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Abstract

This paper describes and evaluates a novel set of approachasdle situa-
tions where multiple distinct and visually differing obfe@re tracked, such
as tracking of people and objects they are manipulatingik&itacking of
multiple similar objects, visually different interactidpjects can provide an
opportunity to improve the tracking accuracy. These apgreaare designed
for use with Condensation/Particle Filter based algorghamd allow drop-in
replacement of tracker modules for each object type trackikdy use infor-
mation about the relationships and interactions betweggctshto improve
the tracking, rather than in order to distinguish betweerothjects, as in cur-
rent algorithms. They are also designed to be highly efftciiem real time
use. The approaches are tested on a challenging set of teamthachieve
tracking performance similar to using a single very highelsional tracker,
but with vastly reduced complexity and hence much betteg fierformance.

4 |Introduction

The Condensation[4] algorithm is commonly used for sindbgeat tracking in video
sequences. There are many generalizations of the algotiéthoope with the tracking
of multiple similar objects[3, 5, 6]. These attempt to dikéguate the multiple objects,
to allow association between each particular object ovdtipheiframe sequences and to
maintain tracking of the full set of objects. This paper &ddes the class of situations
where multiple distinct and visually differing objects dracked at the same time, such
as players balls and rackets etc. in games, or tracking gflpenanipulating objects.
In these situations, interaction between objects, rathem being a problem, creates an
opportunity to improve the tracking accuracy for the indival objects.

There are two main ways of extending single object trackingacking multiple ob-
jects, the firstis to use a single object tracker which trasles a multi-dimensional space
representing the combined state of all objects trackeds approach has serious perfor-
mance problems, due to the high dimensionality of the tragkpace. Ways to overcome
this have been suggested[2], but these are still compleparfdrmance intensive.

The second method of tracking multiple objects is to use glsitracker per object,
and to add some way of taking the dependencies between teet®bjto account. This
paper investigates various methods for taking these depees into account, without
significantly increasing the complexity of the multiple et tracking process, in order to
develop real-time suitable tracking methods for trackingtiple interacting objects. It
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is possible to make use of the difference between objectsnayathat current multiple
tracking algorithms are not able to, thus allowing for a medffieient and accurate tracking
process.

4.1 Existing Work

The Condensation algorithm is commonly used to detect bpgsition from video data[4].
It uses a large number of particles each storing a singlethgses about the possible state
of the object, and an observation of the input data.

The model works in four stages. Firstly, each particle igasd@s to how well it fits
the observation data. From this set of scored particlesyasaeof particles with the same
number of elements as the current set is generated. Thisésafed by weighted random
sampling, based on the score of each particle, so some higingdypotheses may be
chosen multiple times and some hypotheses may not be priokigto the new set at all.
After this sampling stage, the new set of items is subjededtift, which uses a motion
model to predict how this particle will have moved since tast iframe, and diffusion,
which adds a certain amount of randomness. This predictgasition for the particle.
Finally, in the measurement phase, each particle in the eeig scored against the video
frame. An estimate of the current position of the object isvael from this set, usually
by using a weighted mean.

There are several extensions of Condensation to multiptkimg of similar objects
which effectively use a single tracker per object trackekaiket al.[5] use Markov Ran-
dom Fields to model the interaction between several antsdhe tracking. At points
when the ants are far away from each other, their method waska set of standard
particle filters. Similarly, various methods, eg.[3, 9, ,10%e one multi-modal particle
distribution for all objects. These essentially try to sothe data association problem
of how to assign observations to individual objects and tintaa the modality of the
particle distribution when objects interact. These meshare not generally useful when
objects are visually distinct, as the association probleasdot exist.

Han et al.[2] represent the state of two tracked objectsiwitine high dimensional
particle, but store Gaussians representing the modes idigtréoution, rather than indi-
vidual point particles. This reduces the number of pariceruired for tracking in high
dimensional spaces. However, while this increases effigienis still exponential in the
number of objects, and only increases the number of dimeasias possible to track,
rather than avoiding the underlying problems of using a highensional state to track
multiple objects. This means it still requires large nunslbarparticles in order to track
complex systems with more than two interacting objectss Hlgo inefficient at points
when objects are not currently interacting, and could bekrd equally well individually.
Wu et al.’s co-inference tracking[11] uses multiple cuesatking a single object, how-
ever this does not simply extend to use multiple differerjects as cues, as the cues do
not always reinforce each other and the method fails.

4.2 The Example Tracking System

Situations where this kind of tracking occurs include tiaglplayers and balls in sport[12],
and tracking people manipulating objects during strokaldhation[1]. A system track-
ing a person juggling is used here as an algorithm test-hemylidg, provides a challeng-
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ing tracking situation, with a lot of interaction betwee last moving balls and hands,
but is easy to set up and control. This uses three differankérs, all of which work
based on the detection of particular colours and shapesiimthge. The face tracker
keeps track of the position of the persons face in order terdeéhe where the centre-line
between the two shoulders is located. The arm tracker deti@otarms, on either side of
this line. Finally the ball tracker detects the number, poss and velocity of multiple
balls and tries to detect whether they are currently heldhbyuggler, or are in the air.

5 The Problem

It would be ideal to use a single Condensation tracker in hictimet each particle
holds the combined state of a setkfobjectsObject; k. This tracker uses a scoring
function to calculate a probability for a combined state= {X!,X2..., XX}, based on an
observatiorz;, i.e. P(Xt N X2...n XK|Z).

It is desirable to approximate this single tracker with acféndividual trackers, with
state vectorX?, ..., XK. The state space for each tracker will have a significantketo
number of dimensions than the single tracker and hence &gjliire smaller numbers of
particles to achieve the same tracking performance. Howtageobjects are not indepen-
dent, so using completely independent trackers, withagking the interactions between
the objects, would fail to exploit the available informatidGiven this fact, the probabili-
ties being calculated for trackkmust approximat® (X% N X2.. X 1 XK1 .xK, 7).

It is not possible to directly calculate these conditionalgabilities for each particle, as
this would involve effectively calculating a high-dimeasal tracker.

5.1 The Proposed Solution

The interactions affecting objekt!, based orX2K are considered here, as the algorithm
is identical for other objects.

5.1.1 Definitions

xtK This is a set of random variables that represent the pareotftwhich
has an effect on the oth&rstates. They are based on the value of each
of the X states from the previous frame by using the prediction
function inherent in the particle filteK{ is only dependent o)(['il,
and is assumed conditionally independent of the observatid the
otherX variables. They are parameterized in a multi-dimensional
space, which is discrete, or may be discretised.

fik(X)  This s the probability density function XX ;, and must be
computationally simple to calculate given a particH&rstate.

EX(XX)  Thisis the region of th&* space where a givex¥ has an effect. i.e.
x ¢ EX(XX) = P(X* = x|Xk) = 0, for a givenxk

RUK(X1)  P(X1|X¥) is dependent on only the region)X¥ space defined by this
function, i.e. for any givex?, if x ¢ RU¢(X1) then
P(XtXK = x) = P(X1|X* ¢ RYK(X1)), which is constant for thax*

T This is an overall region containing all points wh&K|X¥) may be
non zero for allX. i.e. it is the union of all possiblEX regions.

15



5.1.2 Algorithm

Taking the ideal tracker, with particle score equaP(E{t N X2... N XX|z) = P(X2...N
XKIZ)P(XEX2...n XK, Z), it is assumed that the states of the variab{é<‘for the pre-
vious frame are known, and the scdeX!|X2...N XX, Z) is to be calculated. This score
can be rewritten in terms O_ftz--K, and as these are independent, in termf of:

PO X2...nxK,2) ~ S (f2(%2)... fi (X )POGHXE = Xo... N X{¢ :xK,Z))].
{XzETz,...XKETK}
(1)

For two object interaction, this calculation is simple eglbbuhowever, for multiple
object interaction, further simplification is required teoa the combinatorial nature of
this equation. An assumption is made tRaX*|X?,..X) can be aproximated using
a function of the pairwise interactions. For example, intés tracker, the interaction
function:

P(ABc,Z)

C

whereA=arm position-=face positiorB.=cth ball position(ofC balls), is used to score
the arm. To use this approximation, Equation 1 is calculéecdach two object case
included in the equation. This approximation in terms ofyw&e interactions has been
shown to be relatively efficient in testing. For the rest @ ection only pairwise inter-
actions are considered, betwe¢handX?.

By definition,P(X1|X?) only needs to be evaluated withR}? so

PXIX%Z)~ Y (R0P(XIXP=%,2))+ 5 (fa0e)P(X'|X?¢ R 2)).
xp€RL2 Xo¢RL:2
(3)

As P(X|X? ¢ R'?,Z) is not dependent orp, and thus can be taken outside the sum,
and f, must sum to one, the dependency on valuek @futside ofR-2 may be removed,

giving

P(A|F,By,...,Bc,Z) =~ [P(AF, Z)] l; , 2

PXIX%2Z)~ 5 (fa(x)P(XHX? =x%p,2)) +P(XHX? ¢ R"?,Z) (1— > fz(xz)>.
xpeRL2 Xp€RL2
(4)

This is used as the input to the interaction function. Similiguts are created for
other interactions between the objects. In many casesic@tjects will be independent
of others, in which case they will not be in the interactiondtion, and hence not require
calculation. For example, in the test system the face traskedependent, so does not
require any extra inputs to be calculated in its interacfiorction. However, this does
not directly allow the creation of a set of trackers as thex pdfs rely on the state of
individual particles, an approximation to the distributtiof the f,_ k values must be used
as input to thex tracker, giving a two step process:

1. Calculate probabilities for ak* K particles based on the observation data fingd
generated from the previous frame.

2. Calculate next framB(XX|X¥) and the pdfsf for all particles and construct ap-
proximations to the distributions of the pdfs, weighted lytjzle probability.
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5.2 Calculating the Approximate Distribution

It is important that an efficient way of calculating and stgrthese distributions be used.
Otherwise, no efficiency will be gained over the higher disienal calculation. Three
ways of calculating and storing the intermediate distidng of f1_ k are described here.

5.2.1 Gaussian Mixtures

This method attempts to approximate the overall state offthe functions by using a
set of N Gaussians for each pdf, representing the mean valués jpfat each position,
weighted by the particle score. First the generated prdibiabiP(XX|X¥) are partitioned
spatially, then their contribution to a single Gaussiandach partition can be estimated
using an unbiased Maximum Likelihood Estimator. In the egkrsystem it is possible to
generate these Gaussians directly fromXketates and(X¥|Z) values without actually
calculating all thefy values at any point.

Samples from these Gaussians are used as input to the séamnictgpn instead of
samplingf,. The sum of all Gaussians at positigis used as an estimate of the pdf at
that position, and hence a pairwise score function is cdesge

xe%z (P(xlm2 =x,2) n;N [Gn(x)]> +P(XY|x? ¢ RY2,Z) (1— XE%ZHEZ-N [Gn(x)]> .
(5)

The information from the Gaussians as to the distributioamsehat the calculation of
this sum may be simplified to avoid having to calculate a langaber of Gaussian values,
by either using a single Gaussian sample as an estimatangrthe Gaussian distribution
parameters directly. In this way, it is possible to avoiccaldting many values from the
Gaussians, making this technique relatively efficient.

This technique has advantages, in that the Gaussians disecadeulated and can be
used directly in the second stage. However, it reduces #fellngss of the Condensation
algorithm itself, as the modality of the data is reduced torthmber of Gaussians used in
the partitioning stage. It may be possible to detect whemigtoccurring, by detecting that
a Gaussian with a large variance is being created, and thitia giartition automatically,
however, this did not seem reliable in testing.

5.2.2 Sampling

For eachX! state, a state fron2, or a small set of states is sampled, to use as input to the
X! state. This is done by using a probabilistic sampling stag#as to the Condensation
sampling stage. The test system makes use of the Condensatipling stage, by sam-
pling uniformly from the distribution created by the samplistage of the Condensation
algorithm, thus avoiding doing two similar sampling stagesis method is appealing in
that it uses a method very similar to the Condensation alyariand potentially allows

for a full representation of the modality of the data. It iscalhe most simple conceptually

of the methods described. A set of 10 states was used forgheetesion of this, as using
higher numbers of states was too slow for real time use.
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5.2.3 Mean Probability Density Functions

This combines aspects of the two methods above, to creatbiaigee that allows multi-
modality, but also allows aX? states to influence the result, unlike the sampling method.
Instead of partitioning the particles as in the Gaussianah@duniform partitioning over

a fixed grid is used. At each point, the weighted mean of allfthelues is calculated:

_ 21..count(particles) P(th—l[partid e] |thl)P(Xt2 - Xlxtz—l[partid e])
21..c0unt(particles) P(X&ﬂpartid e] |Z)
TheX tracker can then udd|[x] as input to its scoring function, defined as

M[X]

(6)

P(XYX2,2Z) ~ Z P(XYX2 = x,Z)M[X + P(X}|x? ¢ R, Z) (1— Z M[x]) )
xeRL2 XeRb2

The values oM[x] are the same over all particles, thus given #@€|X) > 0 only within

a fixed range, all possible values Wfx] can be precalculated. An extra stage in the

Condensation algorithm is used to calculite This can be done by using a matrix to

accumulate probability values for eahparticle. For this to work efficientlyE2(X?)

andRY2(X1) must be relatively localised for stat¥s andX?, so that each particle does

not have to add to or read many accumulators. The procesadbrteacker is now:
1. Calculate tracker, usirid[x] matrices in scoring function.
2. Calculate thé[x] matrix based oixk distribution.

This is slightly less time efficient than using a small numtifsGaussian mixtures. How-
ever, it can more accurately represent the distributioh@plarticles, thus making it work
much better in situations where tracker distribution issgand the tracker is tracking
several modes in the observation data.

5.3 Extensions

In the worst case scenario, &l objects will interact with each other. This will require
K intermediate representations to be written, one per gljedK — 1 to be read in each
scoring function. There will still be a vastly smaller totalmber of particles compared to
the single tracker, and thus it will be far more efficient,asplly for largeK. However,
in many real cases optimisations will be possible where solojects are not affected by
others, such as in our head tracker, which does not take firgratany other trackers. Itis
also useful to use methods such as mixture tracking[10jimvitidividual trackers, where
there are multiple objects of one type. If it is unlikely thié multiple similar objects
will overlap, or it is not relevant to the other scoring fuincts, a combined intermediate
representation, representing the sum of the object pdfsbreaysed, rather than using a
separate pdf for each object. This is the case in the ball andrackers described below.

In the case of juggling, the system is tracking balls, which relatively predictable
except when interacting with the hands, and hands, whicimaigh less predictable. It
is useful to reduce the reliance on the next frame predistmsimuch as possible for
the less predictable object. In this case, the output froenlébs predictable tracker is
used directly to create the probability density functiather than using the next frame
prediction. This is likely to be useful in other similar sitions where a human interacts
with one or more relatively predictable objects.
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6 Evaluation

6.1 Implementation Details

Only the mean pdf based tracker is described in depth herénghlementation was simi-
lar for other tracking methods. The juggling system makeésresive use of tracker inter-
action as shown in Figure 1.

Face Tracker This has particles defining face position, size and anglenalipse rep-
resenting the face shape. Each particle’s score is addegpidbfar each position in
the face ellipse, and normalized to create a representaftibre distribution of the
likely face position.

Tracker pdf output Output

r 0
|_P( Face Pos,)J

Video Input Arm '_P(TAra P_os)] Arm Positions

Face Position

[P(Eaﬁ P_os)j Ball Positions

Figure 1: Use of pdfs in the juggling tracker

Ball 1
Ball 2
Ball 3 &g
a)Input Frame b)Next frame ball pdfs

Right hand '
- 'h
Left Hand

c)Hand Position pdfs d)Output - Arm and Ball tracking

Figure 2: The tracker state for a single frame
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Arm Tracker When calculating a score for a particular arm position, trasker disre-
gards areas of skin colour which are part of the face by usiedace probability
map. Prior to this, the tracker was often misled by the fagelpi The arm tracker
also uses a ball position probability map generated by tHerbaker in the previ-
ous frame. This is because when a ball is stopped over, oirffgevards the arm,
it generally defines the position of the hand. The arm traoképuts a combined
pdf for both hands, giving the sum of the probabilities faz teft or right hand be-
ing centred on a particular position, as in Figure 2c. (aateotto show the modes
of the left and right hand).

Ball Tracker This uses the pdfs generated by the arm tracker to detechtbadjs.
This is both because the ‘caught/not caught’ status is aetkesiutput, and be-
cause caught balls are often partly occluded by the handnaydtherwise be lost
by the ball tracker, or inaccurately tracked. The positind @elocity of the ball is
used to generate a combined pdf of the position of all ballesémext frame for the
arm tracker as in Figure 2b. Multiple balls are detected lyafsa segmentation
algorithm on the output of the ball tracker, this segmeatsis also used to ensure
that one ball does not take over all the particles, in sinvilay to Milstein et al.[8]

6.2 Testing Results

Testing was run using a Pentium 4 2.6GHz test machine. Up @@ g@articles in total
were used (3000 ball, 900 arm, 100 face), this number ofglestallowed processing of
the video at approx 30 frames per second, on all interactiethous.

In order to compare against the ‘ideal’ tracker (as desdribesection 5) a single 20
dimensional particle filter was used. This was only abledokrl ball (plus two arms and
aface), due to the vast number of particles required foriplalballs being too large to fit
in memory/disk space. This took several minutes per franmario A set of independent
particle filters, using only observation information welsoaused.

Three test sequences (available at http://www.mrl.notikd~jgm/juggling/bmvc) were
used, firstly a 500 frame sequence (plus 100 frames of iisiitdn), of 1 ball being
thrown from hand to hand, involving various complicateddhamvements and different
throws, secondly a 1400 frame sequence of mainly 3 ball juggWith a short section of
2 and 1 ball, and finally a set of 200 frame sequences of juggipto 4 balls.

In this tracker, the desired output is whether a ball is cauaid its position. When
the balls are in flight and not nearing catch or release, athaus provide good tracking
performance. In situations where the ball is being caughiedd, there were several
possible errors that occurred. These are defined as minarious, depending on their
effect on the data being collected. The tracker is able toraatically reinitialize after an
error and detect new objects, (it uses a small number oélizisition particles, as in [7]),
S0 no manual reinitialization was required after an error.

SeriousErrors A ball is lost and the tracker has to reinitialize. The tracitetects a
catch when no catch has occurred. A catch occurs and thestrdokesn’t notice it.

Minor Errors A ball is temporarily lost but re-tracked without reinifizdtion, which
may occur in some occlusion situations, and is not geneeallyoblem for the
system. An arm fails to be tracked - this may cause other ®tmioccur, but
usually the next time a ball interacts with the missing ahm,ttacker recovers.
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Tracker Type| Particles 1 ball errors 3 Ball Errors
Minor | Serious| Minor | Serious

I deal 120,000 4 0 n/a n/a
1,000,000 2 0 n/a n/a

Independent 1,000 4 22 11 97
4,000 1 28 15 56

Gaussian 1,000 5 4 8 13
4,000 4 2 10 8

Sampling 1,000 8 2 14 11
4,000 5 1 15 7

Mean pdfs 1,000 2 4 10 7
4,000 2 0 5 4

Table 1: Comparative Tracker Performance

Using the one ball sequence, it was possible to compare sitsdrom the ideal tracker
against the methods described in section 5.2. For the 3 éallece, only the relative
performance of the different types of tracker interactionld be compared. The testing
results are shown in Table 1. In the 1 ball test 1,000,00@ligearticles were required in
order to achieve the power of 4000 particles using the be&hmeing mean pdf method.
The independent trackers were very hard to tune in ordertta galance between false
catches and missed catches, hence the large number ofsserious shown, which are
mainly catch errors. Early attempts to fix these issues I¢gle@lgorithm presented here.
The best performing, pdf based tracker was also tested o20hdérame sequences.
For these sequences a ground truth hand position for oneviasidharked and the dis-
tance from this point to the tracker hand circle was meastmedach frame. Figure 3,
shows for each number of balls, the percentage of framesnwatich error value, and the
mean error. This was interesting, as with no balls, the aackar was very poor. Once
balls were being juggled, the tracking accuracy went uptbrealso slightly improved
tracking was observed as higher numbers of balls were jdgdleese results demonstrate
how the individual trackers are made more robust using fagdbetween the trackers.
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Figure 3: pdf based Arm tracker accuracy for different nuraloé balls
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7 Conclusions

The results shown in this paper demonstrate that these deettam greatly improve the
tracking accuracy of individual object trackers. The fined@racy is similar to that of a
single high-dimensional tracker, and far better than ietelent trackers. The proposed
methods do not significantly increase the complexity, amcbeperform only slightly
slower compared to completely independent trackers, allpweal time use of these
methods. This paper shows that where there are multipleaNysdistinct objects in a
scene, this is no data association problem. Rather, thareepportunity to improve the
tracking performance for each individual object, to makkesitter than that of indepen-
dent trackers. In addition, the improved tracking due toitiberactions allows the use of
simpler, faster individual trackers, as demonstrated by#ry simple arm tracker, which
performs poorly standalone, but has much better performyahen interactions are taken
into account.

These methods also offer a major advantage over existimgitdms in that they al-
low the use of individual trackers as black boxes, so thak#es for one class of object
can easily be modified without needing to alter other track&or example in this sys-
tem, several different versions of the arm and face trachkave been used, which may
just be swapped in, without altering the ball tracker. Theyaso highly generalisable,
and can be used in many situations where multiple trackersised, simply by altering
measurement functions and creating functions to gendratiatermediate probabilities.
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