A first approach on modelling staff proactiveness in retail simulations

Peer-Olaf Siebers

Nottingham University School of Computer Science

pos@cs.nott.ac.uk

SSIG Meeting 24/03/2011 (Surrey)

Content

- A philosophical excurse
 - What is ABMS
 - How can we use it in OR to model and simulate service systems
- A case study
 - Investigating the impact of management practices on company performance
 - Organisational management practices
 - People management practices
 - Modelling customer/staff interactions in a department store
 - Adding proactivity to our reactive model
- Conclusions

- Discrete Event Simulation (DES) and System Dynamics (SD) are the main approaches to simulation modelling in Operational Research (OR)
- Do they allow us to consider proactive behaviour?
 - This is important for realistically modelling human centric systems
 - The OR literature does not provide any guidance
- Agent Based Simulation (ABS) allows us to consider proactive behaviour
 - Does it allow us to model OR type systems?
 - What do we need to consider when we apply it to solve OR problems?

- A word of caution:
 - Many different developments have been going on under the slogan of Agent Based Simulation in very different disciplines
 - Each discipline has its own understanding of what constitutes an agents and a multi-agent system
 - What does the OR community understand by an agent?
- Two main multi-agent system paradigms:
 - Multi-agent decision systems
 - Usually embedded agents or a simulation of embedded agents
 - Focus is on decision making
 - Multi-agent simulation systems
 - The multi-agent system is used as a model to simulate some real-world domain and recreate some real world phenomena

- What do we mean by "agent"?
 - Agents are objects with attitude!
- Properties:
 - Discrete entities
 - With their own goals and behaviours
 - With their own thread of control
 - Autonomous
 - Capable to adapt
 - Capable to modify their behaviour
 - Proactive
 - Actions depending on motivations generated from their internal state

• The Sims: Interactive Organisational Agent-Based Simulation

- Classification: Empirical embeddedness [Boero and Squazzoni, 2005]
 - Case-based (specific circumscribed empirical phenomena)
 - Example: Evolutionary studies of prehistoric societies
 - Typification (specific classes of empirical phenomena)
 - Example: Simulating issues related to land use management
 - Theoretical abstractions (pure theoretical models)
 - Example: Flocks of boids
- Agent decision making process (depends on model purpose)
 - Probabilistic: representing decisions using distributions
 - Rule based: modelling the decision making process

• Comparing attributes of DES and ABS [Siebers et al. 2010]

DES models	ABS models
Process oriented; focus is on modelling the	Individual based; focus is on modelling the
system in detail, not the entities	entities and interactions between them
Top down modelling approach	Bottom up modelling approach
One thread of control (centralised)	Each agent has its own thread of control
	(decentralised)
Passive entities, i.e. something is done to the	Active entities, i.e. the entities themselves can
entities while they move trough the system;	take on the initiative to do something;
intelligence (e.g. decision making) is modelled	intelligence is represented within each individual
as part in the system	entity
Queues are a key element	No concept of queues
Flow of entities through a system; macro	No concept of flows; macro behaviour is not
behaviour is modelled	modelled, it emerges from the micro decisions
	of the individual agents
Input distributions are often based on	Input distributions are often based on theories or
collect/measured (objective) data	subjective data

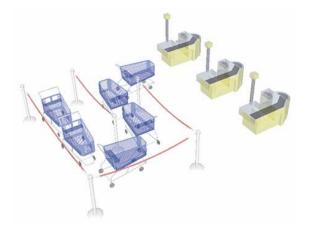
- Getting Practical: Simulating Service Systems
 - Using a combined DES/ABS approach
- Mapping real world processes
 - We have a system where customers have to queue for services (requires process oriented modelling)
 - We have a heterogeneous population of autonomous individuals (requires individual based modelling)

Communication layer

Agent layer

Let entities interact + communicate

Direct interactions Network activities



Replace passive entities by active ones

Active entities Behavioural state charts

DES layer

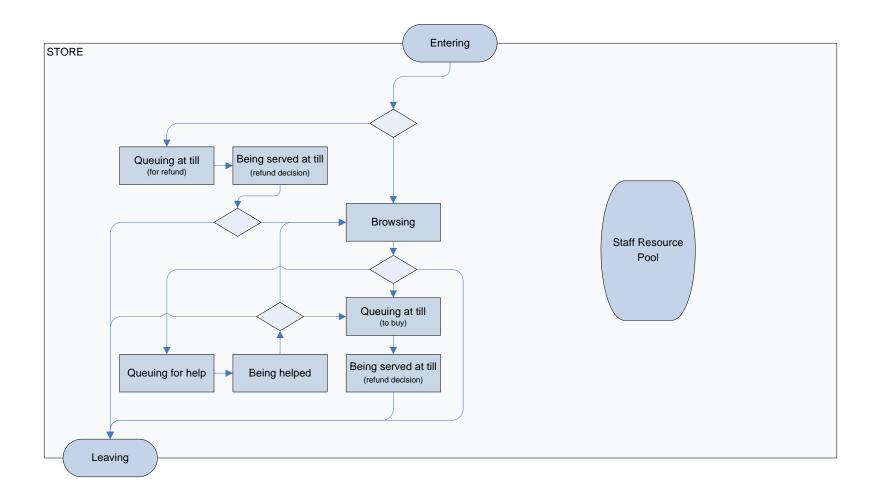
Passive entities Queues Processes Resources

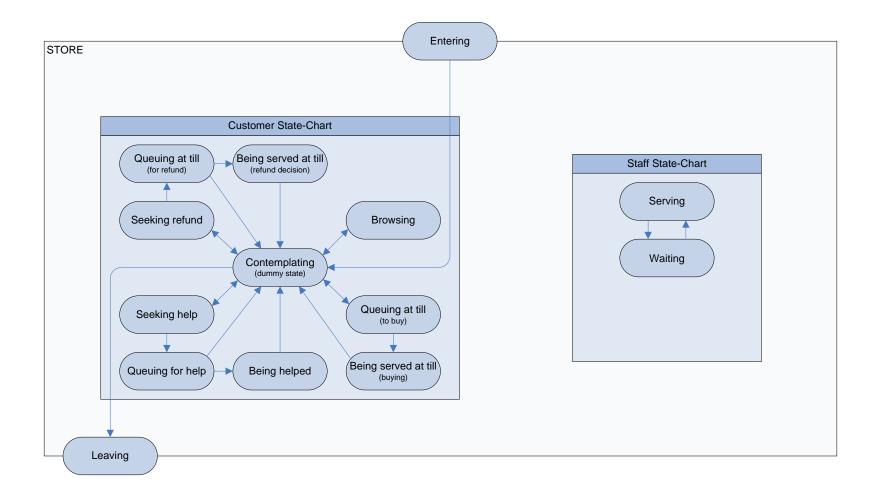
A Case Study

Case Study

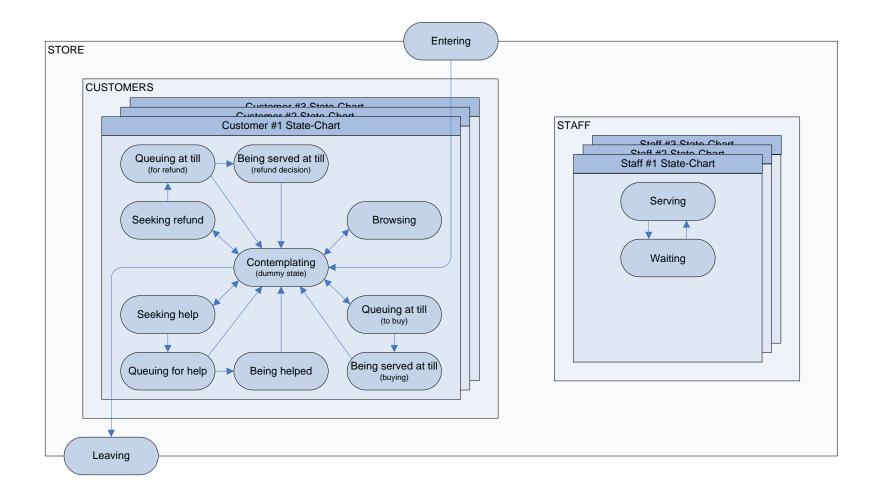
- Developing some tools for understanding the impact of management practices on company performance
 - Operational management practices are well researched
 - People management practices are often neglected
 - Difficult to simulate people as they are often unpredictable in their individual behaviour
- Case study sector: Retail (department store operations)
- Problem encountered:
 - When using real staffing rota we could not produce the transaction values of the real system; we had to use some optimised data instead
 - Can we solve this problem by adding proactive behaviour?
 - How can we add proactive behaviour?

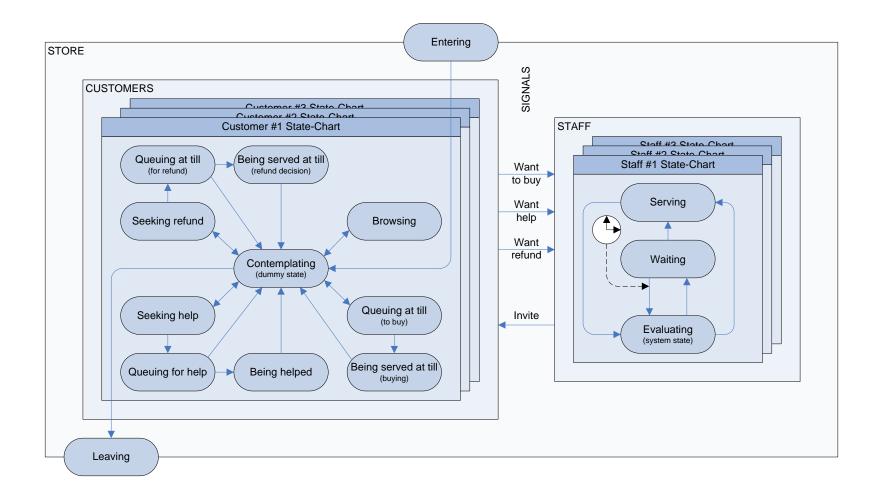
Case Study

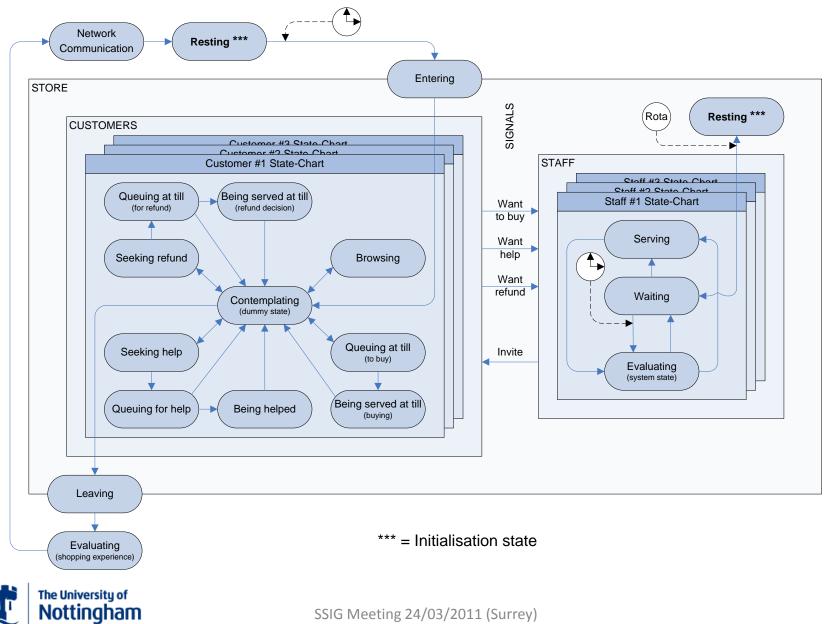

- Modelling proactive service behaviour in OR type models
 - The OR literature does not provide any guidance
 - Management literature defines proactive customer service as self started, long term oriented, and persistent service behaviour that goes beyond explicitly prescribed requirements
 - Artificial intelligence literature states that proactive behaviour can be modelled in terms of goals that the agents pursue
 - Declarative: a description of the state sought
 - Procedural: a set of plans for achieving the goal
 - Short waiting times are key to high service quality
 - Therefore: A staff agent goal is to provide best service by proactively balancing the different queues that appear in the department store.

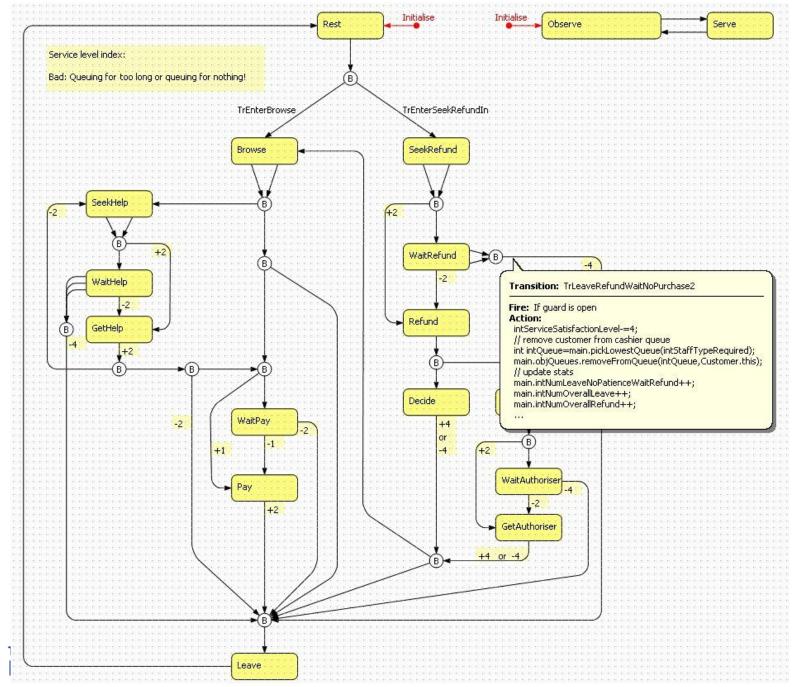

Case Study

- Two case studies at two different locations
 - Two departments (A&TV and WW) at two department stores
- Knowledge gathering
 - Informal participant observations
 - Staff interviews
 - Informational sources internal to the case study organisation









SSIG Meeting 24/03/2011 (Surrey)

- Software: AnyLogic v5.5
 - Multi-method simulation software (SD, DES, ABS, DS)
 - State charts + Java code
- The model is available at the openabm.org website [Siebers 2011]

- Knowledge representation
 - Frequency distributions for determining state change delays

Situation	Min.	Mode	Max.
Leave browse state after	1	7	15
Leave help state after	3	15	30
Leave pay queue (no patience) after	5	12	20

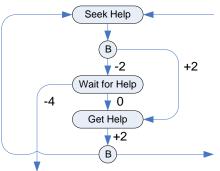
Probability distributions to represent decisions made

Event	Probability of event
Someone makes a purchase after browsing	0.37
Someone requires help	0.38
Someone makes a purchase after getting help	0.56

• Implementation of customer types

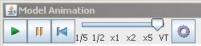
Customer type	Likelihood to									
buy		wait	ask for help	ask for refund						
Shopping enthusiast	high	moderate	moderate	low						
Solution demander	high	low	low	low						
Service seeker	moderate	high	high	low						
Disinterested shopper	low	low	low	high						
Internet shopper	low	high	high	low						

```
for (each threshold to be corrected) do {
    if (OT < 0.5) limit = OT/2 else limit = (1-OT)/2
    if (likelihood = 0) CT = OT - limit
    if (likelihood = 1) CT = OT
    if (likelihood = 2) CT = OT + limit
}
where: OT = original threshold
    CT = corrected threshold
    likelihood: 0 = low, 1 = moderate, 2 = high</pre>
```



- Implementation of staff proactiveness (1/2)
 - Non-cashier staff opening and closing tills proactively depending on demand and staff availability; expert staff helping out as normal staff
 - Task priorities that need to be considered
 - 1: Continue as temporary cashier unless a stop strategy has come true
 - 2: If expert staff, help out as section manager (might be required for refund process)
 - 3: If normal service staff or expert staff, help out as temporary cashier
 - 4: If expert staff, help out as normal service staff
 - If none of these is applicable, wait for a given time and then check again if role swap is required

- Implementation of staff proactiveness (2/2)
 - Parameters to control proactive behaviour
 - P1: Maximum number of customers to serve as a temporary cashier
 - P2: Critical queue length for opening/closing additional tills
 - P3: Minimum number of staff required to cope with original task
 - P4: Maximum numbers of open tills
 - P5: Stop strategy: Stop service as temporary cashier when either P1 or P2has been reached
 - P6: Check if support at the till is needed every 2 minutes (deterministic or random checks)

- Performance measures
 - Service performance measures
 - Service experience
 - Utilisation performance measures
 - Staff utilisation; staff busy times in different roles
 - Level of proactivity
 - Frequency and duration of role swaps
 - Monetary performance measures (productivity and profitability)
 - Overall staff cost per day; sales turnover; sales per employee ...



- Other noteworthy features of the model
 - Realistic footfall and opening hours
 - Staff pool (static)
 - Customer pool (dynamic)
 - Customer evolution through internal stimulation (triggered by memory of ones own previous shopping experience)
 - Customer evolution through external stimulation (word of mouth)
- Modular design: Features can be switched on/off

- Validation
 - We used the V&V framework proposed by Robinson (2004)
 - Conceptual model validation
 - Data validation
 - White box (micro) validation
 - Black box (macro) validation
 - Experiment validation
 - Solution validation (not possible)
 - Verification

*1 = number of people queueing for this service

*3 = considering accumulated history [number]

*6 = experience per visit [satisfaction growth]

*4 = considering accumulated history [satisfaction growth]

*2 = % of those leaving the queue

*5 = experience per visit [number]

Department: Audio & TV (A&TV) Sunday: Shop open for 8 hours

red: cashier green: normal staff member blue: expert staff member magenta: section manager yellow: department manager cyan: advisor lighter colours: free darker colours: serving very dark colours: supporting (expert advice)

real pla	nned years weeks days	hours	minute	BS	Current customer populati	on:			8000		
Average arrival rate per hour: 73 (73) Runtime: 0 21 0	5	52								
Customers in store: 27	Overall customers:	86255	100 %			Transac	tions:		29101		
- browsing: 9	- leave happy (transaction or refund):	29101	34 %	*1	*2	Av. Tra	nsaction	[£]:	149.7		
- seeking help: 0	- leave not waiting for normal help:	2464	3 %	19921	12 %	Sales [£	E]:		4,356,	420	
- queuing for help: 0	- leave not waiting for expert help:	826	1 %	1907	43 %	Missed	[£]:		8,551,	912	
- standard: 0	- leave not waiting to pay:	10855	13 %	39001	28 %						
- expert: 0	- leave without finding anything:	42982	50 %								
- refund author.: 0	- leave unhappy (no refund):	0	0%	Customer	rs left:	86228		477406			
- getting help: 7						*3	100 %	*4	*5	100 %	*6
- standard: 7	Till queue length: mean: 3.78; max: 1	7.0		- satisfied	l (> 0):	61697	72 %	518960	35188	41 %	101567
- expert: 0	Normal help queue length: mean: 1.25	5; max: 14	ł.O	- don't know (= 0):		10574	12 %		40652	47 %	
- refund author.: 0	Expert help queue length: mean: 0.08	3; max: 4.0	C	Overall refunds: - refunds accepted:		13957	16 %	-41554	10388	12 %	-26726
- wait at till: 8						0	100 %				
- to pay: 8	Overall Satisfaction Level Index:	477406				0	0%				
- for refund: 0	- shopping:	477406				0	0%	*1	*2		
- served at till: 3	- refund:	0		- leave no	ot waiting for refund decision:	0	0%	0	0%		
- to pay: 3				- leave no	ot waiting for author, decision:	0	0%	0	0%		
- for refund: 0				Overall de	ecisions by cashier:	0					
	Important parameters:			Overall de	ecisions by authorised person:	0	22	23	0,0		
Finite population:	- Replication number:	З			1 served 255					11 served	10
- shopping enthusiasts: 400	- Empowerment level of cashier for refunds:	0.7			2 served 435				1	12 served	10
- solution demanders: 3200	- Probability that refund is granted by cashier:	0.8			3 served 265					13 served	10
- service seekers: 3200	- Probability that refund is granted by authoriser:	0.7			4 served 164				1	14 served	10
- disinterested shoppers: 400	- Probability that staff stay with customer:	0			5 served 74					15 served	10
- internet shoppers: 800	- Points required to become an expert:	100000		1	6 served 47				1	16 served	10
intNumProactiveOpportunity: 0	- Word of mouth adoption fraction:	0.5		1	7 served 25					17 served	10
intSumProactiveOpportunity 30741	- Word of mouth contact rate:	0			8 served 17				1	18 served	10
intSumCustomersPickedProactively: 3740					9 served 10					19 served	10
intourneustornersnickeurroactively, 3740					10 served 11					20 served	10
				-	E0 004 100 004		ό	50.0%	100.0	%	

Experimentation

- Real world (practical)
 - Staffing levels
 - Staff autonomy (refund, learning)
 - Staff training requirements
- Abstract (theoretical)
 - Extreme populations (customer types)
 - Level of detail (noise vs. noise reduction mode)
 - Different forms of customer pool implementations
 - Advertisement through spread of the word of mouth
- Validation
 - Testing parameters

Experimentation

• Proactivity Experiments [Siebers et al 2011]

- Validation

Parameter Settings	Audio &	Audio & TV (outputs: means of weekly averages; deviations: relate to the real world value)									
Scenario	real world	á	а	-	C		С	d			
Staffing	real	optimised		optimised		real		re	al		
Number of {cashiers; normal staff; expert staff}	{1;10;1}	{2;6;2}		{2;6;2}		{1;10;1}		{1;10;1}			
Proactive	yes	no		yes		n	10	yes			
Outputs	Mean	Mean Deviation		Mean	Deviation	Mean	Deviation	Mean	Deviation		
Transactions	1787.09	1203.43	32.66%	1387.25	22.37%	615.70	65.55%	1346.22	24.67%		

Parameter Settings	Womens	Womenswear (outputs: means of weekly averages; deviations: relate to the real world value)									
Scenario	real world	á	а	k	C	(C	d			
Staffing	real	optin	nised	optim	nised	re	al	real			
Number of {cashiers; normal staff; expert staff}	{2;13;1}	{3;8;2}		{3;8;2}		{2;13;1}		{2;1	3;1}		
Proactive	yes	no		yes		no		yes			
Outputs	Mean	Mean Deviation		Mean	Deviation	Mean	Deviation	Mean	Deviation		
Transactions	3172.35	2931.43	7.59%	3138.00	1.08%	2004.97	36.80%	2977.20	6.15%		

Experimentation

• Proactivity Experiments [Siebers et al 2011]

- Sensitivity Analysis

Parameter Settings	Audio & TV (outputs: means of weekly averages)									
Number of {cashiers; normal staff; expert staff}	{4;7;1}		{1;10;1}		{1;10;1}		{1;10;1}		{1;10);1}
Proactive	no		yes		yes		yes	S	yes	3
Critical queue length	- 1			2		3		4		
Outputs	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Number of customers that leave happy (purchase)	1875.47	5.16	1833.18	6.99	1627.22	3.77	1348.48	2.85	1161.97	3.16
% of customers that leave happy (purchase)	45.87%	0.15% 44.84% 0.17% 39.85% 0.07% 32.99% 0.09%		0.09%	28.42%	0.08%				
% of customers that leave not waiting for normal help	2.35%	0.04%	1.08%	0.05%	0.75%	0.03%	0.46%	0.02%	0.32%	0.02%
% of customers that leave not waiting for expert help	1.86%	0.04%	1.95%	0.03%	1.92%	0.03%	1.89%	0.04%	1.88%	0.03%
% of customers that leave not waiting to pay	0.43%	0.03%	2.27%	0.05%	7.40%	0.09%	14.56%	0.05%	19.23%	0.10%

Conclusions

- Conclusions
 - Combined DES/ABS allows the consideration of proactive behaviour in service system models which has a positive impact on the accuracy of the simulation outputs
 - To find the right settings for proactivity parameters is difficult (due to the high correlation of the parameters)

Conclusions

- Future outlook
 - Study the impact of teamwork related management practices
 - Exploring other ways for implementing the agent decision making processes
 - Reusable ABS components (archetypes; templates)
 - From academia to business: What is needed?
 - Clients should be involved in the whole process

References

- Boero R and Squazzoni F (2005) Does empirical embeddedness matter? Methodological issues on agent-based models for analytical science. Journal of Artificial Societies and Social Simulation, 8(4)
- Siebers P O (2011) http://www.openabm.org/model/2441/
- Siebers P O, Macal C M, Garnett J, Buxton D and Pidd M (2010) Discreteevent simulation is dead, long live agent-based simulation. Journal of Simulation, 4(3): 204-210.
- Siebers P O and Aickelin U (2011) A first approach on modelling staff proactiveness in retail simulation models. Journal of Artificial Societies and Social Simulation, to appear

