G54GAM - Games

e PBalance
e Software architecture

Flow
Challenge

Frustration

Boredom

Abilities

Practice

Stage 1 training

A

- . Modify and add features and
Difficulty § challenges to extend stage 2

>

Progress

This week

* Balancing a game
— Why is it important?

— Understanding balance
e Pay-off matrices
* Dominant Strategies
 Static and dynamic balance

— Balancing Techniques

e System architecture
— Structure and the Game Loop

Balance

 Can make or break a game
— Look, sound and even play well
— Can still be a failure

 We may have all the formal and dramatic elements of game
play

— Need to be in balance with one another and the player
— Game fails if they are not, no fun

* A balanced game is one where success of the player is largely
determined by the skill of the player
— Random events may occur

— In general a better player should get further than a poor player

Is it balanced?

* Combinatorial game theory
— Analyse
— Optimisation problem

— Just because a result is mathematically correct does not
mean it is aesthetically pleasing

* Trial and error
— Play, tweak, play, tweak...
— Run out of time, release game
— Tweak further by releasing additional patches

* Need to understand what we’re balancing and how

Is it balanced?

 Static balance
— Are the rules fair when considered as a static
system?
— Is the initial state of the system (formal) balanced?
* Dynamic balance

— Is an equilibrium maintained?

— How does balance change with time and player
interaction?

* (remember mechanics, dynamics, aesthetics)

Rock, paper, scissors —is it

balanced?
Scissors Paper Rock
Scissors 0 1 -1
Paper -1 0 1
Rock 1 -1 0

N I ./ I I T

M TN 7T I T TS 7T 7

Birthday Conundrum

e [fitis my birthday, and you buy me flowers,
you win 10 brownie points, because you

remembered my birthday.

e [fit's not my birthday, you will win 20 brownie
points, because you have surprised me with

your thoughtfulness.

Birthday Conundrum

Birthday Not Birthday
Buy Flowers 10 20
Do not buy -100 0

flowers

Dominant Strategies

Always buy flowers

— Always get positive payoff
Never buy flowers

— Zero payoff

— Massive loss

Strongly dominant strategy
— Guarantees winning every time

Weakly dominant strategy
— Guarantees not losing, but drawing — Tic-tac-toe!

All other strategies recessive

— Why would a player choose to do something else?

Warcraft — always bet on the Orc

Bl D 100 s

o,
by -- fp J
. .

HF
|

EAHALIGHT

.

FE MU

Attacking

.
v
'

anl
Pk 7

_

E
B
n

|

\

4

' TA -
L &

Balancing Techniques - Symmetry

Each player (including the computer) is given
the same starting conditions and abilities

Most applicable to...

— Sports simulations

— Multi-player games

Difficult to achieve precisely
Leads to boring game play?

Transitive Relationships

* A one-way relationship
between objects

A beats B, B beats C, C beats
nothing at all

 Why would anyone want C?

Transitive Relationships

 Make C free, and A cost
something

e Reward without cost leads to a
dominant strategy

* TRs continually drive a player
towards a goal
— Progression + regression

— Any game that involves
upgrading or augmenting player
abilities

Transitive Relationships

A B C
0 1 1
-1 0 1

Intransitive Relationships

Intransitive Relationships

Scissors Paper Rock
Scissors 0 1 -1
Paper -1 0 1
Rock 1 -1 0

Intransitive Relationships

* Aesthetically pleasing
— The game “looks” balanced

* Players quickly learn to understand the
relationships
— Does not lead to innovative game play

* Challenge the player to consider different
environments

Intransitive Relationships

Off road / terrain

U On race track

Trade-Offs

@O

L/

Intransitive trade offs

e Common in role playing games
— “Trade off” one ability against each other

* The player must decide which ability to maximise

— Spend points on strength or charisma?
 Stats-jugglings
 Skills are independent and orthogonal

— Still needs to be balanced

* A strength point should given an equivalent advantage
as a charisma point

* Must still be able to complete the challenge

— Arbitary punishment for making the wrong decision

Dynamic Balance

* As time and player interaction continue, what
happens to the balance?

— Is it maintained?
— Is it destroyed?

— How is it restored?

* How the game is dynamically balanced defines
the game play of the game

— Balance is disrupted — the player wins

— Balance is maintained — the player can continue to
play

Feedback

* Positive Feedback
— Destabilises the game
— Rewards the winner
— Ends the game
— Magnifies early successes

* Negative Feedback
— Stabilises the game
— Forgives the loser
— Prolongs the game
— Magnifies late successes

e Explicit user interaction

Predict and Describe Dynamics

| | [|
®) ® —| Move
Roll ' l
8 Pay Up!
‘ —_l_l
Winners —

REEEEN EENN
e |]

././.
ac
N
=
X
@
'l
N

Stage 1 training

A

- . Modify and add features and
Difficulty § challenges to extend stage 2

>

Progress

Tools for Balancing

* Design for Modification
— Implement core rules
— Configure rules with parameters
— Store parameters in a modifiable form
— Modify one parameter at a time, test game play

* Prototype well in advance

* Devise pay-off matrices
— Look for dominant strategies

Now what?

* Now that we have our game design, how do
we go about building it?

— Complex interactive system

* We need to plan it otherwise it becomes a
mess
— Difficult to understand
— Difficult to maintain
— Difficult to extend

Interactive System

Game makes internal
decision

/N

Player takes action Game creates outputs

How do we put it all together?

* Inputs
— Mouse, keyboard, controller
* Internal Processes

— Evolving Game State
— Objects, Rules, Procedures...

* Qutputs
— Graphics
— Sound
— User Interface

How do we put it all together?

* Userinterface
— Configuration and selection
— Help
— Input /HUD
* Game Logic
— Loading
— Script
— Physics Engine
— Artificial Intelligence
— Events
— Collisions
— Network communication

* Qutputs
— Graphics renderer
— Sound and music

How do we put it all together?

* Game State
— Position, orientation, velocity of all dynamic entities
— Behaviour and intentions of Al controlled characters

— Dynamic, and static attributes of all gameplay entities
e Scores, health, powerups, damage levels

* All sub-systems in the game are interested in some aspect of

the game state.
— Renderer, Physics, Networking, and Sound systems need to know
positions of objects
— Many systems need to know when a new entity comes into or goes out
of existence

— Al system knows when player is about to be attacked — sound system
should play ominous music when this happens

The Game Loop

The “heart beat” of a game
Performs a series of tasks every frame

— A series of frames are perceived as movement

— E.g. 60 frames per second

Run as fast as we can

— A smooth game-play experience

Potentially decouple to avoid bottlenecks

The Game Loop

start game
while(user doesn't exit)
{
get user input
get network messages
simulate game world
resolve collisions
move objects
draw graphics
play sounds

}

exit

The Game Loop

start game

while(user doesn't exit)

{
how much time has elapsed?
get user input
get network messages
simulate game world(elapsed time)
resolve collisions
move objects
draw graphics
play sounds

}

exit

CPU Graphics CPU Graphics

Decoupling

As fast as
possible

As fast as
possible / fixed
frequency

Draw Frame

when possible

Update State

1/frequency

Decoupling

Look for key
and mouse
events
As fast as
possible
As fast as
possible / fixed Draw Frame
frequency when possible
Update State
e Draws the
window and
Handle step room

events

Decoupling

Interpolate

Motion

As fast as Ae fat
possible / fixed S azl as
frequency possible

Update Draw Frame

Simulation when possible
1/frequency (Network

latency?)

; Game Maker 7.0 Lite: lab5.gmk - [Object Properties]

:

@ File Edit Resources Scripts Run Window Help

1
oy

x

UARH 2@ P @0y T Z@0 O+ & @

#-7) Sprites
L) Sounds
#-{7) Backgrounds
i) Paths
i) Scripts
{7 Fonts
{C Time Lines
== Objects
ob|_tank_parent
| obi_wal
BB obj_tank_red
B8 obj_tank_blue
@& ob_bullet_red
@ obj_bullet_blue
ob_bullet_parent
%# obl_exp_big
{7 obl_exp_small
& obj_bounce_red
@ obj_bounce_blue
ob|_bounce_parent
& obi_homing_red
@ obji_homing_blue
obl_homing_parent
obl_controller
#-{) Rooms
li] Game Information
Global Game Settings

&)

—

Name: | ob|_tank_red

|

Sprite

e Ispr_tank_red =

[New | [_Edit |

Yisible []Solid

Depth: | 0

[] Persistent

Parent: Jobj tank_parent =l

Mask: |<same as spiite> =

[©) Show Information]

+ OK

Events: Actions:

:: Step e Draw sprite spr_tank_red
-

* Bl Step SALL | Call the inherited event
S Ackey EVENT

@ Dkey

@@ S-key

i W-key

B9 Draw

& press <Space>

| AddEvent |

[Delete] [Change]

- Move

BR
&

lll’ ‘
s| [a] [»+
= Jump

ﬁ X 2

|
o
=
=
@

#
& € | 1= 2] 2 | 2] 4

¢ [R] [®

=
“

’.
D
°
b
*

I MBI I BAxa I al02s | |0AJU0D I Zuew I Lu!eu.ll a0

Model-View-Controller

An architectural design pattern
Used to isolate logic from user-interface
Model

— The information of the application
View
— The user interface and display of information

Controller

— Manages the communication of information and
manipulation of the model

Game MVC Architecture

e Model

— The state of every game object and entity
— The rules of the game world
— The physics simulation
— Knows nothing about user input or display
* View
— Renders the model to the screen
— Uses the model to know where to draw everything

e Controller

— Handles user input and manipulates the model

Quake MVC Architecture

* Model

— An abstract 3d environment

— Positions and orientations change over time
* View

— Render the 3d environment

— Display complex avatars and animations

— Fancy effects

e Controller

— Tell the model that | want to move, shoot, jump
— Tell the model that 1/50t" of a second has elapsed

Why MVC is popular / good

Nice modular design
— Decouple game design from renderer

Game world logic is bundled in the model

Changes to the renderer / graphics do not
affect the rest of the game

Easily supports different input controllers and/
or bots and Al

Helpful when we think about networked
games

| | i —

Structuring the Model

Model

— Objects

— Rules

— Together create game world and state

Objects need to communicate with one another
Objects need to be able to do things by themselves
How do we structure this sensibly?

Direct Communication

Object A attempts to pick up object B
— Check if B can be picked up
— Which functions A must call in B to reflect pick-up
— Many conditional statements

Bullet hits player

— Who destroys the bullet
— Who destroys the player
— Who updates the score and the health?

Why is this a poor design choice?
Exponential complexity

Every object needs to know how to interact with every other
object

ame r

<o mdishooters.gem

)

File Edit Resources Scripts Run Window Help

UAH > > @@=y T Z @O @i

5 @

-l ob_bulletbad
il obLbulletbad2
controller_life

mmmbeallare koA

[Zé];llll]

[Add Event]

[Delete] [Change]

== Sprites ~ . b‘
: . sor_ship E‘)I)_]e(t Properties [;] L
zz:::z:::;"z N. E()b]e«:t Properties E] _
o spi_island3 (| N: (@] Object Properties [;]
spr_bullet —7 :
l Sp,_bu"etbbad N. @ Object Properties Q ‘
free spr_scorebar [[)
W sp_lfe N @ Object Properties E]
B spr_explosion_m [v W
B b o o ject Properties
=V : i 3
zz:—::gg | 0 Name: [Iobi_bullet] Events Actions: ve S %
| _ spr:boss o = ~ Sprite - C % Set the vertical speed .
() Sounds - D = . Ispr_bullet = > 'é 3 g‘
= Backgrounds M p, - =
: J background1 B (o] (New | [Edt | b vn |*" ?
() Paths [%] E: ’ g
) Seripts . [7] visible Solid —dis =
- =| B
- @ Ft.mts . l 1 Depth: [0] x(% g
= Time Lines M S
| L timelined l = [Persistent H &0 —
5. H g
? @ Ub|e9ts : l Parent: |<no parent> = 8
[l obLship = | él K 2
------ ob{_island_1 Mask: |<same as sprite> = o o |
»»»»»» obi_island_2 _Paths &
------ ob_island_3 [©) Show Information] EI !I —
o ob_island_parer =
- obj_bullet m 2

