G54GAM - Games

 Software architecture of a game

Coursework

* Coursework 2 and 3 due 18" May
* Design and implement prototype game

— Write a game design document
— Make a working prototype of a game
— Make use of the lab sessions to discuss your ideas

e Coursework document on the website

— http://www.cs.nott.ac.uk/~mdf/
teaching G54GAM.html

Now what?

Now that we have our game design, how do we go
about building it?

— Complex interactive system
We need to plan it otherwise it becomes a mess

— Difficult to understand

— Difficult to maintain

— Difficult to extend

“Games must be designed, but computers must be
programmed”

— Still mainly native — C, C++

— However we can write a game in any language we wish

Interactive System

Game makes internal
decision

/N

Player takes action Game creates outputs

How do we put it all together?

* Inputs
— Mouse, keyboard, controller
* Internal Processes

— Evolving Game State
— Objects, Rules, Procedures...

* Qutputs
— Graphics
— Sound
— User Interface

What are common game system
components?

Physics
Engine

Event
Handler

\

Configuration

System

AN

Graphics

\

Menuing
System

X

~_

Online
Help

Logic
Engine

User
Interface

Input

Game
Data

Level

Graphics
Engine

Engine

Graphics

HARDWARE

Audio

Music
System

Miscellaneous

How do we put it all together?

* Userinterface
— Configuration and selection
— Help
— Input /HUD
* Game Logic
— Loading
— Script
— Physics Engine
— Artificial Intelligence
— Events
— Collisions
— Network communication

* Qutputs
— Graphics renderer
— Sound and music

How do we put it all together?

* Game State
— Position, orientation, velocity of all dynamic entities
— Behaviour and intentions of Al controlled characters

— Dynamic, and static attributes of all gameplay entities
e Scores, health, powerups, damage levels

* All sub-systems in the game are interested in some aspect of

the game state.
— Renderer, Physics, Networking, and Sound systems need to know
positions of objects
— Many systems need to know when a new entity comes into or goes out
of existence

— Al system knows when player is about to be attacked — sound system
should play ominous music when this happens

Time and “The Game Loop”

* The “heart beat” of a game
* Performs a series of tasks every frame

— Game state changes over time

— Each frame is a snapshot of the evolving game
state

— A series of frames are perceived as movement
e E.g. 60 frames per second

 Run as fast as we can?

— A smooth game-play experience

The Game Loop

start game
while(user doesn't exit)
{
get user input
get network messages
simulate game world
resolve collisions
move objects
draw graphics
play sounds

}

exit

O

The Game Loop

start game

while(user doesn't exit)

{
how much time has elapsed?
get user input
get network messages
simulate game world(elapsed time)
resolve collisions
move objects
draw graphics
play sounds
wait (a fixed amount of time)

}

exit

CPU Graphics

CPU Graphics CPU Graphics

Decoupling

As fast as
possible

Update State

1/frequency

As fast as
possible

Draw Frame

when possible

Decoupling

How it plays

Interpolate

Motion

fixed

As fast as
frequency

possible

Update Draw Frame

Simulation

when possible
1/frequency

How it looks

; Game Maker 7.0 Lite: lab5.gmk - [Object Properties]

:

@ File Edit Resources Scripts Run Window Help

1
oy

x

UARH 2@ P @0y T Z@0 O+ & @

#-7) Sprites
L) Sounds
#-{7) Backgrounds
i) Paths
i) Scripts
{7 Fonts
{C Time Lines
== Objects
ob|_tank_parent
| obi_wal
BB obj_tank_red
B8 obj_tank_blue
@& ob_bullet_red
@ obj_bullet_blue
ob_bullet_parent
%# obl_exp_big
{7 obl_exp_small
& obj_bounce_red
@ obj_bounce_blue
ob|_bounce_parent
& obi_homing_red
@ obji_homing_blue
obl_homing_parent
obl_controller
#-{) Rooms
li] Game Information
Global Game Settings

&)

—

Name: | ob|_tank_red

|

Sprite

e Ispr_tank_red =

[New | [_Edit |

Yisible []Solid

Depth: | 0

[] Persistent

Parent: Jobj tank_parent =l

Mask: |<same as spiite> =

[©) Show Information]

+ OK

Events: Actions:

:: Step e Draw sprite spr_tank_red
-

* Bl Step SALL | Call the inherited event
S Ackey EVENT

@ Dkey

@@ S-key

i W-key

B9 Draw

& press <Space>

| AddEvent |

[Delete] [Change]

- Move

BR
&

lll’ ‘
s| [a] [»+
= Jump

ﬁ X 2

|
o
=
=
@

#
& € | 1= 2] 2 | 2] 4

¢ [R] [®

=
“

’.
D
°
b
*

I MBI I BAxa I al02s | |0AJU0D I Zuew I Lu!eu.ll a0

Main Animation Dynamics Rendering
Thread Thread Thread Thread
HID
Viebli
Update Game o Determination
Objects
Sleep
Kick Off Animation =
Post Animation Pose Sort
Game Object Update Blending
Kick Dynamics Sim 7 Simulate
/| ana Submit
Ragdoll Physics Sieep |/ | Integrate Primiives
Finalize Animation |—» Sleep
Finalize Collision clobal | o RN
Phase Coll.
Skin Matrix
Other Processing Palette Narrow Full-Screen
(Al Planning, Audio Calc Phase Coll. Effects
Work, etc.) , [Resolve |
/| Sleep Collisions, Wait for V-
— Vg — Constraints Blank
Kick Rendering 4]
(for next frame) f Skinning Sleep Swap Buffers

Model-View-Controller

An architectural design pattern
Used to isolate logic from user-interface
Model

— The information of the application
View
— The user interface and display of information

Controller

— Manages the communication of information and
manipulation of the model

Game MVC Architecture

e Model

— The state of every game object and entity
— The rules of the game world
— The physics simulation
— Knows nothing about user input or display
* View
— Renders the model to the screen
— Uses the model to know where to draw everything

e Controller

— Handles user input and manipulates the model

Quake MVC Architecture

* Model

— An abstract 3d environment

— Positions and orientations change over time
* View

— Render the 3d environment

— Display complex avatars and animations

— Fancy effects

e Controller

— Tell the model that | want to move, shoot, jump
— Tell the model that 1/50t" of a second has elapsed

Why MVC is popular / good

Nice modular design
— Decouple game design from renderer

Game world logic is bundled in the model

Changes to the renderer / graphics do not
affect the rest of the game

Easily supports different input controllers and/
or bots and Al

Helpful when we think about networked
games

| | i —

Structuring the Model

Model

— Objects

— Rules

— Together create game world and state

Objects need to communicate with one another
Objects need to obey rules and procedures

Objects need to be able to do things by themselves
How do we structure this sensibly?

Direct Communication

* Object A attempts to pick up object B
— Who checks if B can be picked up
— Which functions A must call in B to reflect pick-up
— Many conditional statements

e Bullet hits player
— Who decides what happens?
— The player is damaged
— The bullet is destroyed
— Where do we put the logic?

 Why is this a poor design choice?
— Exponential complexity
— Every object needs to know how to interact with every other object
— Very time consuming to add new objects

Encapsulation and Inheritance

Generalise the kinds of functions that objects must respond
to, and encapsulate this functionality within the object

— Build an object hierarchy

— Objects look after themselves — adding new objects is trivial

Functions
— Update() - Calculate where | am now

— Render() - How | am drawn on screen

Subsystems iterate object collections, but are dumb!
for(Object o : all the objects)
{
o.update();
o.render();

GameObject

JAN

MovableObject

JAN

PacMan

Ghost

)ﬂderableomect

Pellet

JAN

PowerPellet

MHealth

+GetHealth()
+ApplyDamage()
+IsDead()

+OnDeath()

Character

MCarryable

+Drop()

+PickUp()

+IsBeingCarried()

Vehicle

GameObject 4
p\%ﬁ

Wea

pon

\

Item

[N SN TR TR

Player NPC

Tank

Jeep

Pistol

MG

Canteen

Ammo

Events

* Games are inherently event driven
— Anything of interest that happens
* Explosion goes off, coin being picked up

— Need a mechanism to...

* Inform relevant objects that something has happened
e Respond (handle) the event in some way

* “Event subsystem”

— Often provided by a game engine to make our
lives easier

Events

* Physics simulation
— A bullet has collided with the player
— Could tell all interested objects directly?
* Bullet, player, scoreboard, health, walls, floor, sky...
* Broadcast an event

— Objects listen for particular events to handle
— lgnore events we don’t care about

* Scenery doesn’t care about the score
— Makes it easy to add new events
— Objects can prioritise events in different ways

— Dynamically register and unregister interest in events
* Changing context

publish

subscribe

Finite State Machines

* Events allow objects and subsystems to talk to
one another

* FSMs allow objects to be autonomous

— Evolve from “exploding” to “destroyed”
— Artificial Intelligence / “bots”

* Literally
— A finite number of states

— Actions allow the object to transition between
states

READY’

Ghost
returns to
base

Timer
expires

Pac Man eats
power pill

Pac Man
eats ghost

FSM code

update() doEvents()
{ {
switch(state) event = getNextMessage();
{ .
case hunting: ?WltCh(event)
chasePacMan(); case eatenPill:
case hunted: setState(hunted);
evadePacMan(); case reachedBase:
case eaten: setState(hunting);
returnToBase();
}
) }

References

 Game Engine Architecture (Jason Gregory,
2009)

e Quake source code
— https://github.com/id-Software/Quake-IlI-Arena
— C code, but can you spot the structure?

Multiplayer Games

* Single Player
— Pre-defined challenges
— Artificial Intelligence controlled opponents using Finite State Machines
— Simple MVC design

 Multi-Player
— More than one player can play in the same environment at the same
time
— Interaction with other players forms a key challenge of the game play
— How can we build such a system?
— What are some of the issues that arise?

1 © '
; e
Single Player vs. Game

Multiple Indvidual Players vs. Game

Player vs. Player

Unilateral Competition
"
g e

Cooperative Play

Multilateral Competition

Team Competition

Where is the view?

* Local
— Players are co-located
— Share the same console / screen / pc
— Share or split screen into two or four sections
— Arcade games, racing, fighting, co-operative shooters

* Networked / Online
— Players are physically separated
— Game play is shared over the network / Internet
— Many combinations of players 2 -> ?7?
— FPSs, MMORPGs

Static Shared View — Bomber Man

Adaptive Shared View — Street Fighter

T AT T Anlnlnln T AT

- ja =

CHUH LY

Adaptive Shared View — Street Fighter

Split-Screen View — Mario Kart

Networked / Online Game Play

Players are physically separate
Where is the game?

Master and slave

— Usually two players, local network

Dedicated server and Clients

— Multiple players, local network, internet
(Peer-to-peer)

— Largely theoretical

