
Applying Heuristic Methods to Schedule Sports
Competitions on Multiple Venues

Extended Abstract

E.K. Burke1, D. de Werra2, J.D. Landa Silva1, and C. Raess2

1 Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science and IT, University of Nottingham, UK

{ekb, jds}@cs.nott.ac.uk
2 Chaire de Recherche de Operationnelle

EPFL, Lausanne, Switzerland
{dewerra, raess}@dma.epfl.ch

1 Overview

Scheduling sports competitions is often a difficult task because it is usually very
difficult to construct schedules that are considered to be fair by all competitors.
In addition, the schedules normally need to satisfy a considerably large number of
additional requirements and constraints. Most of the sports scheduling problems
that have been tackled in the literature refer to competitions in which a venue
is associated with each competitor (home ground). In these cases, selecting the
venue in which each tie will be played is not an issue because this is defined by the
status, home or away, of the competitors. Scheduling problems in most sports
leagues (football, baseball, rugby, cricket, etc.) fall into this category because
each team has its own venue. However, many other sports competitions take
place on a set of venues that are neutral to all competitors. This is the case
in some international competitions (such as the football world cup, and the
Wimbledon tennis tournament) and in some recreational leagues. In these cases,
choosing the venue to play each tie is part of the scheduling process and this often
makes the problem more difficult to solve. Here, we propose the application of
heuristic methods for constructing schedules for this type of sports competition
and also the use of metaheuristics for improving the quality of a given schedule.
Initial experiments demonstrate the promise of these approaches.

2 Problem Description

In the last three decades or so, the automated construction of sports competition
schedules has received considerable attention [1]. Among the approaches that
have been proposed there are exact algorithms (including methods based on
combinatorial design theory) (e.g. [2, 3]) and heuristics (e.g. [5, 6, 9]). We are
interested in the problem in which a set of N teams must compete on a set of
S neutral venues over T timeslots [8]. A feasible competition schedule should be
constructed so that the assignment of venues to the matches is as balanced and



as fair as possible. A feasible schedule must satisfy the hard constraints: only one
match can take place on a given venue at a given timeslot, and each team can
compete in exactly one venue in a given timeslot. A particular case is when the
problem is balanced. By this, we mean that the number of competitors denoted
by N equals the number of timeslots denoted by T and it is twice the number
of venues denoted by S, i.e. N = T = 2S. Then, each team competes N times
and therefore, each team competes against one of the other teams exactly twice
(this can be called the repeated match). In each of the T schedule timeslots,
all teams in the league must be competing simultaneously. There are three soft
constraints that should be satisfied. First, each team must play against each of
the other teams at least once. Second, each team must compete in each venue
exactly twice. Finally, any pair of teams should not compete against each other
more than one time on the same venue. Then, the problem is to find whether a
feasible schedule that satisfies all the soft constraints exists.

3 Related Work

Urban and Russell tackled the above scheduling problem using integer goal pro-
gramming [8]. They reported optimal results (i.e. perfectly balanced schedules)
for the cases in which N equals 4, 6, 8 and 10. They also reported best-known
results for problems with N equal to 12, 14 and 16. They observed that the
branch-and-bound process could easily find solutions for some cases (e.g. N = 8
or N = 10) while it was unable to find a solution satisfying all goals in other
cases (e.g. N = 6) after a considerably large amount of computation time. They
also noted that the branch-and-bound approach was too time consuming for
larger problems (i.e. N > 10). For those cases, they proposed to run the branch-
and-bound process for a fixed number of iterations (alternatively a fixed amount
of computation time) followed by a post-processing phase that seeks to improve
the quality of the schedule (see [8] for details).

Recently, de Werra et al. designed constructive algorithms to solve some spe-
cific cases of this problem [4]. Specifically, they described constructive approaches
to generate perfectly balanced schedules for five cases:

1. N = 12
2. N = 14
3. N = 2S = 2p where p ≥ 2, i.e. N = 4, 8, 16 . . .
4. N = 2S = 2 mod 8, i.e. N = 10, 18, 26 . . .
5. N = 2S = 4 mod 16, i.e. N = 20, 36, 52 . . .

As noted by Urban and Russell in [8], the combinatorial nature of the prob-
lem limits the applicability of the branch-and-bound approach to small problems
(N ≤ 10). The construction methods designed by de Werra et al. in [4] apply only
to the five specific cases listed above. There are several cases of this problem for
which no optimal solution is yet known (e.g. N = 22). Then, it would be inter-
esting to find a more general approach to generate perfectly balanced schedules
for a wider number of cases of this problem. Moreover, such an approach could



also be useful to tackle some variants of the problem that are also of practical
interest. For example, the case in which there are fewer than N/2 venues and
therefore, not all teams can compete simultaneously in each timeslot. Another
important case is when a ‘home’ team is required in each match for administra-
tive purposes. Then, the balance between ‘home’ and ‘away’ matches must be
considered too. All of these observations motivated our interest to investigate
heuristic techniques to tackle the problem of scheduling sports competitions on
multiple venues. Our initial efforts are focused on the balanced case, i.e. when
N = T = 2S.

4 Heuristic Methods and Preliminary Results

The metaheuristic approach implemented here is shown in fig. 1. This is a hybrid
algorithm that was originally proposed to tackle the space allocation problem in
academic institutions [7] and has been adapted for the problem tackled here.

Figure 1. The hybrid metaheuristic implemented

1.Generate the initial schedule x.
2. Set ρ ≈ 0.95, α ≈ 0.97, Riter ≈ 0, Rstep ≈ NS, Dstep ≈ 5,
iterations =0, FAmax ≈ 3NS.
3. For Rstep iterations do,

3.1. Find a candidate solution x′ by using the heuristic HLS,

then evaluate x′ and if it is better than x then accept it as the new

current solution.

4. Find a candidate solution x′ using the heuristic HLS.

4.1.Calculate the fitness variation ∆F between x and x′,

if x′ is better than x then accept it as the new current solution.

4.2. If the x′ is not better than x,
4.2.1. If ρ ≤ 0.001 then reject x, make Riter = Riter + 1 and

if (Riter mod Rstep) equals zero then make ρ ≈ 0.95 and Riter = 0.
4.2.2. If ρ > 0.001 and ρ > random[0, 1] then make x = x′,

otherwise reject x′.

4.3. iterations =iterations +1.

4.4. If iterations mod Dstep equals zero then make ρ = ρα.
5. If not better candidate solution x′ was found,

5.1. Increment failed move attempts.

5.2. If failed move attempts > FAmax then apply the heavy

mutation operator to x and make failed move attempts =0.

6. If the termination criterion is satisfied stop, otherwise go to 4.

We have implemented several constructive heuristics to generate initial sched-
ules (Step 1 in fig. 1). These heuristics serve to assess the effect that the quality
of the initial solution has on the performance of the metaheuristic approach.
These constructive heuristics are briefly described below. We decided to rep-
resent a competition schedule using a matrix M of size N · S where each cell



M(t, s) contains the match (i,j) to be played on timeslot t at venue s.

Random. First, we generate the list of (N − 1) ·S matches of the form (i, j)
where i 6= j for i, j = 1, 2 . . . N . Then, we generate S repeated matches of the
form (i, i+1) for i = 1, 3 . . . N−1. Finally, each of the N ·S matches is scheduled
on a cell M(t, s) selected at random. This heuristic generates many infeasible
solutions, i.e. schedules with the same team scheduled in more than one venue
in the same timeslot.

Improved Random. This is very similar to the previous heuristic, but when
scheduling each match, the first free location M(t, s) that keeps the solution fea-
sible is selected if such a value of M(t, s) exists. Otherwise, any random location
is used to schedule the match. This heuristic produces initial schedules of higher
quality than the previous heuristic, but of course, is more time consuming.

Progressive Feasible. This is a general constructive heuristic that gen-
erates feasible initial schedules using combinatorial design. Two variants are
implemented: when S is even and when S is odd. The approach splits the teams
into two groups C1 = [1 . . . N/2] and C2 = [(N/2) + 1 . . . N ]. Then a partial
schedule is constructed containing all the external matches, i.e. ties between a
team in C1 and a team in C2. The schedule is completed by scheduling all the
internal matches, i.e. ties between two teams in the same group.

The heuristic HLS is used to explore the neighbourhood of the current so-
lution (Steps 3 and 4 in fig. 1). This heuristic uses one type of neighbourhood
structure, the swap between two matches selected at random. The HLS heuristic
selects the best of a number of k ≈ (N ·S)/3 swap moves. A heavy mutation op-
erator is implemented in order to disturb the schedule if no improvements have
been achieved for a number of iterations (Step 5.2 in fig. 1). First, this operator
identifies those ties that contribute the most to the cost of the current solution.
Then, these ties are removed from the schedule (a maximum of (N ·S)/5 ties are
permitted to be unscheduled in this way). Finally, in random order, each of the
scheduled ties is re-scheduled to the best available timeslot until the schedule is
complete.

We have carried out experiments applying the algorithm described above
for problems up to N = 20. The algorithm is capable of producing perfectly
balanced schedules for problems of size N equal to 8,10 and 12. It also finds
the optimal solutions for the cases where N equals 4 and 6. For the rest of the
cases, so far, the algorithm is able to generate feasible schedules with low cost
(between 8 and 18).

References

1. Easton K., Nemhauser G., Trick M.: Sports scheduling. In: Joseph Y-T. Leung (ed.)
Handbook of scheduling: algorithms, models, and performance analysis. CRC Press,
2004.



2. de Werra D.: Minimizing irregularities in sports schedules using graph theory. Dis-
crete applied mathematics. Vol. 2, 217-226, (1982).

3. de Werra D.: Some models of graphs for scheduling sports competitions. Discrete
Applied Mathematics. Vol. 21, 47-65, (1988).

4. de Werra D., Ekim T., Raess C.: Construction of sports schedules with multi-
ple venues. Internal report. Chaire de recherche operationnelle, EPFL, Lausanne
Switzerland, November, (2003).

5. Ferland J.A., Fleurent C.: Computer aided scheduling for a sports league. INFOR
29, 14-24, (1991).

6. Henz M.: Scheduling a major college basketball conference - revisited. Operations
research, Vol. 49, No. 1, 163-168, (2001).

7. Landa Silva J.D.: Metaheuristic and multiobjective approaches for space allocation.
PhD thesis. School of computer science and IT, University of Nottingham, UK
(2003).

8. Urban T.L., Russell R.A.: Scheduling sports competitions on multiple venues. Eu-
ropean Journal of operational research. Vol. 148, 302-311, (2003).

9. Wright M.: Timetabling county cricket fixtures using a form of tabu search. Journal
of the operational research society. Vol. 45, No. 7, 758-770, (1994).


