
G54GAM – Lab Session 4

Game Description

Tanks
This lab session is based on creating a tank combat game for two players. Each player
steers a tank through the arena with the aim of destroying the other player’s tank using
their weapon. Destroying an enemy tank is rewarded with a point. The players share a
window that provides two player-specific views onto the arena.

Mechanics
The game takes place in a large arena, or level, with walls providing features to hide
behind and steer around. Each player steers their tank through this arena, searching for
the other player. Each player has a weapon that fires bullets which damage their
opponent. Each tank has a different weapon. Player one fires a bullet that moves quickly
and bounces off walls. Player two fires a bullet that moves slowly but which seeks out
and homes towards the enemy. Collision with a bullet fired by the enemy reduces the
player’s health, and when the player’s health reaches zero the enemy scores a point.

Controls
Each player controls their tank with a different set of keys. Player one uses A and D to
steer left and right and W and S to move forwards and backwards. The space bar fires
their weapon. Player two uses the arrow keys to steer and move, and the Enter key fires
their weapon.

Create a Steerable Tank and the Arena
The first task is to create an arena in which our game takes place and two tanks for the
players to control. As always, we need to begin by creating resources.

• Sprites
o A sprite for the wall that we will use to define the edges of the arena

and some interesting features to navigate around and hide behind
o A sprite for each tank, with 60 frames for the different directions that

the player can steer the tank in
• Background

o A background tile to make the arena look more interesting

Creating the tank sprites would take a long time by hand, so you can download two
different tank sprites here (right click and “save as” tank1.gif and tank2.gif):

http://www.mrl.nott.ac.uk/~mdf/teaching/G54GAM_LAB04_Resources/

Create the wall sprite in the usual way, but use the load sprite function to import the
ready made tank sprites. Create or find a background tile of your choice.

Next create the arena:

• Create a wall object using the sprite that you have just made, remembering to
make it solid.

• Create a new room, making it quite large (at least 1000 x 1000 pixels), defining
the edges of the room and some features by placing instances of the wall object in
it.

• Assign the room the background that you have just made.

Now we need to make the tank. We’ll make one first, then we can duplicate the object to
make a second. We’ll make two different objects so we can easily tell the difference
between them and handle the different events accordingly.

• Create a tank object and assign its sprite to be one of the tank .gifs you
downloaded.

There are four kinds of events we need to handle to make the tank move and be rendered
in the right way

• Create event – set the friction of the object
• Keyboard event – changes its speed and direction
• Step event – set the correct frame of the sprite based on its direction
• Draw event – draw the right frame and not just play the .gif frames in order

Let’s look at each one in turn.

• Create event. Add a Set Friction action, setting the friction to 0.5. This means
that every step, 0.5 pixels per step will be subtracted from the speed of the tank,
making it slow down quite quickly

• Keyboard events. There are two things we need to do here, change speed and

change direction.

o Add a Keyboard event for the left arrow key. When this is pressed, we
want the tank to turn anti-clockwise – or, in Game Maker coordinates,
increase its direction variable. So, for this event add an action that sets
the direction variable to be 6 and relative. Remember, we have 60 frames
in our sprite so we have an increment of 6 degrees (360/6 = 60)

• Add a similar keyboard event for the right arrow key (subtracting 6
this time) so we can turn clockwise

• To move forwards and backwards we need to modify the speed of the
tank. Add a keyboard event for the up arrow, and to this add an action
that adds 1 to the instance variable speed, remembering to limit it at a
reasonable value with an if statement so the tank doesn’t move too fast

• Add a similar keyboard event and action for the down arrow key,
remembering to add -1 to the speed to make the tank move backwards.

Add a tank object to the room and test the game – the tank is probably spinning and looks
odd, but you should be able to drive it around using the arrow keys. If that works as
planned, lets now fix how it looks

• Step event – every time the model updates, we want to work out which frame
of the sprite to draw so the tank appears to be pointing in the right direction.
This time we’ll handle an End Step event so it occurs after Game Maker has
finished moving all of the objects. Add a Change Sprite action, but set the
subimage field to be direction/6. Think about what this means – we have 60
frames in our sprite, and direction is an angle between 0 and 360 degrees. So
direction/6 will calculate which frame between 0 and 60 that we should show
for the tank’s current rotation, where frame 0 shows direction 0 degrees, frame
30 shows direction 180 degrees and frame 59 shows direction 354 degrees.

• Draw event. The last thing we need to do is to stop Game Maker making the
tank spin – its trying to be helpful by automatically animating the sprite, but in

this case we don’t want that to happen. Handle the Draw event for the sprite,
and add a Draw Sprite action, setting the sprite to your tank sprite, and the
subimage to -1 as show below. -1 tells Game Maker not to change the sprite
when it draws it, because we’ve already change it in our End Step event
above.

Finally handle how the tank interacts with its surroundings, i.e. what happens when we
drive the tank into the wall

• Handle the collision event between the tank and the wall. You can make the
tank bounce away from the wall by adding an action to set the speed variable
to be –speed – which will make it bounce backwards when it hits something

Test the game – we should now have a tank that we can drive around the arena using the
arrow keys. If it doesn’t work something’s gone wrong, so review the previous steps and
try and work out what you’ve missed.

Multiplayer Game
Creating a multiplayer game should be easy now that we’ve create a tank and the arena.
First we need to create a second tank for the second player to use

• Duplicate the tank object giving it a sensible name (for example
obj_tank_blue), assign it the second tank sprite, and change its Keyboard

events to use the W,A,S and D keys to move (this is the classic key
arrangement for a first person shooter).

• Add an instance of the new tank object to the room

Test the and check that you have two tanks that you can drive independently.

Next, add multiple views to the room, using the views tab for the room that we made
earlier, adding a view for each player and a central view that gives a map overview of the
arena

A view has a number of properties that we can change:

• The size of the view with respect to the room – which bit of the arena we’re
looking at

• The size of the view with respect to the window on the screen (the port) – the
layout of the different views on screen

• The object that the view tracks, if any – the two tanks

• The border of the view that will force the view to update and move when the
tracked object moves outside it

Create the three views for the players, thinking about the different coordinate systems in
play:

• The size of each view on the screen and its layout
• What object each tracks with relation to the size of the room

Test the game and make sure that the views appear and behave as expected

• Is the border of each view sufficient that each player can see where they are
going?

Game Play
By now we should have an interesting environment for our two players to explore. The
final task is to turn this into an interesting game, and in this respect we can reuse many
features from the shoot-em-up from previous sessions.

• Create bullets that are fired from each tank when the appropriate key is pressed
o Use the create moving action to create an instance of a bullet object that

moves in the same direction as the tank is facing

origin 0,0

size 400,480 size 400,480

origin 420,0

origin 350,355

size 120,120

o Create different bullet objects depending on which tank fired a weapon. A
bouncing bullet just needs to handle the collision event using the bounce
action to bounce against walls. A homing bullet needs to handle the step
event using the step avoiding action to move towards the enemy player.

o Handle the collision between bullets and tanks to decrement a local
damage variable, and calculate whether a player has lost a point or a life.

