G54GAM - Games

* Software architecture of a game
* Encapsulation and Autonomy

Time and “The Game Loop”

The “heart beat” of a game
Performs a series of tasks every frame
— Game state changes over time

— Each frame is a snapshot of the evolving game
state

— A series of frames are perceived as movement
* E.g. 60 frames per second

Run as fast as we can?
— A smooth game-play experience

Decoupling

How it plays

Interpolate
Motion

Check input

fixed
frequency

As fast as

possible

Update
Simulation
1/frequency

Draw Frame
when possible

How it looks

Why MVC is popular / good

Nice modular design

— Decouple game design from renderer

Game world logic is bundled in the model
Changes to the renderer / graphics do not
affect the rest of the game

Easily supports different input controllers and/
or bots and Al

Helpful when we think about networked
games

3/30/12

3/30/12

Structuring the Model Direct Communication
* Model * Object A attempts to pick up object B
— Objects — Who checks if B can be picked up
— Which functions A must call in B to reflect pick-up
— Rules — Many conditional statements
— Together create game world and state « Bullet hits player

— Who decides what happens?
— The player is damaged
* Objects need to obey rules and procedures — The bullet is destroyed
— Where do we put the logic?
* Why is this a poor design choice?
* How do we structure this sensibly? — Exponential complexity
— Every object needs to know how to interact with every other object
— Very time consuming to add new objects

* Objects need to communicate with one another

* Objects need to be able to do things by themselves

Encapsulation and Inheritance

* Generalise the kinds of functions that objects must respond
to, and encapsulate this functionality within the object
— Build an object hierarchy
— Objects implement interfaces
— Objects look after themselves — adding new objects is trivial
« Functions / Interfaces
— Update() - Calculate where | am now
— Render() - How | am drawn on screen
* Subsystems iterate object collections, but are dumb!
for(Object o : all the objects)
{

o.update();
o.render();

GameObject
ANV,
\V

MovableObject

/\

VST 1\

PacMan | | Ghost | | Pellet |
/\

PowerPellet

MCarryable
MHealth [+PickUp ()
+GetHealth() +Drop()
+ApplyDamage() +|sBeingCarried()
+IsDead() /\
FOnDestf) GameObject

Doom 3

class idEntity : public idClass {

public:
virtual renderEntity_t *GetRenderEntity(void);
// run the physics for this entity
bool RunPhysics(void);

| Character I l Vehicle | | Weapon Item
|Player| | NPC | | Tank | I Jeep | |Pislo|| | MG | |Canteen| | Ammo I
Doom 3

class idMoveable : public idEntity {
public:

virtual bool Collide(const trace_t
&collision, const idVec3 &velocity);

Quake 3

#tdefine RESPAWN_ARMOR 25

#define RESPAWN_HEALTH 35

t#tdefine RESPAWN_AMMO 40

#tdefine RESPAWN_HOLDABLE 60

#define RESPAWN_MEGAHEALTH 35//120

#tdefine RESPAWN_POWERUP 120

int Pickup_Powerup(gentity_t *ent, gentity_t *other) {

Code or data?

* Easy (!) to create hierarchies in code
— Object orientation, interfaces
— Some language specific pitfalls
* The “diamond of death”
* A game engine should be as generic as possible
— The code supports a certain type of game
* Separate specific functionality as data
— Data-driven approach
— Scripts, models, levels
— Support DLC (Downloadable content)

3/30/12

Events

* Games are inherently event driven
— Anything of interest that happens
* Explosion goes off, coin being picked up
— Need a mechanism to...

* Inform relevant objects that something has happened
* Respond (handle) the event in some way

* “Event subsystem”

— Often provided by a game engine to make our
lives easier

Events

* Physics simulation
— A bullet has collided with the player
— Could tell all interested objects directly?
« Bullet, player, scoreboard, health, walls, floor, sky...
* Broadcast an event
— Objects listen for particular events to handle
— Ignore events we don't care about
* Scenery doesn’t care about the score
— Makes it easy to add new events
— Objects can prioritise events in different ways

— Dynamically register and unregister interest in events
* Changing context

publish

subscribe

Finite State Machines

* Events allow objects and subsystems to talk to
one another

FSMs allow objects to be autonomous

— Evolve from “exploding” to “destroyed”

— Artificial Intelligence / “bots”

* Literally

— A finite number of states

— Actions allow the object to transition between
states

Timer Pac Man eats
expires power pill

Ghost
returns to
base

Pac Man
eats ghost

3/30/12

FSM code

update() handleEvent(event e)
{ {
switch(state) {
{ case eatenPill:
case hunting: setState(hunted);
g: case reachedBase:
chasePacMan();

setState(hunting);
case hunted:

evadePacMan();
case eaten: }
returnToBase(); }

References

Look at real game code:
https://github.com/id-Software/

Multiplayer Games

« Single Player
— Pre-defined challenges
— Artificial Intelligence controlled opponents using Finite State Machines
— Simple MVC design
* Multi-Player
— More than one player can play in the same environment at the same
time
— Interaction with other players forms a key challenge of the game play
— How can we build such a system?
— What are some of the issues that arise?

Multiplayer / Networked Games

X
Ay

Multiple Indvidual Player

single Player vs. Game

Player vs. Player

Mutilateral Competition

Where is the view?

* Local

— Players are co-located

— Share the same console / screen / pc

— Share or split screen into two or four sections

— Arcade games, racing, fighting, co-operative shooters
* Networked / Online

— Players are physically separated

— Game play is shared over the network / Internet

— Many combinations of players 2 -> ??

— FPSs, MMORPGs

3/30/12

Static Shared View — Bomber Man

EFLol-1ok s o F-1 B

Adaptive Shared View — Street Fighter

Adaptive Shared View — Street Fighter

Split-Screen View — Mario Kart

3/30/12

Networked / Online Game Play

* Players are physically separate
* Where is the game?
* Master and slave
— Usually two players, local network
* Dedicated server and Clients
— Multiple players, local network, internet
* (Peer-to-peer)
— Largely theoretical

Master and Slave

network

Client Server

E

3/30/12

Sadly it’s not that simple

* Game loop runs at 30 Hz
* Renderer redraws at 50-100 Hz
« Each input has to...
— Travel from the client to the server
— Be processed by the server
— Wait for the server loop to update the model
— Travel from the server to the client
— Bedrawn onscreen

.
-

or several players on the Internet playing a fast paced game

— This is very slow

— Requires a lot of bandwidth (each client needs to know about the current state
of the model every loop)

— Packets get lost or delayed or arrive out of order

Decoupling

Interpolate

Check input Motion

As fast as
possible / fixed
frequency

As fast as
possible

lUpdat.e Draw Frame
Simulation when possible
1/frequency (Network

latency?)

Local Replication

* Give each client its own replica of the model to use
* The server is the authority on what is happening
* The client
— Receives slow regular snapshots of the server model
* UDP (fast, but unreliable @~20Hz)

— Receives fast deltas — updates to the snapshot while
waiting for next snapshot

— Has a local replica of the server’s logic

— Between snapshots uses its local replica of the model to
calculate the current state to render the view

— Tells the server what it is doing, so the server can update
the master model

delays

Lag

* Network delays lead to logical Inconsistencies
* A player shoots at another player
— The player/client thinks they hit
— The fire command takes some time to get to the server
— The server thinks the player missed
* Two players try to pick up the same gold
— We both arrived at the gold at the same time
— Who picked up the gold?
— We both did, we both saw that we did
— Who gets to keep it?

Lag

Try to keep client and server models in sync
— Fast (otherwise it feels slow and jerky)

— Synchronised (to avoid logical inconsistencies)

— Not use too much bandwidth (remember dial-up)
— Cope with packet loss

— Recovery (Rewind to last snapshot)

Client prediction
Entity interpolation
Lag compensation

3/30/12

Entity Interpolation

* Client is responsible for frame-to-frame movement
simulation and rendering
— Xis moving at speed Y with direction Z, so move it a bit
— 100Hz

» Server is responsible for the bigger picture, the
context and the consequences
— X has picked up the gold, Y hasn’t
— X has fired a gun and hit Y
— X has pressed UP so start them moving
— 20Hz

Lag Compensation

* Dead Reckoning
— Xis moving at speed Y

— We haven't received a snapshot but need to draw a frame, so move it
a bit ourselves

— It’s likely that X will continue to move at speed Y because there’s
nothing near it

— ...allows smoother graphics than the network allows
* Deltas

— Only tell the client what has changed, rather than send the full model
snapshot

— Send full snapshot after a network delay so that the client gets back in
sync
— ..reduces bandwidth use

Client Prediction

* The player pressed up
* Send the command to the server controller

* While we’re waiting for the updated snapshot,
start moving anyway

* Rewind if we got it wrong
— Unusual, unless we’re “lagging”

* ...the game feels more responsive than the
network allows

Server-side Lag Compensation

The server keeps a record of current round-trip-time
for all the clients (time for a packet to travel from
client->server->client)

Remember where everything was up to a second ago

When a new command is received, estimate when it
was sent rather than when it was received

Use a historical snapshot of the model to work out
what happened

* ..the command is executed hopefully as if
there was no lag

References

* http://developer.valvesoftware.com/wiki/

Source Multiplayer Networking

* Next lecture...

— http://www.youtube.com/watch?v=00iamBxxoXA
* What is happening in this video?

* Contains bad language!

3/30/12

