
G54GAM – Lab Session 2

Game Description

Square Shooter
A vertical scrolling shoot-em-up. You control a square flying over square-land. You 
encounter an increasing number of enemy squares that try to destroy you. You should 
avoid these or shoot them. Stay alive for as long as possible and destroy as many enemy 
squares as you can.

Mechanics
The level is formed by a scrolling background with some square islands. The player’s 
square flies over this background. You can shoot bullets that destroy enemy squares. 
There are four types of enemy squares: the first just flies in a straight line towards you, 
the second fires bullets straight ahead, the third fires bullets towards the player’s square, 
and the forth is a big boss that fires bullets towards you.

Controls
The player controls their square using the arrow keys. The space key fires a bullet.

Levels
There is only one level, but more and more enemy squares attack the player – starting 
with the easy ones, followed by more difficult ones

Create the illusion of motion
The first task is to create the environment that our hero square flies through. First we 
need to create resources.

• Sprites
o A sprite for the main character square that the player will control
o 3 island sprites that will make the environment look interesting

• Background
o A background tile that will scroll to give the illusion of movement

Use the Add menu to create these resources, and either use the built-in editor to design 
some simple sprites or find something on the web. It is very easy to waste a lot of time 
making these resources look nice so keep them simple, you can always come back and 
improve them later.

• Create a single Room and set the background property to use the background 
resource that we just created.



• Set the vert. speed to 2 – this is the vertical speed at which the background will 
scroll.

Next we need to add islands to make the scrolling background interesting and less 
repetitive. We’ll use object inheritance to avoid duplicating the functionality. Islands 
have two actions. They move down the screen at the same speed as the background, and 
when they’ve disappeared from the bottom they reappear at the top in a different position. 

For this we need to a) find out where the islands is, and b) compare it to the size of the 
room, so we can see if it’s gone off the bottom. Each island instance has the following 
variables that define where it is:

• x – the x-coordinate of the instance
• y – the y-coordinate of the instance

Remember y increases as the island moves downwards! The game has global variables 
that tell us the size of the current room:

• room_width – width of the room in pixels
• room_height – height of the room in pixels



• Create a base object for the islands, call it something like obj_base_island. This is 
just the parent object so it doesn’t need to have a sprite.

• Set the Depth field to 10000 so the islands appear underneath other objects
• Add a Create event to the object, and use a Move Fixed action to set it moving 

down the screen at speed 2
• Add a Step event to the object. This is fired every time the game updates the 

screen, so we can use it to check where the island currently is.
• Add a Test Variable action to this event, and check the y property of the object to 

see if it is greater than the height of the room, plus a bit to account for the size of 
the island itself.

• Add a Jump to Position action to move the island back to the top of the screen 



• Use the random(room_width) function to place the island at a random x 
coordinate. This makes the player think that it’s a new island, but we’re just 
recycling an old one.

Now we’ve sorted out the island’s core functionality, we can make some different island 
objects to make use of it.



• Create a new object, and set its parent to be the root island object we created 
earlier. Give it one of the island sprites, and place it somewhere in the room.

• Repeat this process to create two further islands with different sprites

Test the game. Do islands should move to the bottom of the screen and then reappear at 
the top? Do they move at the same speed as the scrolling background? Do they appear at 
a random x coordinate each time?

Next create the main character square and allow the player to control it with arrow keys. 
We’ll use the same variable checking mechanism to stop the player flying outside the 
boundaries of the room.

• Create a new object, assign it the appropriate sprite
• Place an instance of the object somewhere near the bottom of the room
• Add a Keyboard event to handle the <Down> arrow being pressed
• Check the y coordinate of the object against the room_height, should we be 

allowed to move down?
• If so, use a Jump to Position action to move the object down by 4 pixels
• Repeat this for <Up>, <Left> and <Right> arrow, checking against the 

appropriate room_height and room_width variables as necessary. Don’t forget 
that the top-left corner of the room is at the coordinates 0, 0.

Test the game again. Do you have a character that the player can fly around with the 
arrow keys? Do all four boundaries of the room stop the player flying through them?

Bullets and Enemies

Now that we’ve created an environment, we need to create enemies and bullets to satisfy 
the premise of the game and to create obstacles and a challenge for the player.

Bullets
Bullets fired by the player appear to come from the main character, fly up the screen and, 
if they don’t hit anything, disappear through the top of the screen.

• Create a bullet sprite and object
• Return to the main character object. Handle the <Space> Key Press event, and 

the Create Instance action to create a new instance of the bullet object, 
remembering to make its position relative to the character’s current position.

• Handle the bullet object’s Create event to give it a Vertical Speed that makes it 
move upwards -8.

• Handle the bullet object’s Step event to check if it’s reached the top of the screen
• If it has, use the Destroy Instance action to destroy the unused bullet.

Test the game and make sure that the character can fire bullets, and they appear from the 
right place and move at the appropriate speed. Tweak the relative position if necessary to 



make them appear from just in front of the character. We need to destroy the instance 
once it is out of sight to avoid wasting memory and resources handling bullets that aren’t 
needed anymore.

Enemies
We’ve just used the space-bar being pressed to create bullets that fly up the screen. Now 
we’ll use a time line to create waves of enemies that fly down the screen towards the 
player.

• Create an enemy sprite and object
• As with the bullet, give it a Vertical Speed on creation, this time moving down 

the screen, and Destroy Instance when it gets past the bottom using the Step 
event.

 

Time lines allow us to schedule events to be fired in a timely manner. Time starts at 0 
when the time line is started, and progresses in steps. A step occurs every time the screen 
redraws, and defaults to 30 steps per second.

• Create a new Time Line resource
• Add a Moment to the time line to occur at step 50.
• Add a Create Instance action at this Moment that creates an instance of our 

enemy object at x = 320 and y = -32. This means that the enemy will start in the 
middle of the screen but also off the top – note the negative y value. It will then 



fly into view, past the player and vanish from the bottom, where it will destroy 
itself

• Add multiple Create Instance actions to the same Moment to build up a line of 
enemies with different starting x coordinates.

• Add multiple Moments to create waves of enemies that the player has to fight 
through

Finally we need to start the time line when the game starts

• Create an object with no sprite to act as the time line controller
• Handle the Create Event, and use the Set Time Line action to start the time line 

we’ve just made at position 0.
• Place an instance of the controller object somewhere in the room.

Test the game and ensure that the enemies appear and disappear in the correct manner.

The final step in making our game playable is to make the main character, the bullets and 
the enemies interact with one another, and for this we’ll use collision events and 
subsequent destruction of instances. The two collision events we need to handle are as 
follows:

• A bullet collides with an enemy
• An enemy collides with the main character

Remembering to make sure that all of the relevant objects have the Solid property set, 
let’s first handle the bullets and enemies.

• Handle the Collision event for the enemy with the bullet
• Destroy both the bullet and the enemy object instances. You’ll need two actions, 

one to destroy the self (the enemy) and the other that it collided with (the bullet)

When the main character collides with an enemy, we’re going to just restart the game for 
now.

• Handle the Collision event between the two objects
• Use the Restart Game action to send the player back to the beginning.

Test the game. Can the player shoot and destroy the incoming enemies? Does crashing 
into an enemy restart the game? Try adding more or less enemies and making them fly 
faster or slower to make the game easier or harder.

Extending the Game

Now that we’ve got a playable game we can extend it to make it richer, more challenging 
and give it longevity.



Better Enemies

Wave after wave of the same enemy isn’t that interesting, so create a variety of enemies 
and place them so that the game gets harder as it goes along

• Create an object hierarchy of enemies with different sprites
• Have different enemy objects move at different speeds
• Create an enemy that fires bullets at you. You’ll need to create an enemy bullet 

object that flies down the screen towards the player. Use the Test Chance action 
with a 1 in 30 chance per step that the enemy instantiates a new bullet object. 
Handle the collision between the main character and the enemy bullet to restart 
the game

• Create an enemy that fires targeted bullets. This is trickier, as you need to check if 
there’s a character object to fire at using Test Instance Count (otherwise you’re 
risking a crash) and then use the Move Towards action to aim at the player.

• Create a final boss enemy that appears at the top of the screen, then stops and 
remains in front of the player. Give it a health variable that is reduced every time 
a bullet hits it, and destroys the instance when the health drops below 0.

Lives, Health and Score
It seems a bit mean to restart the game whenever the player hits an enemy or an enemy 
bullet. Conveniently Game Maker has built-in support to keep track of Score, Lives and 
Health, so we can have the player’s health reduce when they hit something, lose a life 
when they run out of health, and end the game when they run out of lives.

• Create an invisible controller object and place it in the room



• In the Create event, initialize the score, number of lives and health using the Set 
Score, Set Health and Set Lives actions. Also add a Score Caption action to 
show these values in the window’s title bar.

• Have the controller object handle the No More Health event (in the Other event 
menu) to reduce the life count by one

• Handle the No More Lives event to show the scoreboard, using the Show 
Highscore action and restarting the game

• Return to the various Collision events between our objects. Instead of restarting 
the game, use Set Score to increase the score and Set Health to decrease the 
health a little depending on what the player has collided with.

• When the boss enemy has been destroyed, display the score board and restart the 
game.

Test your game with different values for the health decrements, and try and tune the game 
so it’s hard, but not impossible, to reach the end and defeat the boss.


	Game Description
	Square Shooter
	Mechanics
	Controls
	Levels

	Create the illusion of motion
	Bullets and Enemies
	Bullets
	Enemies

	Extending the Game
	Better Enemies
	Lives, Health and Score


