A Multi-Agent Simulation of Retail Management Practices

Peer-Olaf Siebers

Nottingham University

School of Computer Science Intelligent Modelling & Analysis Group (IMA)

> Salford Seminar on 17/03/2009 This is an updated version considering the comments from the audience

My Research Interest & Projects

- Research interest
 - The application of computer simulation to study human-centric complex adaptive systems
- Projects
 - The Impact of Human Performance Variation on the Accuracy of Manufacturing System Simulation Models
 - A Multi-agent Simulation of Retail Management Practices
 - Modelling and Analysing the Cargo Screening Process

Content

- Agent-Based Modelling and Simulation
 - Simulation
 - Agents
- Case Study (Retail Management Practices)
 - Motivation
 - Research Questions
 - Data Collection
 - The Concepts
 - Implementation
 - Experiments

The University of Nottingham

Agent-Based Modelling and Simulation

Simulation Agents

Simulation (1/3)

- Methods in Operations Research
 - Linear Programming
 - Network Analysis
 - Meta Heuristics
 - Queuing Theory
 - Game Theory
 - Simulation

Simulation (2/3)

5

General

 Simulation is process of designing a model of a real system and conducting experiments with this model for the purpose of understanding the behaviour of the system and/or evaluating various strategies for the operation of the system.

Our Focus: Dynamic Stochastic Systems Simulation

- Dynamic
 - Modelling a time sequence of changes
- Stochastic
 - Based on conditional probabilities
 - Results from several runs will form a distribution

Simulation (3/3)

7

- Continuous (deterministic)
 - System Dynamics Simulation Example
 - Aggregate view; differential equations
- Discrete (stochastic)
 - Discrete Event Simulation (DES) Example
 - Process oriented (top down); one thread of control; passive objects
 - Agent Based Simulation (ABS) Example
 - Individual based (bottom up); each agent has its own thread of control; active objects

Agents (1/3)

- Agents are objects with attitude
 - Discrete entities
 - With their own goals and behaviours
 - With their own thread of control
 - Autonomous
 - Capable to adapt
 - Capable to modify their behaviour
 - Proactive
 - Actions depending on motivations generated from their internal state

Agents (2/3)

9

Interactive Organisational Agent-Based Simulation

The University of Nottingham

Agents (3/3)

- Purpose (empirical embeddedness) [Boero & Squazzoni, 2005]
 - Case-based (specific circumscribed empirical phenomena)
 Example: Evolutionary studies of prehistoric societies
 - Typification (specific classes of empirical phenomena)
 Example: Simulating issues related to land use management
 - Theoretical abstractions (pure theoretical models)
 - Example: Flocks of boids
- Agent goals and behaviours
 - Probabilistic (representing decisions using distributions)
 - Rule based (modelling the decision making process)

CASE STUDY

Motivation Research Questions Data Collection The Concepts Implementation Experiments

Motivation (1/2)

- The retail sector is one of the biggest contributors to the productivity gap between UK, EUROPE and USA
- There is a link between management practices and company's productivity but it is not well understood
- Current OR studies most often focus on operational management practices and ignore people management practices and they often don't consider the development of the system over time

Motivation (2/2)

- Advantage of ABS Models over Steady-State Models
 - We can study ...
 - the process of getting to an equilibrium state
 - non-equilibrium systems
 - a management practice prior to its implementation
 - We can consider ...
 - high levels of heterogeneity
 - effects of behaviour during the runtime
 - irrational behaviour
 - We can understand as well as predict system behaviour

Research Questions & Method

- Research questions:
 - Is agent-based simulation a suitable tool to better understand the relationship between people management practices and retail performance?
 - What level of abstraction should we use?

Method:

- Case study approach
- Individual departments within department store
- Using agent-based modelling and simulation
- Incorporating variables from different levels of analysis

Data Collection

15

- Two case studies at two different locations
 - Two departments within a department store
 - Informal participant observations
 - Staff interviews
 - Informational sources internal to the case study organisation

The Concepts (1/4)

The Concepts (2/4)

- Mapping real world processes
 - We have a system where customers have to queue for services (requires process oriented modelling)
 - We have a heterogeneous population of autonomous individuals (requires individual based modelling)

17

The Concepts (3/4)

The Concepts (4/4)

Decision logic:

• Frequency distributions for state change delays

situation	min	mode	max
leave browse state after	1	7	15
leave help state after	3	15	30
leave pay queue (no patience) after	5	12	20

Probability distributions for supporting decision making

event	probability it occurs
someone makes a purchase after browsing	0.37
someone requires help	0.38
someone makes a purchase after getting help	0.56

Implementation (1/11)

- Software: AnyLogic v5.5
 - Multi-method simulation software (SD, DES, ABS, DS)
 - State charts + Java code

Level of abstraction

- Agent-based models can be developed at different levels of abstraction, from very simple to very complex
- We have developed our simulation model in an iterative manner, raising the level of complexity in each step

Implementation (2/11) ManPraSim v1

Features:

- Based on case study data
- Staff types: cashiers, 2 x selling staff, section managers
- Customer types: general customer

Management practices:

- Training: staff at different training levels
- Empowerment: refund decisions; staff learning on the job

Drawbacks:

Homogeneous customers; no study of long term effects possible

The University of Nottingham

Implementation (3/11) ManPraSim v2

Main additions:

- Realistic footfall & opening hours
- Customer types
- Finite population

Customor typo		Likelil	hood to			
Customer type	buy	wait	ask for help	ask for refund		
Shopping enthusiast	high	moderate	moderate	low		
Solution demander	high	low	low	low		
Service seeker	moderate	high	high	low		
Disinterested shopper	low	low	low	high		
Internet shopper	low	high	high	low		

Management practices:

Effect of previously studied ones on different customer types

Implementation (4/11) ManPraSim v3

- Main additions:
 - Staff pool
 - Noise reduction mode
 - Customer evolution through external stimulation (word of mouth with static pool)

 $n_{additional customers per day} = (n_{satisfied(d-1)} - n_{dissatisfied(d-1)}) * af * cr$ $n_{customers per day} = n_{known customers per day} + n_{additional customers per day}$

- Management practices:
 - Effect of previously studied once on customer evolution

Implementation (5/11) ManPraSim v4

Customer evolution through external stimulation (word of mouth with dynamic pool)

n_{core customers per day} = <u>dynamic pool size</u> * n_{known customers per day} static pool size

 $n_{customers per day} = n_{core customers per day} + n_{additional customers per day}$

- Customer evolution through internal stimulation (triggered by memory of ones own previous shopping experience)
- Management practices:
 - Effect of previously studied once on customer evolution

Implementation (6/11) ManPraSim v5

- Main additions:
 - Enhanced staff pro-activeness
 - Observing service queues and helping out
 - New set of performance measures
 - Staff utilisation for the time staff spends in different roles
 - The time customers spend in different operational blocks
 - Productivity and profitability of the system
- Management practices:
 - Testing different levels of pro-activeness and different starting and terminating strategies for support activities

Nottingham

Implementation (8/11)

27

Agent Interaction: Scenario 1

Implementation (9/11)

Implementation (11/11)

- Simulation output <u>Example</u>
 - When the simulation is running use the slider in the top left corner to speed up or slow down the simulation.

Model Animation	_												- 15
■ 4 5 1/2 ×	1 x2	×5 YT 🔾										2	🕽 techno
Department	: Au	dio & T	V (A&TV)	Monday	: Shoj	o open	for 8	8 hour	s				
red: cashier green:	norma	al staff merr	ber blue: expe	rt staff member	magent	a: section	manage	er yellow	: departr	nent ma	nager cya	n: advisor	
lighter colours: free	darke	ir colours: s	erving very dar	k colours: suppo	rting (exp	pert advice)						
	F	F F											
		real	planned		years	weeks	days	hours	minute	15	Current	customer population:	9000
Average arrival rate pe	ar hour	: 73	(73)	Runtime:	0	3	1	5	58				
Customers in store:	24	[Overall custo	mers:			13253	100 %			Transactions:	3897
- browsing:	4			- leave happ	y (transa	ction or re	fund):	3897	29 %	*1	*2	Av. Transaction [E]:	149.7
 seeking help: 	0			- leave not v	waiting fo	r normal h	elp:	392	3 %	2399	16 %	Sales [E]:	583,38
- queuing for help:	4			- leave not -	waiting fo	r expert h	elp:	133	1 %	256	52 %	Missed [£]:	1,397,0
- standard:		4		- leave not v	vaiting to	pay:		2287	17 %	6053	38 %		
- expert:		0		- leave with	out findin	g anything	3:	6520	49 %				
- getting help:	7			- leave unha	ppy (no i	refund):		0	0 %				
- standard:		7											
- expert:		0		Customers I	ert:		13229		23113	1.000			
- wait at til:	7				22		-3	100 %	*4	-5	100 %	-6	
- served at til:	2			- satisfied (>	· U):		6/31	51 %	29261	5367	41 %	1/543	
				- don't know	v (= 0):		4114	31 %		5883	44 %		
				- not satisfie	d (< 0):		2384	18 %	-6148	1979	15 %	-4920	
Finite population:			Til queue le	ngth: mean: 4.1	1; max: 1	.5.0		*1 =	number	of people	e queueing	for this service	
- shopping enthusiasts		400	Normal help	queue length: n	nean: 1.0	1; max: 13	2.0	*2 =	% of th	ose leavi	ng the que	ue	
- solution demanders:		3200	Expert help	queue length: n	hean: 0.0	; max: 0.0		*3 -	consider	ing accu	mulated his	tory [number]	
- service seekers:		3200						*4 =	consider	ing accu	mulated his	tory [satisfaction grow	/th]
- disinterested shoppe	ers:	400						*5 -	experier	ice per v	isit (numbe	er]	
internet decouvers		800						76 =	experier	ce ner v	igit Esatisfa	tion provide	

Experiments

- Real world (practical)
 - Staffing levels
 - Staff autonomy (refund, learning)
 - Staff training requirements
- Abstract (theoretical)
 - Extreme populations (customer types)
 - Level of detail (noise vs. noise reduction mode)
 - Different forms of customer pool implementations
 - Advertisement through spread of the word of mouth

The University of Nottingham

Experiment 1 (1/2) **Staffing Levels**

31

A&TV: 2 cashiers, 4 normal staff, 4 expert staff

Overall customers:	41235	100 %	5	
- leave happy (transaction or refund):	12057	29 %	*1	*2
- leave not waiting for normal help:	930	2 %	8839	11 %
- leave not waiting for expert help:	134	0%	583	23 %
- leave not waiting to pay:	7468	18 %	19128	39 %
- leave without finding anything:	20646	50 %		

Transactions:	12057
Av. Transaction [£]:	149.7
Sales [£]:	1,804,933
Missed [£]:	4,367,947

Till queue length: mean: 4.23; max: 19.0 Normal help queue length: mean: 1.09; max: 13.0

Customers left:	41235		122742			
ALCONTINUES IN AN AND ALCONTINUES	*3	100 %	*4	*5	100 %	*6
- satisfied (> 0):	24972	61 %	144905	15682	38 %	48215
- don't know (= 0):	8085	20 %		19670	48 %	
- not satisfied (< 0);	8178	20 %	-22163	5883	14 %	-13796

*1 = number of people queueing for this service

*2 = % of those leaving the queue

*3 = considering accumulated history [number]

*4 = considering accumulated history [satisfaction growth]

*5 = experience per visit [number]

*6 = experience per visit [satisfaction growth]

Experiment 1 (2/2) **Staffing Levels**

A&TV: 3 cashiers, 6 normal staff, 1 expert staff

Overall customers:	40960	100 %	5	
- leave happy (transaction or refund):	16800	41 %	*1	*2
- leave not waiting for normal help:	1724	4 %	10958	16 %
- leave not waiting for expert help:	761	2%	1085	70 %
- leave not waiting to pay:	1687	4 %	15605	11 %
- leave without finding anything:	19988	49 %		

Transactions:	16800
Av. Transaction [£]:	149.7
Sales [£]:	2,514,960
Missed [£]:	3,616,752

100 %

68 %

19 %

13 %

136411

*5

18924

152775 18512

-16364 3524

100 % *6

50894

-11610

45 %

46 %

9%

*4

40960

27979

7579

5402

*3

Customers left:

- satisfied (> 0):

- don't know (= 0):

- not satisfied (< 0);

Till queue length: mean: 2.15; max: 17.0 Normal help queue length: mean: 1.56; max: 14.0

*1 = number of people queueing for this service

- *2 = % of those leaving the queue
- *3 = considering accumulated history [number]
- *4 = considering accumulated history [satisfaction growth]
- *5 = experience per visit [number]
- *6 = experience per visit [satisfaction growth]

33

Experiment 2 (1/2) Noise vs. Noise Reduction Mode (Average)

Importance of considering hourly differences in customer arrival rates and daily differences in staffing and opening hours

■ Noise Reduction Mode ■ Normal Mode

Nottingham

The University of Nottingham

Experiment 3 (1/2) Word of Mouth (Static Pool)

Word of mouth impact is different for different departments

	adoption fraction	0	0.5	1	difference ^{*1}	difference*2
	overall number of customers	40755	41886	42698	1943	4.55%
>	that leave buying something	12010	12065	12085	75	0.62%
\$Ω Γ	that leave not waiting for normal help	1050	1283	1682	632	37.57%
∢	that leave not waiting for expert help	459	446	466	7	1.50%
	that leave not waiting to pay	7161	7508	7603	442	5.81%
	that leave without finding anything	20075	20584	20862	787	3.77%
	adoption fraction	0	0.5	1	difference ^{*1}	difference ^{*2}
	adoption fraction	0 63957	0.5 76643	1 85837	difference ^{*1} 21880	difference ^{*2} 25.49%
	adoption fraction overall number of customers that leave buying something	0 63957 29634	0.5 76643 30063	1 85837 30225	difference ^{*1} 21880 591	difference ^{*2} 25.49% 1.96%
Ŵ	adoption fraction overall number of customers that leave buying something that leave not waiting for normal help	0 63957 29634 2	0.5 76643 30063 44	1 85837 30225 91	difference ^{*1} 21880 591 89	difference ^{*2} 25.49% 1.96% 97.80%
MM	adoption fraction overall number of customers that leave buying something that leave not waiting for normal help that leave not waiting for expert help	0 63957 29634 2 63	0.5 76643 30063 44 129	1 85837 30225 91 185	difference ^{*1} 21880 591 89 122	difference ^{*2} 25.49% 1.96% 97.80% 65.95%
MM	adoption fraction overall number of customers that leave buying something that leave not waiting for normal help that leave not waiting for expert help that leave not waiting to pay	0 63957 29634 2 63 63 6450	0.5 76643 30063 44 129 13363	1 85837 30225 91 185 17955	difference ^{*1} 21880 591 89 122 11505	difference ^{*2} 25.49% 1.96% 97.80% 65.95% 64.08%
MM	adoption fraction overall number of customers that leave buying something that leave not waiting for normal help that leave not waiting for expert help that leave not waiting to pay that leave without finding anything	0 63957 29634 2 63 6450 27808	0.5 76643 30063 44 129 13363 33044	1 85837 30225 91 185 17955 37381	difference ¹¹ 21880 591 89 122 11505 9573	difference ^{*2} 25.49% 1.96% 97.80% 65.95% 64.08% 25.61%

*1: ((adoption fraction = 1) - (adoption fraction = 0))

*2: ((adoption fraction = 1) - (adoption fraction = 0)) / (adoption fraction = 1)

Experiment 4 (1/2) Word of Mouth (Dynamic Pool)

Experiment 4 (2/2) Word of Mouth (Dynamic Pool)

Customer pool size (dynamic pool, varying af.)

Conclusions

Conclusions Questions

Conclusions

Findings:

- Agent-based modelling and simulation is a useful tool for investigating retail management practices
- Some of the details we modelled did not have a big impact on model behaviour / output but were adding some noise

Research opportunities:

- Comparing probabilistic and rule based decision making
- Comparing different simulation techniques
- Study the impact of teamwork related management practices

Questions?

41

References:

 Boero, R. and Squazzoni, F. (2005). "Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for Analytical Science" Journal of Artificial Societies and Social Simulation, 8(4)

