Agent-Oriented Modelling and Simulation of Human Centric Systems

Southampton Seminar 8 July 2014

Peer-Olaf Siebers

Motivation

- Introduce you to the relevant terminology
- Show you how an ABS works internally
- Show you how to build an ABM model from scratch
- Discuss the idea of hybrid models in OR/MS
- Demonstrate how all of this can be applied in practice

- My research mission
 - Developing human behaviour models which can be used to better represent people and their behaviours in OR/MS simulation models
 - Combining ideas from OR, Social Science, Psychology, Sociology, and Software Engineering to achieve this
 - More interested in developing frameworks and testing them
 - Less interested in solving/investigating specific cases
 - Using well established OOA/D principles and methods from Software Engineering for developing reusable components and the environment they live in.

Chart from 2012

Technical aspects

Chart from 2012

Applications

Chart from 2012

Related topics

Cost-Benefit Analysis (CBA)

Risk Assessment (RA)

Wulti-Criteria Decision Analysis (MCDA)

Using MCDA together with Simulation

Rare Event Modelling

Data Driven: Data for model formulation (in Social Sciences can be quantitative and qualitative); data for model validation Theory Driven: Theories for model formulation; data for model validation

- Process Oriented Process Flow Modelling
 - Traditional DES Modelling (what is described in books and papers)
 - Entities are routed through the system
- Object Oriented Process Flow Modelling
 - Entities defined as classes
 - Entities make decisions where to go

- Object Oriented Agent-Based Modelling
 - Entities defined as classes
 - Entities are intelligent objects that interact
 - Entities make decisions and have a memory
 - Process: No concept of queues and flows
- Agent Oriented Process Flow Modelling
 - Entities defined as classes
 - Entities are intelligent objects that interact
 - Entities make decisions and have a memory
 - Process: Organised in terms of queues and flows

Object Oriented Agent-Based Modelling and Simulation

• Heroes and Cowards Game [Wilensky and Rand in press]

Heroes and Cowards Game : All heroes

Heroes and Cowards Game: All cowards

• Heroes and Cowards Game [Wilensky and Rand in press]

```
_ D ×
  Heroes and Cowards - NetLogo {D:\Teaching\Short Courses\ESM2013-Tutorial}
File Edit Tools Zoom Tabs Help
Interface Info Code
                     Procedures ▼

✓ Indent automatically

Find..
 to setup
   clear-all
   ask patches [ set poolor white ] ;; create a blank background
   create-turtles number [
     setxy random-xcor random-ycor
      ;; set the turtle personalities based on chooser
     if (personalities = "brave")    [ set color blue ]
if (personalities = "cowardly")    [ set color red ]
      if (personalities = "mixed")
                                            [ set color one-of [ red blue ] ]
      ;; choose friend and enemy targets
      set friend one-of other turtles
      set enemy one-of other turtles
   reset-ticks
 end
 to go
   ask turtles [
     if (color = blue) [ act-bravely ]
if (color = red) [ act-cowardly ]
  tick
 end
   ;; move toward the midpoint of your friend and enemy
   facexy ([xcor] of friend + [xcor] of enemy) / 2
([ycor] of friend + [ycor] of enemy) / 2
   fd 0.1
  facexy [ycor] of friend + ([ycor] of friend - [ycor] of enemy) / 2

[ycor] of friend + ([ycor] of friend - [ycor] of enemy) / 2
   fd 0.1
 end
 ; Copyright 2010 Uri Wilensky.
 : See Info tab for full copyright and license.
```


- In Agent-Based Modelling (ABM), a system is modelled as a collection of autonomous decision-making entities called agents. Each agent individually assesses its situation and makes decisions on the basis of a set of rules.
- ABM is a mindset more than a technology. The ABM mindset consists of describing a system from the perspective of its constituent units. [Bonabeau 2002]
- ABM is well suited to modelling systems with heterogeneous, autonomous and proactive actors, such as human-centred systems.

- Borrowing from Artificial Intelligence: From simple to complex
 - Simple reflex agent

Russell and Norvig (2003)

- Borrowing from Artificial Intelligence: From simple to complex
 - Learning agent

- What do we mean by "agent"?
 - Agents are objects with attitude!
- Properties:
 - Discrete entities
 - With their own goals and behaviours
 - With their own memory
 - With their own thread of control
 - Autonomous decisions
 - Capable to adapt
 - Capable to modify their behaviour
 - Proactive behaviour
 - Actions depending on motivations generated from their internal state

- The agents can represent individuals, households, organisations, companies, nations, ... depending on the application.
- ABMs are essentially decentralised; there is no place where global system behaviour (dynamics) would be defined.
- Instead, the individual agents interact with each other and their environment to produce complex collective behaviour patterns.

Benefits of ABM

- ABM provides a natural description of systems
- ABM captures emergent phenomena

Emergence

- Emergent phenomena result from the interactions of individual entities. The whole is more than the sum of its parts [Aristotle BC] because of the interactions between the parts.
- An emergent phenomenon can have properties that are decoupled from the properties of the part (e.g. patterns appearing).
- Example: Traffic Jam Dynamics

- When to use ABM? [Siebers et al. 2010]
 - When the problem has a natural representation as agents when the goal is modelling the behaviours of individuals in a diverse population
 - When agents have relationships with other agents, especially dynamic relationships - agent relationships form and dissipate, e.g., structured contact, social networks
 - When it is important that individual agents have spatial or geo-spatial aspects to their behaviours (e.g. agents move over a landscape)
 - When it is important that agents learn or adapt, or populations adapt
 - When agents engage in strategic behaviour, and anticipate other agents' reactions when making their decisions
 - **–** ...

Agent-Based Simulation (in OR/MS)

 Agent-Based Simulation (ABS) is the process of designing an ABM of a system and conducting experiments with this model for the purpose of understanding the behaviour of the system and/or evaluating various strategies to influence the behaviour of entities within the system [adapted from Shannon, 1975]

Agent-Based Simulation

- A word of caution:
 - Many different developments have been going on under the slogan of Agent Based Simulation in very different disciplines
- Two main paradigms:
 - Multi-agent decision systems
 - Usually embedded agents or a simulation of embedded agents
 - Focus is on decision making
 - Multi-agent simulation systems
 - The multi-agent system is used as a model to simulate some real-world domain and recreate some real world phenomena

Agent-Based Simulation

The Sims: Interactive Organisational Agent-Based Simulation

Agent-Based Simulation

- Building an ABS model (OR/MS)
 - Identify active entities (agents)
 - Define their states and behaviour
 - Put them in an environment
 - Establish connections
 - Test the model

AnyLogic Help (2013)

- Validating an ABS model
 - System behaviour is an emergent property
 - Validation on a micro level

Alternative (e.g. Ecology)

Grimm and Railsback (2005)

Agent-Based Simulation – Updating Information

- Synchronous approach [Macal 2013]
 - Loop over time horizon
 - Loop over randomised list of agents. For each agent A in list:
 - Execute agent A behaviour
 - Update state of agent A (based on agent A's state, the states of agents that interact with agent A, and the state of the environment).
 - Update other agents states and the environment (if appropriate)
 - End loop over randomized list of agents
 - Increment t in time loop and repeat until end of simulation time horizon

Agent-Based Simulation – Updating Information

- Asynchronous approach [openABM.org 2014]
 - Event driven
 - An action of one agent may trigger the updating of another agent
 - Example: An agent A sending messages to an agent B

Using UML for ABM

Unified Modelling Language (UML)

Defining Behaviour Using State Charts

- Typical elements of a state chart diagram
 - States
 - Represents a location of control with a particular set of reactions to conditions and/or events
 - Examples
 - Cup can be in state full or empty
 - Person can be in state idle or busy
 - Transitions
 - Movement between states, triggered by a specific event

State

Defining Behaviour Using State Charts

Typical elements of a state chart diagram

Simple Agent-Based Simulation Example

Building a Simple State Chart Step-by-Step

- Simulation an Office
 - Who are the actors?
 - What are the key locations you can find them?
 - What are key time consuming activities they get involved in?

Building a Simple State Chart Step-by-Step

What is the principal difference between these solutions?

Agent Oriented Process Flow Modelling

Agent-Based Simulation in OR/MS

Simulation facts in different disciplines

Operations Research	Business, Economics, Social Science
Empirical basis	Theoretical basis
Improving the real world	Thinking about the real world
Data collection and analysis	Dynamic hypothesis
Validation: Sufficient accuracy for purpose	Plausibility: Seeming reasonable or probable
Implementing findings	Learning + understanding

after Robinson (2010)

Agent-Based Simulation in OR/MS

- Hybrid solution for OR/MS
 - Combining process flow and agent based modelling ideas
 - Representing the process flow using a process flow modelling approach but replacing the passive entities usually used in process flow models by active entities that have a memory, are autonomous, and can display proactive behaviour.

Communication layer

Let entities interact + communicate

Direct interactions Network activities

Agent layer

Active entities
Behavioural state
charts

Replace passive entities by active ones

DES layer

Passive entities
Queues
Processes
Resources

Case Study 1 Department Store Customer Service

(For more details see Siebers and Aickelin 2011)

A queuing system

Case Study 1: Context

- Case study sector
 - Retail (department store operations)
- Developing some tools for understanding the impact of management practices on company performance
 - Operational management practices are well researched
 - People management practices are often neglected
- Problem:
 - How can we model proactive customer service behaviour?

- Two case studies at two different locations
 - Two departments (A&TV and WW) at two department stores
- Knowledge gathering
 - Informal participant observations
 - Staff interviews
 - Informational sources internal to the case study organisation

Conceptual model

- Software: AnyLogic v5
 - Multi-method simulation software (SD, DES, ABS)
 - State charts + Java code

- Knowledge representation
 - Frequency distributions for determining state change delays

Situation	Min.	Mode	Max.
Leave browse state after	1	7	15
Leave help state after	3	15	30
Leave pay queue (no patience) after	5	12	20

Probability distributions to represent decisions made

Event	Probability of event		
Someone makes a purchase after browsing	0.37		
Someone requires help	0.38		
Someone makes a purchase after getting help	0.56		

Implementation of customer archetypes

Customer type	Likelihood to			
Gustomer type	buy	wait	ask for help	ask for refund
Shopping enthusiast	high	moderate	moderate	low
Solution demander	high	low	low	low
Service seeker	moderate	high	high	low
Disinterested shopper	low	low	low	high
Internet shopper	low	high	high	low

```
for (each threshold to be corrected) do {
    if (OT < 0.5) limit = OT/2 else limit = (1-OT)/2
    if (likelihood = 0) CT = OT - limit
    if (likelihood = 1) CT = OT
    if (likelihood = 2) CT = OT + limit
}
where: OT = original threshold
    CT = corrected threshold
    likelihood: 0 = low, 1 = moderate, 2 = high
```


- Implementation of staff proactiveness
 - Non-cashier staff opening and closing tills proactively depending on demand and staff availability
 - Expert staff helping out as normal staff
- Other noteworthy features of the model
 - Realistic footfall and opening hours
 - Staff pool (static)
 - Customer pool (dynamic)
 - Customer evolution through internal stimulation (triggered by memory of ones own previous shopping experience)
 - Customer evolution through external stimulation (word of mouth)

- Performance measures
 - Service performance measures
 - Service experience
 - Utilisation performance measures
 - Staff utilisation
 - Staff busy times in different roles
 - Level of proactivity
 - Frequency and duration of role swaps
 - Monetary performance measures (productivity and profitability)
 - Overall staff cost per day
 - Sales turnover
 - Sales per employee

• ...

Case Study 1: Experimentation

Case Study 1: Experimentation

- Real world (practical)
 - Staffing levels
 - Staff autonomy (refund, learning)
 - Staff training requirements
- Abstract (theoretical)
 - Extreme populations (customer types)
 - Level of detail (noise vs. noise reduction mode)
 - Different forms of customer pool implementations
 - Advertisement through spread of the word of mouth
- Validation
 - Testing parameters

Case Study 2 Office Energy Consumption

(For more details see Zhang et al 2010)

A non-queuing system

Case Study 2: Context

- Office building energy consumption
 - We focus on modelling electricity consumption
 - Organisational dilemma
 - Need to meet the energy needs of staff

Test the effectiveness of different electricity management strategies,
 and solve practical office electricity consumption problems

- Electricity consumption (case study)
 - Base electricity consumption: security devices, information displays, computer servers, shared printers and ventilation systems.
 - Flexible electricity consumption: lights and office computers.
- Current electricity management technologies (case study)
 - Each room is equipped with light sensors
 - Each floor is equipped with half-hourly metering system
- Strategic questions to be answered (case study)
 - Automated vs. manual lighting management
 - Local vs. global energy consumption information

- We distinguishing base appliances and flexible appliance
 - Examples for base appliances
 - Security cameras
 - Information displays
 - Computer servers
 - Refrigerators
 - Examples for flexible appliances
 - Lights
 - Desktop computers
 - Printers

- The mathematical model
 - Ctotal = Cbase + Cflexible
 - where Cflexible = β 1*Cf1+ β 2*Cf2+ ... + β n*Cfn
 - and Cf1 ...Cfn = maximum electricity consumption of each flexible appliance
 - and $\beta 1 \dots \beta n$ = parameters reflecting the behaviour of the electricity user
 - $-\beta$ close to 0 = electricity user switches flexible appliances always off
 - $-\beta$ close to 1 = electricity user leaves flexible appliances always on
 - Ctotal = Cbase + $(\beta 1 * Cf1 + \beta 2 * Cf2 + ... + \beta n * Cfn)$

- Knowledge gathering
 - Consultations with the school's director of operations and the university estate office
 - Survey amongst the school's 200 PhD students and staff on electricity use behaviour (response rate 71.5%)
- User stereotypes
 - Working hour habits
 - Early birds, timetable compliers, flexible workers
 - Energy saving awareness
 - Environment champion; energy saver; regular user; big user

Conceptual model

The University of

Case Study 2: Experimentation

Case Study 2: Experimentation

- Validation
 - Comparing simulation and empirical results

Case Study 2: Experimentation

Scenario #1

Comparing automated and manual operation (low user interaction)

Outlook

SimPB – Simulating Peace Building in Africa

For more information see: http://www.cs.nott.ac.uk/~pos/research.html

Sustaining Urban Habitats

For more information see: http://www.cs.nott.ac.uk/~pos/research.html

Recommended reading

Discussion

- Discrete-event simulation is dead, long live agent-based simulation! [url]
- Discrete-event simulation is alive and kicking [url]

HowTo

- From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools [url]
- Graphical Representation of Agent-Based Models in Operational Research and Management Science using UML [url]
- JASSS Article: UML for ABM [url]

Simulation Course

- RWTH Aachen Summer Simulation Seminar 2014 [url]
- ESSA Summer School [url]

References

- AnyLogic Help (2013). Help file accessible from within the AnyLogic Software
- Aristotle (BC). Aristotle quotes [url]
- Bonabeau (2002). Agent-based modeling: Methods and techniques for simulating human systems. In: Proceedings of the National Academy of Science of the USA. 99:7280-7287.
- Grimm and Railsback (2005). Individual-Based Modeling and Ecology (Princeton Series in Theoretical and Computational Biology).
- Macal (2013). SimSoc Newsgroup post "Re: Execution algorithm for agent-based simulation" [url]
- OpenABM.org. "Updating Information" [url]
- Robinson (2010). Modelling Service Operations: A Mixed Discrete-Event and Agent Based Simulation Approach. Presentation given at the Western OR Discussion Society on 27 April
- Russell and Norvig (1995). Artificial intelligence: A modern approach
- Shannon (1975). Systems simulation: The art and science. Prentice-Hall: Englewood Cliffs, NJ.
- Siebers et al (2010). Discrete-event simulation is dead, long live agent-based simulation! Journal of Simulation, 4(3) pp. 204-210.
- Siebers and Aickelin (2011). A first approach on modelling staff proactiveness in retail simulation models. Journal of Artificial Societies and Social Simulation, 14(2): 2
- Wilensky and Rand (in press). An Introduction to Agent-Based Modeling: Modeling Natural, Social and Engineered Complex Systems with NetLogo. Cambridge, MA: MIT Press.
- Zhang et al (2010). Modelling office energy consumption: An agent based approach. In: Proceedings of the 3rd World Congress on Social Simulation (WCSS2010), 5-9 September, Kassel, Germany

Questions / Comments

