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The overall aim in multi-objective optimization is to aid the decision-
making process when tackling multi-criteria optimization problems. In
an a posteriori approach, the strategy is to produce a set of non-
dominated solutions that represent a good approximation to the Pareto
optimal front so that the decision-makers can select the most appropriate
solution. In this paper we propose the use of diversity measures to guide
the search and hence, to enhance the performance of the multi-objective
search algorithm. We propose the use of diversity measures to guide the
search in two different ways. First, the diversity in the objective space is
used as a helper objective when evaluating candidate solutions. Secondly,
the diversity in the solution space is used to choose the most promis-
ing strategy to approximate the Pareto optimal front. If the diversity is
low, the emphasis is on exploration. If the diversity is high, the empha-
sis is on exploitation. We carry out our experiments on a two-objective
optimization problem, namely space allocation in academic institutions.
This is a real-world problem in which the decision-makers want to see a
set of alternative diverse solutions in order to compare them and select
the most appropriate allocation.

1. Introduction

This paper is concerned with the application of the class of approaches
known as meta-heuristics to tackle multi-objective optimization problems.
We assume that the reader is familiar with the fields of multi-criteria
decision-making2,39 and multi-objective optimization7,10. Recent surveys
on the application of meta-heuristics to multi-objective optimization prob-
lems are those provided by Jones et al.19, Tan et al.42 and Van Veldhuizen
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and Lamont45. Multi-objective optimization is a very active research area
that has received increased attention from the scientific community and
from practitioners in the last ten years or so. One main reason for this is
that many real-world problems are multi-criteria optimization problems.
This means that in these problems, the quality of solutions is measured
taking into account several criteria that are in partial or total conflict.
Therefore, there is no such global optimum solution but a number of them
that represent a trade-off between the various criteria. It is also commonly
the case that more than one decision-maker is involved in the selection
of the most appropriate solution to the multi-criteria problem. Then, the
overall aim in multi-objective optimization is to aid the decision-makers to
tackle this type of problems. One of the strategies for this is to produce a
set of solutions that represent a good approximation to the trade-off sur-
face. Then, the decision-makers can decide which of the solutions in this
set is the most adequate for the problem at hand. In general terms, a good
approximation set should be as close as possible to the optimal front and it
should also give a good coverage of the optimal front. The goal of achiev-
ing a good coverage of the trade-off surface, i.e. maintain the diversity and
spread of solutions, is of particular interest in multi-objective optimization.
A number of techniques to accomplish this goal have been proposed in
the literature, e.g. weighted vectors, clustering or niching methods (fitness
sharing, cellular structures, adaptive grids, etc.), restricted mating, relaxed
forms of dominance, helper objectives, and objective-driven heuristic se-
lection (hyper-heuristics). Most of these techniques are targeted towards
maintaining diversity in the objective space. However, in some scenarios,
the decision-makers are also concerned with the diversity of solutions in the
solution space. Then, to serve as a useful tool in tackling multi-criteria opti-
mization problems, the multi-objective optimization algorithm should have
the mechanisms to find the set of solutions that satisfy the requirements of
the decision-makers. That is, solutions that are close to the optimal front
and have the desired diversity in the objective space, the solution space or
both spaces. One goal in this paper is to present an overview of a number
of techniques that have been proposed in the literature to maintain a di-
verse set of solutions when tackling multi-objective optimization problems.
Another goal here is to describe some mechanisms that we implemented to
help a multi-objective search algorithm to obtain a diverse set of solutions
for a real-world optimization problem with two objectives. These mecha-
nisms consist on using diversity measures, in both the objective space and
the solution space, to guide the search and enhance the performance of the
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multi-objective search algorithm. We carry out experiments on three tests
instances of the space allocation in academic institutions. In this prob-
lem, a set of entities (staff, computer rooms, teaching rooms, etc.) must
be allocated into a set of available areas of space or offices and a number
of additional constraints should also be satisfied. In the space allocation
problem, the decision-makers are interested in the diversity of solutions in
both the objective space and the solution space. The results of our experi-
ments show that the proposed mechanisms help the algorithm to produce a
set of compromise solutions that better satisfies the requirements from the
decision-makers. The rest of this paper is organized as follows. Section 2
discusses the issue of diversity in the context of multi-objective optimiza-
tion. Section 3 gives an overview of some of the mechanisms incorporated
into modern multi-objective search algorithms to achieve a good coverage
of the trade-off surface. A description of the two-objective space allocation
problem and the way in which diversity in the objective space and diversity
in the solution space are measured in this problem are the subject of Sec. 4.
The diversity control mechanisms implemented to guide the search and the
algorithm in which these mechanisms were incorporated are described in
Sec. 5. The experiments and results are presented and discussed in Sec. 6
while Sec. 7 gives a summary of this paper.

2. Diversity in Multi-objective Optimization

Given two solutions x and y for a k-criteria optimization problem, x is
said to weakly dominate y if x is as good as y in all the k criteria and
better in at least one of them. In the case that x is better than y in all
the k criteria, x is said to strictly dominate y. In the following, we refer
to weak dominance simply as dominance. A solution x is said to be non-
dominated with respect to a set of solutions S is there is no solution in S

that dominates x. The Pareto optimal front denoted SP is the set of all
non-dominated solutions with respect to the whole set of feasible solutions
SF . Then, the goal of a multi-objective search algorithm is to find a set SND

of non-dominated solutions for a given multi-criteria optimization problem.
The non-dominated set SND should represent a good approximation to the
Pareto optimal front SP . This means that the solutions in SND should be:

• As close as possible to the Pareto optimal front SP ,
• widely spread across the entire trade-off surface, and
• uniformly distributed across the entire trade-off surface.
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The closeness of SND to the Pareto optimal front SP gives an indica-
tion of how good is the convergence towards the optimal front. The spread
and distribution of SND give an indication of how good is the coverage of
the Pareto optimal front SP . This is illustrated in Fig. 1 where various
non-dominated sets are depicted for a two-objective minimization problem.
Using the notation in Fig. 1, it is clear that an effective multi-objective
search algorithm should find an approximation set with the characteristics
of S1(c+,s+,d+). Moreover, in some real-world scenarios the decision-makers
are interested on a set of alternative solutions like those in S1 but at the
same time, they want to see solutions that have a certain diversity with
respect to the solution space. This is the case for the problem tackled in
this paper, space allocation in academic institutions, as it will be explained
later. Then, in order to achieve the aim of assisting the decision-making
process, a multi-objective search algorithm must also take into account the
diversity of SND with respect to the solution space.

Fig. 1. The quality of the non-dominated set is given by the closeness to the Pareto
optimal front (c+ is close, c− is far), the spread of solutions (s+ is good spread, s−
is poor spread) and the distribution of solutions (d+ is good distribution, d− is poor
distribution). Then, the quality of the non-dominated sets in this Fig. can be described
as follows: S1(c+,s+,d+), S2(c−,s+,d+), S3(c+,s+,d−), S4(c−,s+,d−), S5(c+,s−,d+),
S6(c−,s−,d+), S7(c+,s−,d−), and S8(c−,s−,d−).

3. Maintaining Diversity in Multi-Objective Optimization

The majority of meta-heuristics proposed for multi-objective optimization
incorporate a specialized mechanism to help achieving a good diversity with
respect to the objective space. As it was pointed out by Laummans et al.28,
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this is not a straightforward task because many algorithms that implement
specific mechanisms to maintain diversity suffer from deterioration which
affect their convergence ability. This Sec. gives an overview of a number of
strategies that have been proposed in the literature to maintain diversity
in multi-objective optimization. For more references to multi-objective op-
timization algorithms that incorporate mechanisms for diversification not
discussed here, see the survey by Tan et al.42 and also the books by Coello
Coello et al.7 and Deb10.

3.1. Weighted Vectors

One of the first techniques that were proposed to achieve a better diversity
of solutions in multi-objective optimization is the use of weighted vectors
to specify the search direction and hence, aim a better coverage of the
trade-off surface. This method consists on setting a vector of k weights
W = [w1, w2, . . . wk] where 0 ≤ wi ≤ 1, k is the number of objectives in
the problem and the sum of all wi equals 1. The fitness of a solution x

is calculated as f(x) = w1f1(x) + w2f2(x) + . . . wkfk(x) where fi(x) mea-
sures the quality of x with respect to the ith criterion. The strategy is to
systematically generate a set of vectors in order to approach the trade-off
surface from all directions. Weighted vectors is a popular technique that
has been used in a number of algorithms like the multi-objective cellular
genetic algorithm of Murata et al.35 and the multiobjective simulated an-
nealing algorithm of Ulungu et al.43. Another approach that uses weighted
vectors to encourage diversity is the Pareto simulated annealing algorithm
of Czyzak and Jazkiewicz8. Their strategy is to modify the weights for a
solution x so that x is moved away from its closest neighbor xcn by in-
creasing the weights of those objectives in which x is better than xcn and
decreasing the weights for those objectives in which x is worse than xcn.
In another approach implemented by Gandibleux et al.14, the set of sup-
ported solutions is first computed. Then, the information obtained from
these solutions is used to guide the search and improve the performance of
a population heuristic. Ishibuchi et al.15 used weight vectors in a different
way to encourage diversity. Instead of generating a weighted vector to spec-
ify a search direction for a solution, they choose an appropriate solution for
a randomly specified weight vector. The selection of the solution for a given
vector is based on the position of the solution in the objective space. That
is, they attempt to set an appropriate search direction for each new solution
in order to achieve a better approximation set.
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3.2. Fitness Sharing

In this mechanism the idea is to decrease the fitness of individuals that are
located in crowded regions in order to benefit the proliferation of solutions in
sparse regions. Usually, the fitness of an individual is reduced if the distance
to its closer neighbor is smaller than a predefined value. Fitness sharing can
be implemented in the objective space or in the solution space. However,
most of the implementations of fitness sharing reported in the literature are
on the objective space. For example, Zhu and Leung47 implemented fitness
sharing in their asynchronous self-adjustable island genetic algorithm. Talbi
et al.41 implemented fitness sharing mechanisms in both the objective space
and the solution space. In their experiments, they observed that fitness
sharing in the objective space appears to have a stronger influence on the
search than fitness sharing in the solution space, but they also noted that
the combination of both fitness sharing mechanisms improved the search.

3.3. Crowding/Clustering Methods

These methods attempt to control the number of solutions in each region
of the trade-off surface. The general idea here is to limit the proliferation
of solutions in crowded or over-populated areas and at the same time, to
encourage the proliferation of solutions in sparse or under-populated areas.
An example of this type of mechanisms is the adaptive grid implemented
by Knowles and Corne22 in their Pareto archived evolutionary strategy.
They divide the k-objective space into 2l·k regions where l is the number
of bisections in each of the k dimensions. Then, based on the crowdedness
of the region in which the new solution lies, a heuristic procedure is used
to decide if the new solution is accepted or not. Lu and Yen29,30 used
a modified version of the adaptive grid of Knowles and Corne. In their
algorithm they modify the fitness of solutions based on the density value
of the population. They also associate an age indicator to each solution x

in the population in order to control its life span.
An agent-based crowding mechanism was proposed by Socha and Kisiel

Dorohinicki40 in which agents interact between them in order to encourage
the elimination of too similar solutions or agents. Each agent in the pop-
ulation contains an amount of energy and the crowding mechanism seeks
to maintain a uniform agent distribution along the trade-off surface and
prevent agent clustering in particular areas by discouraging agents from
creating groups of similar solutions. In their mechanism, an agent A com-
municates with another agent B and then the solutions from both agents,
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xA and xB respectively, are compared. If the similarity between xA and xB

(measured with a distance metric) is smaller than a predefined value, an
amount of energy is transferred from agent A to agent B. The amount of
energy transferred depends on the degree of similarity between xA and xB .
This is similar to fitness sharing but here, one agent receives and the other
provides.

3.4. Restricted Mating

Restricted mating is a mechanism that prevents the recombination of indi-
viduals that do not satisfy a predefined criterion. Most of the times, this
criterion is that mating individuals should not be too close to each other in
the objective space or in the solution space. In this sense, restricted mating
can be regarded as a mechanism that is similar to crowding/clustering. An
example of restricted mating is the strategy implemented by Kumar and
Rockett21 in their Pareto converging genetic algorithm. That algorithm is
an island based approach in which the genetic operations are restricted to
individuals within the same island. There is no migration between islands
and no cross-fertilization between individuals in two different islands. How-
ever, two islands can be merged into one island in order to test convergence
during the search. Their algorithm is a steady-state approach that pro-
duces only one offspring in each iteration. Kumar and Rocket argue that
the steady-state nature of the algorithm helps maintain diversity because
genetic drift, which is inherent in generational genetic algorithms, is less
likely to occur. Other examples of restricted mating mechanisms are used
in the approaches implemented by Lu and Yen29,30 and the cellular genetic
algorithm of Murata et al.35.

3.5. Relaxed Forms of Dominance

Another strategy to encourage diversity that has been explored recently
by several researchers, is to use relaxed forms of the dominance relation
to assess the fitness of individuals. As described in Sec. 2, in the standard
dominance relation a solution x is considered better than another solution
y only if x is not worse than y in all the objectives and x is better that
y in at least one of the objectives. In the relaxed forms of dominance, the
basic idea is to consider a solution x as better that a solution y even if
x is worse that y in some objective(s). Usually, the condition is that such
deterioration must be compensated by a good improvement in the value of
other objective(s). The idea is that by using relaxed forms of dominance,
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the algorithm will be capable of exploring more of solutions and hence, to
maintain a better diversity. For example, Laumanns et al.28 proposed the
use of ε-dominance to implement archiving/selection strategies that per-
mit to achieve a better convergence and distribution of the approximation
non-dominated set. Burke and Landa Silva3 used a variant of α-dominance,
which is also a relaxed form of dominance, to improve the converge ability
of two multi-objective search algorithms. Mostaghim and Teich34 compared
the performance of a multi-objective optimization algorithm when using a
clustering technique and when using the ε-dominance method. They ob-
served in their experiments that using ε-dominance to update the archive
of non-dominated solutions, was beneficial because it helped to reduce the
computation time and it also helped to achieve a better convergence and
comparable diversity.

Another interesting aspect of using relaxed forms of the dominance re-
lation is that it can help to identify those solutions that are more attractive
to the decision-makers out of the set of solutions in the trade-off surface,
which can be of considerable size. As it was pointed out by Farina and
Amato13, the number of solutions that can be considerable equal or incom-
parable (based on standard dominance) to the current solution, increases
considerably with the number of objectives. They developed the notion
of k-dominance in which they proposed to take also into consideration
the number of incomparable or equal objectives in the new solution and
the normalized size of improvement achieved in the other objectives. In
k-dominance v1 k-dominates v2 if and only if:

ne < M and nb ≥ M−ne

k+1 where 0 ≥ k ≤ 1

In the above, nb is the number of objectives in which v1 is better than
v2, and ne is the number of objectives in which v1 and v2 are equal. Farina
and Amato also extended k-dominance by evaluating the number of nb, ne,
in a fuzzy way instead of a crisp way by introducing a tolerance on the ith
objective, that is the interval at which an improvement on objective i is
meaningless. Jin and Wong17 also investigated archiving techniques based
on their concept of relaxed dominance, called E-dominance. The main fea-
ture of their archiving mechanism is that it adapts according to the solutions
that have been found. It also includes the concept of hyper-rectangles to
enclose the search space even considering unseen solutions. This gives their
technique the advantage of not requiring prior knowledge of the objective
space (objective values).
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3.6. Helper Objectives

The specification of helper objectives is a strategy that has been used to
aid the search not only in multi-objective optimization but also in single-
objective optimization. For example, this mechanism can be used to handle
constraints by treating each constraint as additional objective to be op-
timised. In single-objective optimization the aim of helper objectives is
help on maintaining diversity and escaping from local optima. For exam-
ple, Jensen16 and Knowles et al.20 proposed the ‘multi-objectivization’ of
single-objective optimization problems which is decomposing the single-
objective problem into subcomponents by considering multiple objectives.
In this way, ‘multi-objectivization’ can help to remove local optima because
for the search process to be stuck it is required that all objectives are stuck.
The helper objectives should be chosen so that they are in conflict with the
main objective, at least partially.

3.7. Objective Oriented Heuristic Selection

Another idea that has been proposed to help maintaining diversity in multi-
objective optimization is to adapt the local search strategy according to
the current distribution of solutions in the objective and/or the solution
space. For example, Knowles and Corne23 proposed to adapt the focus of
the search on exploration or exploitation when approximating the Pareto
front, by selecting the most adequate between three search strategies: 1)use
a population-based method that tries to improve in all objectives at once in
order to approach the Pareto front from all directions, 2)generate a weighted
vector which is used to specify a specific search direction, or 3)use a single-
solution local search method that tries to move along the Pareto front by
perturbing one solution and obtain a nearby point in the front.

The selected strategy depends on the correlation between distance in
the solution space and distance in the objective space. This strategy was
also investigated by Jin and Sendhoff18 for some continuous test problems.
Adapting the local search heuristic according to the value of the objectives
in the solutions has also been proposed as a mechanism to maintain di-
versity while converging to the Pareto front. For example, Burke et al.5

implemented an approach that has been termed ‘hyper-heuristic’. The idea
is to use a guiding/learning method that choses the most promising heuris-
tic in order to push solutions towards the desired area in the objectives of
interest. This technique takes into consideration the localization of the so-
lution in the objective space and the ability of each local search heuristic to
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achieve improvements on each objective. The idea is to try improving poor
objectives while maintaining the rich ones. Adapting the heuristic local
search is interesting when using hybrid approaches that use local search in
an efficient way. Then, the analysis or pre-sampling of the fitness landscape
can be useful to design a good hybrid32.

3.8. Using Diversity to Guide the Search

Various evolutionary algorithms for multi-objective optimization use esti-
mators of density in the objective space to bias the selection operator in
order to maintain diversity in the population. Laumanns et al.27 noted that
the accuracy of the density estimator used has a strong effect on the perfor-
mance of the selection strategy and hence, the density estimator should be
good for the diversity maintenance strategy to be effective. Also, Knowles
et al.25 proposed a bounded archiving technique that attempts to maximize
the hypervolume covered by the approximation set. They compared the per-
formance of their archiving technique against other methods and obtained
promising results. However, they pointed out that the computational cost
was considerable for more than three objectives.

In single-objective optimization some researchers have also made some
efforts towards designing evolutionary algorithms that maintain diversity
in an adaptive fashion by using diversity measures to guide the search.
For example, Ursem44 proposed a diversity-guided evolutionary algorithm
that alternates between phases of exploration and exploitation according
to a measure of the diversity in the population given by the distance to
the average point. If the diversity is below a threshold dlow, the algorithm
uses selection and recombination in an exploration mode. If the diversity
is above a threshold dhigh, the algorithm uses mutation in an exploitation
mode. Another approach that uses diversity measures to guide the search
is the diversity-control-oriented genetic algorithm of Shimodaira38 in which
the probability of individuals to survive depends on the Hamming distance
between the individual and the best individual in the population.

4. The Two-Objective Space Allocation Problem

The management of physical space in universities is an important and dif-
ficult issue as it was discussed by Burke and Varley6. With the continuous
increase in the number of students and staff, it must be ensured that the
available estate is used as efficiently as possible while simultaneously sat-
isfying a considerable number of constraints. The allocation of office space
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to staff, postgraduate students, teaching rooms, computers rooms, etc. is
carried out manually is most universities. This is a process that takes a con-
siderable amount of time and effort from the space administrators. More
importantly, this manual distribution usually provokes an inefficient uti-
lization of the available estate.

4.1. Problem Description

The space allocation problem can be briefly described as follows. Given a set
of n entities (people, teaching rooms, computer rooms, etc.) and a set of m

available rooms, the problem is to allocate all the n entities into the m rooms
in such a way that the office space is used as efficiently as possible and the
additional constraints are satisfied. Each entity requires a certain amount
of spacea according to university regulations and each room has a given
capacity. It is very unlikely that the capacity of a room matches exactly the
amount of space required by the entities allocated to the room. Let ci be the
capacity of the ith room and let si be the space required by all the entities
allocated to the room. Then, if ci > si, space is said to be wasted, while
if ci < si, space is said to be overused. It is less desirable to overuse space
than to waste it. The overall space utilization efficiency is measured by the
amount of space that is being misused, i.e. space wasted plus space overused
for all rooms (space misuse is represented by F1). In addition to this, space
administrators should ensure that certain constraints are satisfied. Some
constraints are hard, i.e. they must be satisfied while other constraints are
soft, i.e. their violation should be minimized. The number of different types
of constraints varies considerably between problem instances but in general,
the constraints limit the ways in which the entities can be allocated to
rooms. For example, two professors must not share a room, a computer room
should be allocated in the ground floor and adjacent to a seminar room,
teaching rooms must be away from noisy areas, postgraduate students in the
same research group should be grouped together, etc. The penalty applied
when a constraint is violated depends on the type of constraint and it may
also vary from one problem instance to another (soft constraints violation
is represented by F2). A solution or allocation is represented here by a
vector Π = [π1, π2, . . . , πn] where each πj ∈ {1, 2, . . . , m} for j = 1, 2, . . . , n

indicates the room to which the jth entity has been allocated.
In a multi-criteria optimization problem, the criteria can be conflict-

aNote that here, space is the floor area usually measured in m2.
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ing, harmonious or independent and this has an influence on the difficulty
to achieve a good approximation to the Pareto front as it was discussed
by Purshouse and Fleming37. The existence of conflicting criteria makes
more difficult to achieve a good convergence. If the criteria are harmonious,
convergence is not affected but achieving a good diversity may be more
difficult because it is very probable that solutions will have similar values
in the harmonious criteria. If the criteria are independent, it is possible to
decompose the problem and then to use a divide and conquer strategy to
solve it. An investigation into the conflicting nature of the criteria in the
space allocation problem was carried out by Landa Silva26. In that inves-
tigation it was found that in general, the minimization of space wastage
is not in conflict with the minimization of space overuse and that the sat-
isfaction of different types of soft constraints is not in conflict with each
other. However, it was also found that the minimization of space misuse
(overuse and wastage) is in strong conflict with the minimization of soft
constraints violation. Therefore, we consider two objectives in the space
allocation problem:

(1) Minimization of space misuse, i.e. minimization of F1.
(2) Minimization of soft constraints violation, i.e. minimization of F2.

In this problem, space administrators often know of additional con-
straints which are not (or cannot for political reasons) be explicitly built
into the objectives. For example, when two members of staff have a per-
sonality clash and cannot be allocated in the same room. Another common
example is when people have a preference for certain type of rooms. There-
fore, in this context, the aim of a multi-objective optimization algorithm is
to aid the space administrators by finding a set of alternative high-quality
allocations. Space administrators usually want to see a set of allocations
which are very similar in certain aspects while being very different in other
aspects. For example, administrators may want to see two or more alterna-
tive solutions in which the teaching areas are allocated to the same rooms
in each of the allocations but with different ways of distributing offices to
people. Another example is when the allocation needs to be re-organized
and the space administrators want to explore alternative non-dominated
solutions that are very similar to the existing distribution in order to avoid
major disruptions. Then, in the space allocation problem it is important to
take into consideration the diversity of the set of allocations with respect
to the solution space.

Besides its practical interest, the space allocation problem as described
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here is of scientific importance because it can be formulated as a variant of
the multiple knapsack problem which is an important problem in combina-
torial optimization (see Dawande et al.9 and Martello and Toth31).

4.2. Measuring Diversity of Non-dominated Sets

There are various papers in the literature that propose, compare and discuss
indicators to assess the performance of multi-objective optimization algo-
rithms. These include those by Knowles and Corne24 Ang et al.1, Farhang-
Mehr and Azarm12, Tan et al.42, Okabe et al.36 and others. Assessing the
diversity (in the solution space or in the objective space) of a non-dominated
set is a difficult task because, as it was discussed in Sec. 2, the diversity
should be measured in terms of the distribution and the spread of solutions
in the set. Some of the indicators proposed in the literature seek to evalu-
ate the quality of the spread and the distribution of solutions. For example,
the S metric of Zitzler and Thiele48 calculates the hypervolume of the k-
dimensional region covered by the approximation set. But a reference point
must be given in order to compute the hypervolume and the location of this
reference point may have an influence on how two or more non-dominated
sets compare. Deb et al.10 proposed a spacing metric designed to measure
how evenly points are distributed. That metric is based on computing the
Euclidean distance between each pair of non-dominated solutions and it
also requires the boundary solutions. Another spacing metric which is also
based on the Euclidean distance between pairs of non-dominated solutions
is the one described by Van Veldheuzien and Lamont46. Other metrics that
have been proposed to estimate the diversity of a population of solutions
are based on entropy as proposed by Farhang-Mehr and Azarm11. These
metrics require the division of the objective space into a cellular structure.
A high entropy value indicates a better distribution of solutions across the
trade-off surface because it measures the flatness of the distribution of so-
lutions or points.

In this paper, diversity in the objective space is measured using a pop-
ulation metric proposed by Morrison and De Jong33. We have selected this
metric because it does not require reference solutions and it is also related
to the Hamming and Euclidean distances between solutions. The metric by
Morrison and De Jong is inspired on concepts of mechanical engineering,
specifically on the moment of inertia which measures mass distribution of
an object. The centroid of a set of p points in a k-dimensional space has
coordinates given by eq. 1, where xi,j is the value of the ith dimension in
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the jth point. The measure of diversity for the population of p points, based
on their moment of inertia is given by eq. 2. The higher the value of I, the
higher the diversity of the set of p points.

ci =

∑p
j=1 xi,j

p
for i = 1, 2, . . . k (1)

I =
k∑

i=1

p∑

j=1

(xi,j − ci)
2 (2)

To measure diversity in the solution space, the metric used should pro-
vide a meaningful way to express the similarity between solutions for the
problem at hand. Therefore, we have designed a specific way of measuring
diversity in the solution space for the space allocation problem. Equation
3 gives the percentage of non-similarity or variety used here as a measure
of diversity for a set of allocations, where D(j) is the number of different
values in the jth position for all the p vectors representing the solutions.
Figure 2 illustrates how the percentage of variety is calculated for a set of
p = 5 allocations.

V =

∑n
j=1

D(j)−1
p−1

n
· 100 (3)

 Five strings representing allocations 

 A A A A A A A 

 A A B B A B B 

 A B B C B C C 

 A B B C B D D 

 A B B C C D E 

D(j) 1 2 2 3 3 4 5 

(D(j) – 1) / (p – 1) 0 0.25 0.25 0.50 0.50 0.75 1 

V(p) = ( 3.25 / 7 ) x 100 = 46.42 % 

Fig. 2. Calculation of the percentage of variety V for a set of p = 5 allocations. The
number of entities is n = 7 and the number of rooms is m = 5.
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5. Using Diversity to Guide the Search

In this Sec. we describe the strategies that we implemented in order to
obtain approximation sets that better satisfy the requirements from the
decision makers in the space allocation problem. The diversity indicators I

(eq. 2) and V (eq. 3) described above are used to guide the search and find
sets of non-dominated solutions that are diverse with respect to both the
solution space and the objective space.

5.1. Diversity as a Helper Objective

We use the diversity in the objective space as a helper objective in order
to decide when a candidate solution is considered attractive. Let P be
a population of solutions from which a solution x is used to generate a
candidate solution x′. Then, I (eq. 2) indicates the diversity of the set P

while I ′ indicates the diversity of the set P ′ in which x is replaced by x′.
We use the expression u dominates(c1, c2, ...) v to indicate that the criteria
c1, c2, ... are used to determine dominance between vectors u and v. Then,
a candidate solution x′ is considered attractive if x′ dominates(FT , I) x

where FT = F1 + F2. That is, x′ is considered better than x if FT (x′) <

FT (x) and I ′ ≥ I or if FT (x′) ≤ FT (x) and I ′ > I. Note that we use
the aggregated value FT instead the individual criteria F1 and F2. This
is because in our previous research we have observed that the aggregation
method was more beneficial than the dominance relationb for the overall
performance of our algorithm over all set of instances (see Burke and Landa
Silva4). Then, a candidate solution is accepted if it has better fitness (FT )
without worsening the diversity in the objective space (I) or if it has the
same fitness value but it improves the diversity in the objective space.

5.2. Diversity to Control Exploration and Exploitation

We use the diversity measure in the solution space to alternate between
the phases of exploration and exploitation in our algorithm. This is similar
to the strategy implemented by Ursem44 in single-objective optimization.
As it was discussed above, the measure V (eq. 3) is an indication of how
diverse a set of allocations is considered by the space administrators. The
value of V (PND) is used to control the algorithm search strategy, where

bWe also found that using relaxed forms of dominance (see Sec. 3.5) seems to improve
the performance of our algorithm but only in some problem instances.
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PND is the current set of non-dominated solutions. First, two threshold
values are set, Vgood is the diversity that is considered as ‘good’ in the
obtained set of non-dominated solutions and Vmin is the minimum diversity
that is accepted in the obtained set of non-dominated solutions. Then,
when V (PND) ≥ Vgood the algorithm is in exploitation mode and when
V (PND) < Vmin the algorithm enters the exploration mode. In exploitation
mode, the algorithm attempts to find better solutions by using local search
only. In exploration mode, the algorithm uses local search and a specialized
mutation operator in order to increase the diversity V (PND) of the current
set of non-dominated solutions. Based on our previous experience26 with
the space allocation problem, we set Vgood = 70% and Vmin = 30% in our
experiments.

5.3. The Population-based Hybrid Annealing Algorithm

Our algorithm is a population-based approach in which each individual is
evolved by means of local search and a specialized mutation operator. The
algorithm is shown in pseudocode 1 and is a modified version of our pre-
vious approach described elsewhere4. The modification consists on adding
the mechanisms described above to guide the search based on the diversity
measures. The population PC contains the current solution for each individ-
ual. The population PB contains the best solution (in terms of FT ) found by
each individual so far. The population PND is the external archive of non-
dominated solutions. A common annealing schedule is used to control the
evolution process of the whole population by means of the global acceptance
probability ρ (steps 6.3 and 6.4). The local search heuristic HLS selects the
type of move from relocate, swap, and interchange if all the n entities are
allocated. If there are unallocated entities (this occurs when the specialized
mutation operator is applied as described below), then HLS employs the
allocate move. Relocate moves an entity from one area to another, swap ex-
changes the assigned areas between two entities, interchange exchanges all
the allocated entities between two areas, and allocate finds a suitable area
to allocate an unallocated entity. The local search heuristic HLS incorpo-
rates a cooperation mechanism to encourage information sharing between
individuals in the population. This cooperation mechanism maintains two
matrices MT and MA of size n × m in which the cell (j, i) indicates the
allocation of the jth entity to the ith area. MT stores pairs (entity,area)
that are considered tabu for a number of iterations while MA stores those
that are considered attractive during the search.
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Pseudocode 1. The Population-based Hybrid Annealing Algorithm.

1.Generate the initial current population of solutions PC

2.Copy PC to the population of best solutions PB

3.Set acceptance probability ρ← 0, cooling factor 0 < α < 1,
decrement step η, re-heating step ϕ, and re-heating

counter τ ← 0 (η, ϕ and τ are a number of iterations)

4.For η iterations, apply the local search heuristic HLS

to each individual in PC

5.Set ρ← 1, mode = exploitation

6.For each XC in PC and its corresponding XB in PB,

6.1.Generate a candidate solution X′
C using HLS

6.2.If X′
C dominates(FT , I) XC, then XC ← X′

C
a)If X′

C dominates(FT , I) XB, then XB ← X′
C

6.3.If X′
C dominates(FT , I) XC is false, then

a)if ρ > 0 and a random generated number in the normal

distribution [0,1] is smaller than ρ, then XC ← X′
C

b)if ρ ≈ 0 (in our setting, if ρ < 0.0001), then

τ ← τ + 1 and if τ ≥ ϕ, then ρ← 1 and τ = 0
6.4.If (iterations mod η) = 0, then ρ← α · γ
6.5.If no solution in PND dominates(F1, F2) X′

C, update PND

7.If mode = exploitation and V (PND) < Vminimum,

then mode← exploration

8.if mode = exploration and V (PND) ≥ Vgood,

then mode← exploitation

9.If mode = exploration, then apply the specialized

mutation operator to each individual in PC

10.If stopping criterion has not been satisfied, go to Step 6

When a move produces a detriment in the fitness of the solution, MT

is updated as MT (j, i) = iterations + tenure which indicates that moves
involving that pair are considered tabu for tenure ≈ n iterations. When
a move produces an improvement in the fitness of the solutions, MA is
updated as MA = MA + 1 to indicate that the higher the value of the
cell, the more attractive the moves involving that pair are considered. The
purpose of the specialized mutation operator is to disturb solutions in a
controlled way in order to promote exploration. This operator unallocates
a maximum of n/5 entities from their assigned area of space. The entities to
be unallocated are selected in decreasing order of their associated penalty
(violation of soft constraints associated to the entity). The entities that are
unallocated by the mutation operator are re-allocated by the heuristic HLS .
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In the algorithm presented in pseudocode 1, the diversity I is used as a
helper objective in steps 6.2 and 6.3 while the diversity V (PND) is used to
guide the search in steps 7-9. In our previous approach4, the preference of
the candidate solution X ′

C over XC and XB in steps 6.2 and 6.3, is based
solely on the value of FT . The other difference in our previous implemen-
tation is that the specialized mutation operator (steps 7-9) is applied when
no individual in PB has achieved an improvement for η iterations instead
of being controlled by the diversity in the solution space as proposed here.

6. Experiments and Results

The purpose of our experiments was to investigate if the mechanisms de-
scribed above to guide the search based on the diversity measures I (eq. 2)
and V (eq. 3) help our algorithm to find better sets on non-dominated
solutions. Here, we are interested in finding sets of non-dominated allo-
cations that have a good spread and distribution in the objective space
but also have high diversity in the solution space. We compared the per-
formance of the algorithm presented in pseudocode 1 to our previous
implementation using the same real-world data sets nott1, nott1b and
trent1 described in that paper4 (these test instances are available from
http://www.cs.nott.ac.uk/~jds/research/spacedata.html).

6.1. Experimental Setting

For each test instance, we executed 10 runs of our algorithm described in
pseudocode 1 and 10 runs of the previous implementation. In each pair
of runs, the same initial set of solutions was used for the two algorithms.
In each run, the stopping criterion was a maximum number of solution
evaluations set to 100000, 80000 and 50000 for nott1, nott1b and trent1
respectively. The parameters for the algorithm were set as in our previous
paper4: |PC | = |PB | = 20, α = 0.95, η = n and ϕ = 10 ·n. We compared the
two algorithm implementations with respect to the online and the offline
performance. For the online performance, we directly compare the PND

sets obtained by the algorithms in each run. For the offline performance,
an overall non-dominated set is obtained for each algorithm by merging all
the 10 PND sets produced. A visual comparison of two non-dominated sets
found by the two algorithms was not possible because no evident difference
was observed in the bi-dimensional graph with axis F1 and F2. Therefore,
we used four criteria to compare two sets of non-dominated solutions: the
diversity in the objective space I (eq. 2), the diversity in the solution space



May 31, 2004 15:56 WSPC/Trim Size: 9in x 6in for Review Volume paper

Using Diversity to Guide the Search in Multi-objective Optimization 19

V (eq. 3), the number of non-dominated solutions found |PND| and the C

metric of Zitzler et al.49 which is given by eq. 4. If C(A, B) = 1, all solutions
in set B are dominated by at least one solution in set A. If C(A, B) = 0,
no solution in set B is dominated by a solution in set A. We used the C

metric because it directly compares the quality of two non-dominated sets,
it is simple to compute and it does not require knowledge of the Pareto
optimal front.

C (A, B) =
|{b ∈ B; ∃a ∈ A : a � b}|

|B| (4)

We carried out our experiments on a PC with a 3.0GHz processor, 768MB
of memory and running on Windows XP. The algorithms were coded on
MS Visual C++ version 6.0.

6.2. Discussion of Obtained Results

The results of the experiments described above are shown in tables 1 to 3.
Each table presents the results obtained for one test instance. DGPBAA
refers to the implementation described in pseudocode 1 (with the diversity
control mechanisms) and PBAA refers to the previous version (without the
diversity control mechanisms). The values in the columns I, V are computed
for the set PND. For the values in the column C(A, B), A represents the non-
dominated set obtained by DGPBAA and B represents the non-dominated
set obtained by the PBAA.

It can be observed that the use of the diversity control mechanisms
helps to improve the performance of the search algorithm. For example, for
the nott1 instance we can see in table 1 that in each of the 10 runs the
non-dominated set obtained by DGPBAA is better than the non-dominated
set obtained by PBAA. That is, the approximation sets obtained when the
diversity measures are used to guide the search have higher diversity in
the objective space (I), higher diversity in the solution space (V ), more
non-dominated solutions (size) and also compares (slightly) better when
using the C metric. Similar observations can be made for the test prob-
lems nott1b and trent1 in tables 2 and 3 respectively. It is important to
highlight that in each single run, the diversity in the solution space of the
non-dominated set obtained when using the diversity control mechanisms
is greater than Vgood. On the contrary, when the mechanisms to control
diversity are not used, the diversity in the solutions space of the obtained
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non-dominated set is below Vgood, except for a few runs in the test instance
trent1 as shown in table 3. When using the C metric it is not clear whether
the DGPBAA implementation finds better non-dominated sets. However,
we should emphasize that the main contribution of the implemented mech-
anisms appears to be that they help the algorithm to maintain diversity in
both the objective and the solution space. This is precisely the aim in the
space allocation problem tackled here, to provide a set of non-dominated
solutions that better satisfies the requirements of the space administrators.

Table 1. Results for the test instance nott1.

DGPBAA PBAA

run I V size C(A, B) I V size C(B, A)

1 4.70 76.3 23 0.71 3.45 61.6 21 0.46
2 4.95 74.7 28 0.63 3.83 61.4 16 0.37
3 4.56 79.3 25 0.69 3.39 56.2 18 0.42
4 4.87 81.6 24 0.57 3.47 49.4 15 0.47
5 4.91 76.1 27 0.60 3.76 62.1 20 0.47
6 4.52 75.9 29 0.73 3.51 56.3 18 0.37
7 4.59 73.6 28 0.64 3.36 59.2 15 0.39
8 5.03 77.4 22 0.62 3.28 53.7 19 0.41
9 4.86 80.2 26 0.66 3.52 58.3 17 0.49
10 4.77 81.6 25 0.64 3.41 52.5 19 0.43

offline 6.43 73.2 37 0.62 5.12 47.4 24 0.37

Table 2. Results for the test instance nott1b.

DGPBAA PBAA

run I V size C(A, B) I V size C(B, A)

1 4.31 72.5 21 0.59 3.13 65.2 20 0.46
2 4.48 74.2 18 0.61 3.51 61.6 15 0.51
3 4.87 75.6 19 0.57 3.04 62.7 18 0.48
4 4.22 71.8 22 0.46 3.76 60.5 16 0.48
5 4.95 74.3 17 0.62 3.28 58.4 19 0.56
6 5.04 75.1 24 0.59 3.16 57.3 18 0.49
7 4.69 73.5 18 0.63 2.94 61.3 17 0.44
8 4.27 71.6 19 0.71 3.45 55.7 21 0.31
9 4.63 74.8 22 0.66 3.31 57.3 14 0.48
10 4.91 73.5 21 0.57 3.34 61.6 20 0.41

offline 5.63 67.2 34 0.72 4.12 41.4 21 0.38
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Table 3. Results for the test instance trent1.

DGPBAA PBAA

run I V size C(A, B) I V size C(B, A)

1 5.45 82.6 25 0.64 4.02 61.2 21 0.56
2 5.51 75.4 23 0.53 4.62 63.6 16 0.48
3 5.34 80.2 27 0.48 3.56 71.2 18 0.37
4 5.16 77.5 22 0.51 4.23 64.9 16 0.41
5 5.46 74.9 25 0.47 4.56 69.5 14 0.39
6 5.62 79.4 29 0.40 4.18 62.7 22 0.36
7 5.39 81.0 31 0.59 4.39 64.6 23 0.46
8 5.26 75.8 24 0.57 4.40 61.1 19 0.51
9 5.11 79.4 21 0.46 4.04 73.7 16 0.39
10 5.74 82.6 25 0.49 3.87 64.2 20 0.35

offline 6.76 72.4 43 0.68 5.12 52.4 28 0.37

7. Summary

In this paper we have shown that diversity measures can be used to guide
the search in multi-objective optimization in order to achieve sets of non-
dominated solutions that better satisfy the requirements of the decision-
makers. We carried out experiments for a real-world problem with two
objectives, the problem of space allocation in academic institutions. In this
problem, the decision-makers are interested in obtaining a good approxi-
mation set that is also diverse with respect to the solution space. We used
the moment of inertia to measure diversity in the objective space and a
problem-specific indicator to measure diversity in the solution space. The
algorithm used in our experiments is a population-based approach in which
each individual in the population in improved by local search and a special-
ized mutation operator is used to disturb a solution in a controlled fashion.
Two diversity control mechanisms were incorporated to the algorithm, one
based on diversity in the objective space and another based on diversity
in the solution space. In the first mechanism, the diversity in the objec-
tive space is used as a helper objective in order to determine if candidate
solutions generated by local search are accepted or not. In the second mech-
anism, the diversity in the solution space is used to alternate between the
phases of exploitation and exploration. During exploitation, the algorithm
employs local search only. During exploration, the specialized mutation op-
erator is also applied in addition to local search. In order to assess the
contribution of the diversity control mechanisms, we carried out experi-
ments on three real-world test instances of the space allocation problem in
academic institutions. The results obtained in our experiments show that
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the algorithm produces better sets of non-dominated solutions when the
diversity control mechanisms are used to guide the search. In particular,
these non-dominated sets have higher diversity in the solution space which
is a common requirement by space administrators.
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