULIST.
2.4- Else rk(u) = rk(u) − α and include k in TABULIST.
2.5- For all other individual objectives v = 1, 2, ...q and v �= u, Do

2.5.1- If ∆v > 0 then rk(v) = rk(v) + α.
2.5.2- Else rk(v) = rk(v) − α.

2.6- Update the on-line set of non-dominated solutions.
3- Until Stopping condition is met.
4- Generate the off-line set of non-dominated solutions.

Single Tabu Roulette-Wheel (TSRoulWheel). In this al-
gorithm, the choice of individual objectives is based on roulette-wheel
selection (see Goldberg 1989). A given individual objective u is chosen
with a probability that is proportional to the distance from the value of
u in the current solution to the value of u in an ideally optimal solution
(i.e. a solution in which the value of each objective is optimal - such a
solution may not exist.). The idea here is that the worse the value of an
individual objective (relative to the others), the higher the probability of
that objective being chosen by the roulette-wheel selection. Of course,
the sum of all probabilities over all the individual objectives must be
equal to 1. As in the previous algorithm, here too, there is only one
tabu list. The algorithm works as follows:

1- Randomly generate an initial population of P solutions.
2- For each solution in the initial population, Do

2.1- Select individual objective u using roulette wheel selection.
2.2- Select the heuristic, k, with highest rank rk(u) and apply it to the

current solution.
2.3- If ∆u > 0 then rk(u) = rk(u) + α and empty TABULIST.
2.4- Else rk(u) = rk(u) − α and include k in TABULIST.
2.5- For all other individual objective v = 1, 2, ...q and v �= u, Do

2.5.1- If ∆v > 0 then rk(v) = rk(v) + α.
2.5.2- Else rk(v) = rk(v) − α.

2.6- Update the on-line set of non-dominated solutions.
3- Until Stopping condition is met.
4- Generate the off-line set of non-dominated solutions.

10

Multiple Tabu Roulette-Wheel (MTSRoulWheel). In this
algorithm the choice of individual objectives is based on roulette-wheel
selection as in the previous one (TSRoulWheel). However, this algo-
rithm maintains multiple tabu lists. In effect, there is one tabu list for
each objective u = 1, 2, ..., q. The algorithm works as follows:

1- Randomly generate an initial population of P solutions.
2- For each solution in the initial population, Do

2.1- Select individual objective u using roulette wheel selection.
2.2- Select the heuristic, k, with highest rank rk(u) and apply it to the

current solution.
2.3- For each objective u = 1, 2, ...q, Do

2.3.1- If ∆u > 0 then rk(u) = rk(u)+α and empty TABULIST(u).
2.3.2- Else rk(u) = rk(u) − α and include k in TABULIST(u).

2.4- Update the on-line set of non-dominated solutions.
3- Until Stopping condition is met.
4- Generate the off-line set of non-dominated solutions.

It can be seen from the above procedures that the main difference be-
tween TSRandUnif on the one hand and TSRoulWheel and MTSRoul-
Wheel on the other hand is in step 2.1, which is a simple random uniform
selection for the former and a roulette wheel selection for the two latter
algorithms. The difference between TSRoulWheel and MTSRoulWheel
is in the number of tabu lists used.

Pure Random (PureRand). In order to investigate if there is
a benefit in incorporating a learning mechanism (which, in this case,
consists of the heuristic ranking system, the tabu list of heuristics and
the objective selection mechanism) into our hyper-heuristics, we imple-
mented one algorithm in which the learning is disabled. In the complete
absence of a learning mechanism the choice of a heuristic is simply made
randomly. The resulting algorithm repeatedly chooses one heuristic uni-
formly at random and applies it once. This simple algorithm is illus-
trated in the following pseudocode.

1- Randomly generate an initial population of P solutions.
2- For each solution in the initial population, Do

2.1- Select a heuristic uniformly at random and apply it once to the
current solution.

2.2- Update the on-line set of non-dominated solutions.
3- Until Stopping condition is met.
4- Generate the ‘off-line’ set of non-dominated solutions.

Multi-objective Hyper-heuristics 11

Note that, like the tabu search hyper-heuristics, PureRand maintains
an on-line non-dominated set of solutions. It also produces the off-line
non-dominated set of solutions, which is the output of the algorithm.

In the next two sections we report results that are obtained by ap-
plying the above hyper-heuristic approaches to two different real-world
combinatorial optimisation problems. As already mentioned, in order
to apply a hyper-heuristic to a given problem, all that is needed is a
set of simple neighbourhood search heuristics and a means of evaluating
solution quality. These will be given for each problem considered below.
It should be noted that our multi-objective hyper-heuristic approaches
are not designed with a particular problem in mind. On the contrary,
the goal is to develop an approach which is more general than current
meta-heuristic approaches to multi-objective optimisation. Moreover,
the only mechanism used to obtain a good distribution of solutions over
the trade-off surface is the learning mechanism incorporated into the
hyper-heuristics. We show below that our approach is both effective
and general in terms of the two problems considered in this paper.

4. Application to Space Allocation
In this section we present the application of the multi-objective hyper-

heuristic approaches described above to the space allocation problem.
This problem refers to the distribution of office space in academic in-
stitutions. First, we give a description and formulation of the problem.
Then, we describe the heuristics employed to carry out the neighbour-
hood search. This is followed by a presentation and discussion of the
results obtained in our computational experiments.

Problem description
The space allocation problem is a difficult real-world combinatorial

optimisation problem that is closely related to the class of knapsack
problems (Martello and Toth 1990). The particular space allocation
problem considered here is the distribution, in an academic institution, of
the available room space among a set of entities (staff, research students,
computer rooms, lecture rooms, etc.) in such a way that the misuse of
room space and the violation of soft constraints are minimised. Soft
constraints are restrictions that limit the ways in which the entities can
be allocated to the rooms (e.g. entities that should not share a room,
entities that should be allocated together, etc.) and that are penalised
if violated. The following types of constraints exist in the problem in-
stances considered in this paper:

12

1 Not Sharing - two entities cannot share a room (e.g. professors
must have private offices). A penalty of 50 is applied if a constraint
of this type is violated.

2 Be located in - a given entity should be allocated to a given room
(e.g. a computer lab). A penalty of 20 is applied if a constraint of
this type is violated.

3 Be adjacent to - two given entities should be allocated in adjacent
rooms (e.g. a PhD student and his supervisor). A penalty of 10 is
applied if a constraint of this type is violated.

4 Be away from - two given entities should be allocated away from
each other (e.g. lecture room and photocopier room). A penalty
of 10 is applied if a constraint of this type is violated.

5 Be together with - two given entities should be allocated in the
same room (e.g. two PhD students working on the same project).
A penalty of 10 is applied if a constraint of this type is violated.

6 Be grouped with - a given entity should be allocated in a room that
is ‘close’ to a given set of entities (e.g. the members of a research
group). A penalty of 5 is applied if a constraint of this type is
violated.

When a particular constraint is not soft but hard, it must be satisfied
for the solution to be considered feasible. Depending on the problem
instance, any of the above types of constraints can be hard or soft.

More formally, the space allocation problem refers to the allocation
of a set of n entities into a set of m available rooms. Each entity
j = 1, 2, ..., n has a space requirement w(j). Similarly, each room
i = 1, 2, ...,m has a capacity c(i). Each entity must be allocated to
exactly one room and each room can contain zero or more entities. The
aggregated space requirements of all the entities allocated to a room i is
denoted Q(i). For a given room i, there is space wastage if c(i) > Q(i)
and there is space overuse if c(i) < Q(i). There is a penalty of 1 for each
unit of space wasted and a penalty of 2 for each unit of space overused (it
is less desirable to overuse space than to waste it). The sum of penalties
due to space wastage and to overused space for all m rooms is called
space misuse and is denoted by F1. The sum of all penalties due to the
violation of soft constraints is denoted by F2. This problem is tackled
as a two-objective optimisation problem in this paper, where F1 and F2
are minimisation objectives.

A solution or allocation is represented by a vector π of length n where
each element π(j) ∈ 1, 2, ..,m for j = 1, 2, ..., n indicates the room

Multi-objective Hyper-heuristics 13

to which the entity j is allocated. For a more detailed description of
the space allocation problem see (Burke and Varley 1998; Landa Silva
2003).

Neighbourhood Search Heuristics
Several neighbourhood exploration heuristics have been designed based

on three moves: relocate, swap and interchange. A relocate move changes
one entity from one room to another. In a swap move, the assigned rooms
between two entities are swapped. The third move interchanges all the
entities between two rooms. That is, there are three neighbourhood
structures, one defined by each type of move. However, there can be
many ways in which to explore each of these neighbourhood structures
and each of these is a neighbourhood exploration heuristic. In our im-
plementation, there are three neighbourhood structures and nine neigh-
bourhood exploration heuristics, three for each neighbourhood structure.
These neighbourhood exploration heuristics are outlined below.

RelocateRndRnd : Selects an allocated entity and room at random
and relocates the entity to the chosen room.

RelocateRndBestRnd : Selects an allocated entity at random. Next,
explores a number of randomly selected rooms evaluating the suit-
ability of each of them to relocate the selected entity. Then, the
chosen entity is relocated to the best of the subset of explored
rooms.

RelocatePenaltyBestRnd : The allocated entities are sorted in non-
increasing order of their individual penalties (violation of soft con-
straints). In each iteration, the allocated entity with the highest
penalty is selected and the room to relocate this entity is chosen
with the same procedure as in RelocateRndBestRnd.

SwapRndRnd : Selects two allocated entities at random and makes
the swap move.

SwapRndBestRnd : Selects an allocated entity at random. Next, ex-
plores a number of randomly selected allocated entities evaluating
the suitability of each of them to be swapped with the other entity.
Then, the best of the subset of explored entities is chosen to make
the swap move.

SwapPenaltyBestRnd : The allocated entities are sorted in non-
increasing order of their individual penalties (violation of soft con-
straints). The allocated entity with the highest penalty is selected

14

and the other entity to make the swap is chosen with the same
procedure as in SwapRndBestRnd.

InterchangeRndRnd : Selects two rooms at random and makes the
interchange move.

InterchangeRndBestRnd : Selects a room at random. Next, it ex-
plores a number of randomly selected rooms and evaluates the
suitability of each of them to make the interchange. Then, the
best of the subset of explored rooms is chosen to implement the
interchange move.

InterchangePenaltyBestRnd : The rooms are sorted in non-increasing
order of their individual penalties (space misuse and violation of
soft constraints). The room with the highest penalty is selected
and the room to make the interchange is chosen with the same
procedure as in InterchangeRndBestRnd.

Computational results
Experimental Settings. All algorithms were coded in Microsoft
Visual C++ version 6, and all experiments were run on a PC Pentium
III 1000MHz with 128MB RAM running on Microsoft Windows 2000.
Three problem instances: nottl, nott1b and trent1 were used in these
experiments. The nott1 and nott1b test intances were prepared using
real data corresponding to the distribution of office space in the School of
Computer Science and Information Technology at the University of Not-
tingham during the 1999-2000 academic year. In the nott1 instance there
are 131 rooms, 158 entities to be allocated, and 263 constraints (111 hard
and 152 soft). The nott1b instance has 115 rooms, 142 entities, and 260
constraints (110 hard and 150 soft). The trent1 instance was prepared
using real data corresponding to the distribution of office space in the
Chaucer bulding at the Nottingham Trent University during the 2000-
2001 academic year. In the trent1 instance there are 73 rooms, 151 enti-
ties, and 211 constraints (80 hard and 131 soft). For full details of these
data sets see www.cs.nott.ac.uk/~jds/research/spacedata.html.

For each test instance, a population of size 20 was generated as follows.
One entity is selected at random. Then, the best of a subset of randomly
selected rooms is chosen to allocate the entity, ensuring that no hard
constraint is violated. This process is repeated for each entity until
all of them are allocated to a room. Each of the four hyper-heuristic
algorithms described in section 1.3.0 was applied to each of the problem
instances. The termination condition for each algorithm was set to a
maximum number of solution evaluations eval (i.e. eval/P evaluations

Multi-objective Hyper-heuristics 15

for each solution in the population). The value of eval was set to 100000,
80000 and 50000 for nott1, nott1b and trent1 respectively. The off-line
non-dominated sets obtained by the algorithms are shown in Fig. 1.2.

Comparing the Hyper-heuristic Approaches. It is clearly ob-
served in Fig. 1.2 that for the three problem instances, the TSRoulWheel
hyper-heuristic produces the best non-dominated sets. This algorithm
seems to be particularly good when applied to the problem nott1 because
each of the solutions produced by this algorithm dominates all the solu-
tions obtained by the other three approaches. For the problems nott1b
and trent1, the TSRoulWheel algorithm produces one or more solutions
that dominate each single one of the solutions obtained with the other
algorithms. Furthermore, TSRoulWheel achieves a good coverage of the
trade-off front in the three problem instances while the non-dominated
solutions produced by the other three algorithms produce solutions that
are clustered in some region on the trade-off front. That is, from these
results, it can be visually verified that the best non-dominated fronts for
the three problem instances are obtained with the TSRoulWheel hyper-
heuristic. There is not a clear ranking when comparing the performances
of the other three algorithms. Only in the instance trent1 does TSRan-
dUnif clearly outperform MTSRoulWheel and PureRand. It can also be
observed in Fig. 1.2 that the learning mechanism incorporated into the
TSRoulWheel algorithm (the combination of the heuristic ranking sys-
tem, the tabu list of heuristics and the objective selection mechanism)
seems to be effective in managing the set of simple neighbourhood search
heuristics for obtaining good sets of non-dominated solutions. From
the other three algorithms, PureRand does not incorporate any element
of the learning mechanism and TSRandUnif does not incorporate the
roulette-wheel mechanism to select the objective. In the case of MT-
SRoulWheel, it seems that having two lists of heuristics deteriorates the
performance of the learning mechanism. The mechanism implemented
in MTSRoulWheel to manage one tabu list for each objective (two in this
problem) is a basic one, it simply associates one tabu list to each objec-
tive. We are currently investigating more sophisticated mechanisms to
manage the tabu list(s) of heuristics.

Comparison with a Population-based Annealing Algorithm.
A population-based annealing algorithm (PBAA) has been tailored for
the space allocation problem (Burke and Landa Silva 2005). This
algorithm is fairly sophisticated and a considerable amount of work has
been invested in its design. This approach is a hybrid algorithm that
evolves a population of solutions using a local search heuristic HLS and a

16

a)

b)

c)

Problem nott1

400

650

900

1150

1400

1650

1900

2150

2400

100 150 200 250 300 350 400

F1

F2

TSRandUnif

TSRoulWheel

MTSRoulWheel

PureRand

Problem nott1b

0

250

500

750

1000

1250

1500

0 50 100 150 200 250 300 350

F1

F2

TSRandUnif

TSRoulWheel

MTSRoulWheel

PureRand

Problem trent1

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

0 50 100 150 200 250 300 350 400 450 500 550 600

F1

F2

TSRandUnif

TSRoulWheel

MTSRoulWheel

PureRand

Figure 1.2. Non-dominated sets obtained with each of the hyper-heuristics for the
problems a)nott1 b)nott1b and c)trent1.

Multi-objective Hyper-heuristics 17

mutation operator. This local search heuristic manages the same simple
neighbourhood search heuristics described above for the space allocation
problem. However, HLS incorporates knowledge of the problem domain
to decide which neighbourhood search heuristic to apply according to the
status of the current solution. The mutation operator disturbs a solution
in a controlled way by removing from their assigned room those entities
that have the highest penalties. These entities are then re-allocated
to different rooms in an attempt to diversify the search. A common
annealing schedule controls the evolution of the whole population and a
cooperation mechanism is incorporated in order to encourage the sharing
of good parts of solutions among individuals in the population and hence,
to avoid the exploration of already visited bad solutions. A more detailed
description of this population-based annealing algorithm can be seen
elsewhere (Burke and Landa Silva 2005).

The non-dominated fronts obtained by the TSRoulWheel algorithm
above are compared with those produced by the PBAA approach in
Fig. 1.3. The results for PBAA were reported in (Burke and Landa
Silva 2005) and were obtained using the same termination condition
used in this paper and on the same computer. The results shown in
Fig. 1.3 show that none of the two algorithms appears to clearly outper-
form the other one. For example, in problem nott1, the TSRoulWheel
produces a better front. In the problem nott1b, TSRoulWheel outper-
forms PBAA in the upper part of the trade-off surface while PBAA
does better in the lower part of the front. In the problem trent1, the
PBAA algorithm clearly obtains better results than TSRoulWheel. We
have shown in (Burke and Landa Silva 2005) that knowledge of the
problem domain incorporated into the PBAA approach helps to ob-
tain high quality sets of non-dominated solutions. Here, we can see
that the fairly simple TSRoulWheel hyper-heuristic approach appears
to be competitive. As noted above, we do not expect the TSRoulWheel
hyper-heuristic approach to produce better solutions than a well-tuned
algorithm that incorporates knowledge of the problem domain. But, as
we show here, this multi-objective hyper-heuristic is easy to implement
and produces acceptable results. In the next section, we apply the four
hyper-heuristics to the university course timetabling problem. We aim
to demonstrate that these approaches are not only effective but that they
can also be readily applied to different problems with solution quality
still being competitive.

18

a)

b)

c)

Problem nott1

500

700

900

1100

1300

1500

100 125 150 175 200 225 250 275 300

F1

F2

TSRoulWheel

PBAA

Problem nott1b

0

250

500

750

1000

1250

1500

0 50 100 150 200 250

F1

F2

TSRoulWheel

PBAA

Problem trent1

3000

3250

3500

3750

4000

4250

4500

4750

5000

0 50 100 150 200 250 300 350 400

F1

F2

TSRoulWheel

PBAA

Figure 1.3. Non-dominated sets obtained by the TSRoulWheel hyper-heuristic and
the tailor-made Population-based Annealing Algorithm (PBAA) for the problems
a)nott1 b)nott1b and c)trent1.

Multi-objective Hyper-heuristics 19

5. Application to Timetabling
In this section we present the application of the multi-objective hyper-

heuristic approaches described above to the course timetabling problem.
This problem refers to the scheduling of a set of events to a time period
while satisfying a number of constraints. First, we give a description and
formulation of the problem. Then, we describe the heuristics employed
to carry out the neighbourhood search. This is followed by a presentation
and discussion of the results obtained in our computational experiments.

Problem description
In the university course timetabling problem the aim is to schedule

a number of events such as lectures, seminars, tutorials, etc. in the
available timeslots and satisfying a number of additional constraints (see
Burke et al. 1997; Carter:Laporte 1998; Schaerf 1999). The problem
instances used in this paper are taken from the literature (Rossi-Doria
et al. 2003; Socha et al. 2002). L is the set of events to be scheduled.
There are 5 days and in each day there are 9 hourly timeslots, that is,
there are 45 available timeslots in total. R is the set of rooms in which
events can take place. S denotes the set of students who attend the
events. There is also a set F of features satisfied by rooms and required
by events (e.g. event e requires a room equipped with an overhead
projector, or a sound system, video conference facilities etc.). Each
student is required to attend a number of events. Each room has a
maximum seating capacity. The following constraints are considered to
be hard (must be satisfied):

1 No student can attend more than one event in the same timeslot.

2 The room in which an event takes place, satisfies all the features
required by the event.

3 The capacity of the room cannot be exceeded.

4 At most one event is scheduled in the same combination of room
and timeslot.

There are also a number of additional constraints that should be sat-
isfied whenever possible. If any of these constraints is violated, a penalty
is applied to the solution. The soft constraints (desirable to be satisfied)
are listed below:

1 A student has a scheduled event in the last timeslot of the day.

2 A student should attend more than 2 consecutive events.

20

3 A student has only one event to attend on a given day.

Burke et al. used E = 1000 × Hcv + Scv, where Hcv is the number
of hard constraint violations and Scv the number of soft constraint vi-
olations, to evaluate solution quality (Burke et al. 2003b). Here, we
tackle the problem in a multi-objective fashion. Feasible solutions (ones
which satisfy the hard constraints) are those for which Hcv = 0. Each
feasible solution is then evaluated using the following three objectives
to be minimised: LS (respectively EiR and SC) counts the number of
violations of the first (respectively second and third) soft constraint.

We represent solutions in the same way as in (Rossi-Doria et al.
2003; Socha et al. 2002). A timetable is represented using a vector of
length |L|. Each position in the vector corresponds to one event. That
is, position j corresponds to event ej for j = 1,...,|L|. In each position of
the vector, there is an integer number in the interval [1, 45] that indicates
the timeslot in which the corresponding event has been scheduled. For
example, in the vector: [39, 10, ..., 45], event e1 is scheduled in timeslot
39, e2 is scheduled in timeslot 10, ..., and event e|L| is scheduled in
timeslot 45. Similarly to (Rossi-Doria et al. 2003; Socha et al. 2002),
in this paper we also tackle the problem of room assignment in a separate
way by means of a matching algorithm. This algorithm is applied to the
solution every time the solution is modified by any of the neighbourhood
search heuristics. These heuristics are described next.

Neighbourhood Search Heuristics
We used eight neighbourhood search heuristics which are all simple

and based on the neighbourhood moves described in (Rossi-Doria et al.
2003; Socha et al. 2002). These heuristics are described as follows:

h1 : Select an event at random and move it from its current timeslot to
a different timeslot selected at random too. This move is performed
only if Hcv > 0 (i.e. solution is infeasible).

h2 : Select an event at random and move it from its current timeslot to
a different timeslot selected at random too. This move is performed
only if Hcv = 0 (i.e. solution is already feasible) and the move does
not result in Hcv > 0.

h3 : Swap the timeslots of two events selected at random. This move
is performed only if Hcv > 0 (i.e. solution is infeasible).

h4 : Swap the timeslots of two events selected at random. This move
is performed only if Hcv = 0 (i.e. solution is already feasible) and
the move does not result in Hcv > 0.

Multi-objective Hyper-heuristics 21

h5 : Same as the heuristic [h1] but the timeslot selected for the move
is the first one that provokes an improvement on Hcv.

h6 : Same as the heuristic [h2] but the timeslot selected for the move
is the first one that provokes an improvement on Scv.

h7 : Same as the heuristic [h3] but the pair of timeslots selected for
the swap is the first one that provokes an improvement on Hcv.

h8 : Same as the heuristic [h4] but the pair of timeslots selected for
the swap is the first one that provokes an improvement on Scv.

where Scv = LS + EiR + SC is the aggregate objective.

Computational Results
Experimental Settings. All algorithms were coded in Microsoft
Visual C++ version 6, and all experiments were run on a PC Pentium
III 1000MHz with 128MB RAM running on Microsoft Windows 2000.
To test the effectiveness of our hyper-heuristic approaches we considered
problem instances taken from (Socha et al. 2002). A set of 20 initial
feasible solutions were randomly obtained using the basic tabu search
hyper-heuristic of (Burke et al. 2003b). To allow for a fair comparison,
all four algorithms described above in this paper (TSRandUnif, TSRoul-
Wheel, MTSRoulWheel and PureRand) start from the same initial set
of solutions. Each of the 20 initial solutions is generated using the same
algorithm of (Burke et al. 2003b) with different random seeds.

Comparing the Hyper-heuristic Approaches. We show in Fig.
1.4 to 1.6 the off-line non-dominated sets obtained by all four algorithms
when applied to three problem instances of medium size (400 events, 10
rooms and 5 features) described in (Socha et al. 2002). The stop-
ping condition is 1000 iterations for each individual solution, i.e. 20000
iterations for the whole population. Of the four algorithms, we note
that PureRand performs the poorest. This shows that the benefit ob-
tained by incorporating a learning mechanism into the hyper-heuristic
approaches is more evident in this problem than in the space allocation
problem above. In the absence of an intelligent mechanism to ‘learn’ to
choose a ‘good’ heuristic at each decision point, the PureRand algorithm
is bound to perform poorly. It can also be said that, overall, TSRoulWeel
and MTSRoulWeel seem to produce the best sets of non-dominated so-
lutions. It is striking to note that MTSRoulWeel does not always get so
close to the desired trade-off front. This (relatively) poor performance
from MTSRoulWeel can be explained by the use of multiple tabu lists.

22

50

100

150

200

80

90

100

110

120

130

140

150

160

0

2

4

6

8

10

12

14

LS
EiR

S
C

Problem M2
+ MTSRoulWheel
o TSRoulWheel
* PureRand
x RandUnif

Figure 1.4. Non-dominated sets obtained with each of the hyper-heuristics for the
problem M2.

Indeed, the use of several tabu lists may lead to an overhead in terms of
tabu list management. As it was also observed in the application to the
space allocation problem, it seems that having just one tabu list is good
enough to produce solutions of acceptable quality. Perhaps, more elab-
orate mechanisms of dealing with multiple tabu lists of neighbourhood
search heuristics can help to obtain better results in the MTSRoulWheel.
We are currently exploring this possibility.

Comparison with Previous Results. As indicated above, we
are tackling the course timetabling problem in a multi-objective fashion.
In order to find out if the solutions produced by our approaches are
competitive with those obtained with other methods, we compare our
results with those reported in (Socha et al. 2002) and in (Burke et al.
2003b). Two tailored algorithms were used in (Socha et al. 2002), a
local search approach (LLS) and an ant algorithm (ANT). In (Burke et
al. 2003b), the approach presented was a single-objective tabu search
hyper-heuristic. In those three algorithms, the problem is tackled as a
single objective problem, i.e. using the aggregated value Scv. Here, we
tackle the three objectives (LS,EiR, and SC) independently. In addition
to the medium size instances M2, M3, and M4 used in the experiments
above, we also compare the algorithms in the small size instance S1.
To allow a comparison, we computed the aggregated objective value
(Scv) for the non-dominated solutions obtained by each hyper-heuristic

Multi-objective Hyper-heuristics 23

80 100 120 140 160 180 200

100

120

140

160

180

2

3

4

5

6

7

8

9

10

11

12

LS
EiR

S
C

M3 + MTSRoulWheel
o TSRoulWheel
* PureRand
x RandUnif

Figure 1.5. Non-dominated sets obtained with each of the hyper-heuristics for the
problem M3.

20 40 60 80 100 120 140

50

100

150

0

2

4

6

8

10

12

14

LS
EiR

S
C

M4
+ MTSRoulWheel
o TSRoulWheel
* PureRand
x RandUnif

Figure 1.6. Non-dominated sets obtained with each of the hyper-heuristics for the
problem M4.

24

MTSRW TSRW TSRU HH LLS ANT

S1 2.3/1 2.15/0 1.95/0 2.2/1 8 1
M2 198.4/168 196.5/173 219.2/192 197.6/173 202.5 184
M3 272.8/231 276.2/224 274.2/244 295.4/267 77.5% Inf 248
M4 189.2/134 191.8/160 190/149 180/169 177.5 164.5

Table 1.1. Comparison between the multi-objective tabu search hyper-heuristics with
the two single-objective local search (LLS) and ant algorithms (ANT) from (Socha
et al. 2002) and the single-objective hyper-heuristic (HH) approach from (Burke
et al. 2003b). MTSRW is MTSRoulWheel, TSRW is TSRoulWheel, and TSRU is
TSRandUnif. For all the hyper-heuristics the table shows average Scv (if solution is
feasible) / best Scv in all runs. In column LLS 77.5% Inf indicates the proportion of
infeasible solutions in 40 runs. The best obtained solutions are shown in bold.

approach. The best and average values for each off-line non-dominated
set together with the results obtained in (Socha et al. 2002) and in
(Burke et al. 2003b) are reported in Table 1.1. These results show that
the sort of solutions produced by our multi-objective tabu search hyper-
heuristics are of comparable quality with those reported in (Socha et al.
2002) and in (Burke et al. 2003b). The average solutions obtained by
the multi-objective hyper-heuristics of this paper, are competitive with
those obtained by the HH, LLS, and ANT approaches. Furthermore, for
all instances the best solution is obtained by one of our multi-objective
hyper-heuristic approaches. It should be noted that our algorithms used
substantially fewer evaluations than the algorithms of (Socha et al.
2002). Overall, it can be said that our multi-objective hyper-heuristic
approach is effective in tackling the three-objective course timetabling
problem considered here.

6. The Conclusions
The problem of obtaining a uniformly distributed set of non-dominated

solutions is of great concern in Pareto optimisation. This work proposes
the application of hyper-heuristics for achieving a good coverage of the
trade-off surface. The central idea is to develop a strategy that selects
the most promising neighbourhood search heuristic in order to guide the
search towards the desired areas of the trade-off surface. This technique
has the advantage that it can be applied to single-solution and to pop-
ulation based algorithms because no population statistics are required
as would be the case in, say, some clustering techniques. Experiments
have been carried out on the space allocation problem and the univer-
sity course timetabling problem. By using a hyper-heuristic approach
for multi-objective combinatorial optimisation, the idea is to adapt the

Multi-objective Hyper-heuristics 25

application of neighbourhood search heuristics according to the quality
of the current solution in each of the objectives. In a way, this is sim-
ilar to the strategy of tuning weights to specify search directions. The
results obtained show that the hyper-heuristic approaches used here are
capable of obtaining non-dominated sets that represent a good coverage
of the trade-off surface. The results obtained in our experiments show
that among the four approaches implemented here, the TSRoulWheel al-
gorithm shows the best overall performance. The learning mechanism of
the TSRoulWheel approach uses two strategies. One is Roulette-Wheel
selection for deciding which objective to be tackled at any one time dur-
ing the search. The TSRoulWheel algorithm also employs a single tabu
list to manage the tabu status of the neighbourhood exploration heuris-
tics during the search. Future work will concentrate on the improvement
of the learning mechanism and upon further testing by comparing our
approach with other multi-objective optimisers from the literature.

References

Ayob M., Kendall G. (2004). A Monte Carlo Hyper-Heuristic To Op-
timise Component Placement Sequencing for Multi Head Placement
Machine. Proceedings of the 2003 International Conference on Intelli-
gent Technologies (InTech 2003), pp. 132-141, Chiang Mai Thailand.

Burke E.K., Jackson K., Kingston J.H., Weare R. (1997). Automated
University Timetabling: the State of the Art. The Computer Journal,
Vol. 40, No. 9, pp. 565-571.

Burke E.K., Kendall G., Newall J., Hart E., Ross P., Schulemburg S.
(2003). Hyper-heuristics: an Emerging Direction in Modern Search
Technology. In: Glover F.W., Kochenberger G.A. (eds.), Handbook of
Metaheuristics, Kluwer Academic Publishers.

Burke E.K., Kendall G., Soubeiga E. (2003b). A Tabu-search Hyper-
heuristic for Timetabling and Rostering. Journal of Heuristics, Vol. 9,
pp. 451-470.

Burke E.K., Landa Silva J.D. (2002). Improving the Performance of Mul-
tiobjective Optimisers by Using Relaxed Dominance. Proceedings of
the 4th Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL 2002), Singapore, pp. 203-207.

Burke E.K., Landa Silva J.D. (2005). The Influence of the Fitness Eval-
uation Method on the Performance of Multiobjective Optimisers. To
appear in European Journal of Operational Research.

Burke E.K., Newall J. (2004). Solving Examination Timetabling Prob-
lems Through Adaptation of Heuristic Orderings. Annals of opera-
tions Research, Vol. 129, pp. 107-134.

Burke E.K., Varley D.B. (1998). Space Allocation: An Analysis of Higher
Education Requirements. The Practice and Theory of Automated
Timetabling II: Selected Papers from the 2nd International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT
97), Lecture Notes in Computer Science, Springer, Vol. 1408, pp. 20-
33.

Carter M.W., Laporte G. (1998). Recent Developments in Practical
Course Timetabling. The Practice and Theory of Automated Timetabling

28

II: Selected Papers from the 2nd International Conference on the
Practice and Theory of Automated Timetabling (PATAT 97), Lec-
ture Notes in Computer Science, Vol. 1408, Springer, pp. 3-19.

Coello Coello C.A., Van Veldhuizen D.A., Lamont G.B. (2002). Evo-
lutionary Algorithms for Solving Multi-Objective Problems, Kluwer
Academic Publishers.

Cowling P., Kendall G., Han L. (2002). An Investigation of a Hyper-
heuristic Genetic Algorithm Applied to a Trainer Scheduling Prob-
lem. Proceedings of the 2002 Congress on Evolutionary Computation
(CEC 2002), pp. 1185-1190.

Cowling P., Kendall G., Soubeiga E. (2000). A Hyperheuristic Approach
to Scheduling a Sales Summit. The Practice and Theory of Automated
Timetabling III: Selected Papers from the 3rd International Confer-
ence on the Practice and Theory of Automated Timetabling PATAT
2000, Lecture Notes in Computer Science, Vol. 2079, Springer, pp.
176-190.

Cowling P., Kendall G., Soubeiga E. (2001). Hyperheuristics: A Tool for
Rapid Prototyping in Scheduling and Optimisation. Second European
Conference on Evolutionary Computing for Combinatorial Optimisa-
tion (EvoCop 2002), Lecture Notes in Computer Science, Vol. 2037,
Springer, pp. 1-10.

Cowling P., Kendall G., Soubeiga E. (2002b). Hyperheuristics: A Robust
Optimisation Method Applied to Nurse Scheduling. Proceedings of
the VII Parallel Problem Solving From Nature (PPSN VlI), Lecture
Notes in Computer Science, Vol. 2439, Springer, pp. 7-11.

Czyzak P., Jaszkiewicz A. (1998) Pareto Simulated Annealing - A Meta-
heuristic for Multiple-objective Combinatorial Optimization. Journal
of Multicriteria Decision Analysis, Vol. 7, No. 1, pp. 34-47.

Deb K. (2001). Multi-Objective Optimization Using Evolutionary Algo-
rithms, Wiley.

Deb K., Manikanth M., Mishra S. (2003). Towards a Quick Computation
of Well-Spread Pareto Optimal Solutions. Proceedings of the 2nd In-
ternational Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), Faro Portugal, Lecture Notes in Computer Science, Vol.
2632, Springer, pp. 222-236.

Farina M., Amato P. (2003). Fuzzy Optimality and Evolutionary Multi-
objective Optimization. Proceedings of the 2nd International Confer-
ence on Evolutionary Multi-Criterion Optimization (EMO 2003), Faro
Portugal, Lecture Notes in Computer Science, Vol. 2632, Springer, pp.
58-72.

Gaw A., Rattadilok P., Kwan R.S.K. (2004). Distributed Choice Func-
tion Hyper-Heuristics for Timetabling and Scheduling. Proceedings of

REFERENCES 29

the 2004 International Conference on the Practice and Theory of Au-
tomated Timetabling (PATAT 2004), Pittsburgh USA, pp. 495-497.

Glover F., Laguna M. (1997). Tabu Search. Kluwer Academic Publishers.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimisation and

Machine Learning. Addison Wesley.
Gunawan S., Farhang A., Azarm 5. (2003). Multi-level Multi-objective

Genetic Algorithm Using Entropy to Preserve Diversity. Proceedings
of the 2nd International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2003), Faro Portugal, Lecture Notes in Computer
Science, Vol. 2632, Springer, pp. 148-161.

Han L., Kendall G. (2003). Investigation of a Tabu Assisted Hyper-
Heuristic Genetic Algorithm. Proceedings of the 2003 Congress on
Evolutionary Computation (CEC2003), Canberra Australia, pp. 2230-
2237, IEEE Press.

Hansen P., Mladenovic N. (2001). Variable Neighbourhood Search: Prin-
ciples and Applications. European Journal of Operational Research,
Vol. 130, No. 3, pp. 449-467.

Hart E., Ross P. (1998). A Heuristic Combination Method for Solving
Job-shop Scheduling Problems, Proceedings of the V Parallel Problem
Solving From Nature (PPSN V), Lecture Notes in Computer Science,
Vol. 1498, Springer, pp. 845-854.

Horn J. (2003). Niche Distributions on the Pareto Optimal Front, Pro-
ceedings of the 2nd International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Faro Portugal, Lecture Notes in
Computer Science, Vol. 2632, Springer, pp. 365-375.

Ishibuchi H., Yoshida T., Murata T. (2002). Selection of Initial Solu-
tions for Local Search in Multiobjective Genetic Local Search. Pro-
ceedings of the 2002 Congress on Evolutionary Computation (CEC
2002), Hawaii USA, pp. 950-955.

Ishibuchi H., Shibata Y. (2003). An Empirical Study on the Effect of
Mating Restriction on the Search Ability of EMO Algorithms. Pro-
ceedings of the 2nd International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Faro Portugal, Lecture Notes in
Computer Science, Vol. 2632, Springer, pp. 433-447.

Jin H., Wong M.L. (2003). Adaptive Diversity Maintenance and Con-
vergence Guarantee in Multiobjective Evolutionary Algorithms. Pro-
ceedings of the 2003 Congress on Evolutionary Computation (CEC
2003), Camberra Australia, IEEE Press, pp. 2498-2505.

Jones D.F., Mirrazavi S.K., Tamiz M. (2001). Multiobjective Meta-
heuristics: An Overview of the Current State-of-the-Art. European
Journal of Operational Research, Vol. 137, No. 1, pp. 1-9.

30

Kaelbling L.P., Littman M.L., Moore A.W. (1996). Reinforcement Learn-
ing: A Survey, Journal of Artificial Intelligence Research, Vol. 4, pp.
237-285.

Knowles J., Corne D.C. (2000). Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy, Evolutionary Compu-
tation, Vol. 8, No. 2, pp. 149-172.

Kokolo I., Hajime K., Shigenobu K., Failure of Pareto-based MOEAS,
Does Non-dominated Really Mean Near to Optimal?, Proceedings of
the 2001 Congress on Evolutionary Computation (CEC 2001), pp.
957-962, 2001.

Kumar R., Rockett P. (2002). Improved Sampling of the Pareto-front
in Multiobjective Genetic Optimization by Steady-state Evolution:
A Pareto Converging Genetic Algorithm, Evolutionary Computation,
Vol. 10, No. 3, pp. 283-314.

Landa Silva J.D. (2003). Metaheuristic and Multiobjective Approaches
for Space Allocation. PhD Thesis, School of Computer Science and
Information Technology, University of Nottingham.

Laumams M., Thiele L., Deb K., Zitzler E. (2002). Combining Con-
vergence and Diversity in Evolutionary Multiobjective Optimization.
Evolutionary Computation, Vol. 10, No. 3, pp. 263-282.

Laumanns M., Zitzler E., Thiele L. (2001). On the Effects of Archiving,
Elitism, and Density Based Selection in Multi-objective Optimiza-
tion. Proceedings of the 1st International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001), Lecture Notes in Com-
puter Science, Vol. 1993, Springer, pp. 181-196.

Lu H., Yen G.G. (2002). Rank-density Based Multiobjective Genetic
Algorithm. Proceedings of the 2002 Congress on Evolutionary Com-
putation (CEC 2002), Hawaii USA, IEEE Press, PP. 944-949.

Martello S., Toth P. (1990). Knapsack Problems - Algorithms and Com-
puter Implementations.Wiley.

Mostaghim S., Teich J. (2003). The Role of e-dominance in Multi-objective
Particle Swarm Optimization Methods. Proceedings of the 2003 Congress
on Evolutionary Computation (CEC 2003), Camberra Australia, IEEE
Press, PP. 1764-1771.

Murata T., Ishibuchi H., Gen M. (2001). Specification of Genetic Search
Directions in Cellular Multi-objective Genetic Algorithms. Proceed-
ings of the 1st International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2001), Lecture Notes in Computer Science, Vol.
1993, Springer, pp. 82-95.

Rosenthal R.E. (1985). Principles of Multiobjective Optimization. Deci-
sion Sciences, Vol. 16, pp. 133-152.

REFERENCES 31

Ross P., Marin-Blazquez J.G., Schulenburg S., Hart E. (2003). Learning
a Procedure that Can Solve Hard Bin-packing Problems: A New GA-
based Approach to Hyper-heuristics. Proceedings of the 2003 Genetic
and Evolutionary Computation Conference (GECCO 2003), Lecture
Notes in Computer Science, Vol. 2724, Springer, pp. 1295-1306.

Ross P., Schulenburg S., Marin-Blazquez J.G., Hart E. (2002). Hyper-
heuristics: Learning to Combine Simplke Heuristics in Bin-packing
Problems. Proceedings of the 2002 Genetic and Evolutionary Compu-
tation Conference (GECCO 2002), Morgan Kaufmann, pp. 942-948.

Rossi-Doria O., Sampels M., Birattari M., Chiarandini M., Dorigo M.,
Gambardella L.M., Knowles J., Manfrin M., Mastrolilli M., Paechter
B., Paquete L., Sttzle T. (2003). A Comparion of the Performance of
Different Metaheuristics on the Timetabling Problem, The Practice
and Theory of Automated Timetabling IV : Selected Papers from the
4th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT 2002), Lecture Notes in Computer Sci-
ence, Vol. 2740, Springer, pp. 330-352.

Salman F.S., Kalagnaman J.R., Murthy S., Davenport A. n(2002). Co-
operative Strategies for Solving Bicriteria Sparse Multiple Knapsack
Problem, Journal of Heuristics, Vol. 8, pp. 215-239.

Schaerf A. (1999). A Survey of Automated Timetabling. Artificial Intel-
ligence Review, Vol. 13, pp. 87-127.

Socha K., Knowles J., Samples M. (2002). A Max-Min Ant System for
the University Course Timetabling Problem. Ant Algorithms: Pro-
ceedings of the Third International Workshop (ANTS 2002), Lecture
Notes in Computer Science, Vol. 2463, Springer, pp. 1-13.

Socha K., Kisiel-Dorohinicki M. (2002). Agent-based Evolutionary Mul-
tiobjective Optimization. Proceedings of the 2002 Congress on Evo-
lutionary Computation (CEC 2002), Hawaii USA, IEEE Press, PP.
109-114.

Soubeiga E. (2003). Development and Application of Hyperheuristics to
Personnel Scheduling, PhD Thesis, School of Computer Science and
Information Technology, University of Nottingham, June 2003.

Steuer Ralph E. (1986). Multiple Criteria Optimization: Theory, Com-
putation and Application. Wiley.

Sutton R.S., Barto A.G. (1998). Reinforcement Learning, MIT Press.
Talbi E.G., Rahoudal M., Mabed M.H., Dhaenens C. (2001). A Hybrid

Evolutionary Approach for Multicriteria Optimization Problems: Ap-
plication to the Flow Shop. Proceedings of the 1st International Con-
ference on Evolutionary Multi-criterion Optimization (EMO 2001),
Lecture Notes in Computer Science, Vol. 1993, Zurich Switzerland,
Springer, pp. 416-428.

32

Toscano Pulido G., Coello Coello C.A. (2003). The Micro Genetic Al-
gorithm 2: Towards Online Adaptation in Evolutionary Multiobjec-
tive Optimization. Proceedings of the 2nd International Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003), Lecture
Notes in Computer Science, Vol. 2632, Springer, pp. 252-266.

Ulungu E.L., Teghem J. Fortemps P.H., Tuyttens D. (1999). MOSA
Method: A Tool for Solving Multiobjective Combinatorial Optimiza-
tion Problems. Journal of Multicriteria Decision Analysis, Vol. 8, pp.
221-236.

Zhu Z.Y., Leung K.S. (2002). Asynchronous Self-adjustable Island Ge-
netic Algorithm for Multi-objective Optimization Problems. Proceed-
ings of the 2002 Congress on Evolutionary Computation (CEC 2002),
Hawaii USA, IEEE Press, pp. 837-842.

