
End of Internship Report:
Streamlining the Coding Bottleneck in Simulation

Modelling with Generative AI

Sener Topaloglu

Supervisor: Prof. Peer-Olaf Siebers

September 22, 2024

1

Abbreviations

AI Artificial Intelligence

CUDA Compute Unified Device Architecture

DROP Discrete Reasoning Over Paragraphs

EABSS Engineering Agent-Based Social Simulation

GAMA GIS Agent-based Modelling Architecture

GAML GAMA Markup Language

GPT General Purpose Transformer

GPU Graphics Processing Unit

JASSS Journal of Artificial Societies and Social Simulation

LLM Large Language Model

MMLU Massive Multitask Language Understanding

NLP Natural Language Processing

RAG Retrieval Augmented Generation

UML Unified Modelling Language

2

Contents

1 Introduction 5

2 Project Structure 5

3 Work Package 1: Preparation 6
3.1 Open Source Models . 6
3.2 Fine-Tuning Approaches: Supervised & Retrieval Augmented Generation

(RAG) . 7
3.3 Conceptual Knowledge: Agent-Based Simulation 8
3.4 Implementation Knowledge: Agent-Based Simulation 8
3.5 Engineering Agent-Based Social Simulation (EABSS) 9

4 Work Package 2: Design 9
4.1 Fine-tuning pipeline design . 9
4.2 Test experiment design . 10

5 Work Package 3: Implementation 11
5.1 Running Base LLMs . 11
5.2 Curating and Creating Fine-tuning Dataset 11

5.2.1 GAML Code Generation Datasets 12
5.2.2 UML Class, Sequence, and State Diagrams 12
5.2.3 JASSS Keywords and Abstracts 12

5.3 Implementing fine-tuning . 12
5.4 Running fine-tuned LLMs . 14

6 Work Package 4: Testing 14
6.1 Llama3 . 14

6.1.1 RAG . 14
6.1.2 Supervised fine-tuning . 15

6.2 Llama3.1 . 15
6.3 Mistral-NeMo . 16

7 Work Package 5: Report Writing 17

8 Outcomes 17
8.1 Outlook . 18
8.2 Personal Reflection . 19
8.3 Feedback . 20

9 Appendix 20
9.1 A1: Git Repository . 20
9.2 A2: Project Planning Diagram . 21
9.3 A3: Mistral-NeMo Zero Shot UML Diagrams 21
9.4 A4: Mistral-NeMo Zero Shot GAML Generation 21
9.5 A5: Design Patterns . 21

9.5.1 Preparation . 21
9.5.2 Analysis . 22
9.5.3 Design . 28

3

9.5.4 Implementation . 31
9.5.5 Conclusion . 33

9.6 A6: Example . 33

4

1 Introduction

The domains of Operations Research and Social Simulation rely on intricate simulation
modelling to understand and experiment with complex systems. Applications of
simulation models span both academia and industry, to simulate a multitude of tasks,
including disaster response and organisational change management. Currently,
implementing such models consists of manual coding, a technical and time-consuming
task that introduces a significant bottleneck in model development.

The aim of this project was to investigate how generative Artificial Intelligence (AI) can
translate high-level, natural language descriptions of systems, their components, and
the rules governing their dynamics into executable GAML scripts for the GIS
Agent-based Modelling Architecture (GAMA) simulation engine.

In addition, I was asked to build a library of reusable design patterns, in the form of
prompts and advanced prompt engineering techniques, which will serve as building
blocks to develop elaborate simulation models. This approach not only simplifies the
process for developers but also allows for more efficient collaboration between domain
experts and model developers, who may not possess sufficient technical understanding
to write syntactically correct, executable simulation models.

This project represents a significant step towards the broader initiative of reducing the
time and effort required for modelling across frameworks that may not share the same
syntax and semantics as GAMA Markup Language (GAML), such as the AgentPy
Python library. By developing tools that automate the coding process, we aim to make
agent-based simulation more accessible and scalable. It is expected that the
foundational work completed in this project will be extendable to support many
different simulation engines and use cases from epidemiology to economics and
everything in between. The ultimate goal is to integrate AI-driven model generation
more deeply into the development workflow, leading to a future where complete models
can be generated with very minimal human intervention.

2 Project Structure

This section outlines the systematic approach undertaken in this research project,
categorised into five major phases (work packages): preparation, design,
implementation, testing and authoring the final report. Each work package consists of
specific sub-tasks that collectively contribute to achieving the project objectives. A
visual representation of my approach can be found in section 2 of the appendix.

5

3 Work Package 1: Preparation

The preparation phase was foundational and involved a thorough exploration of various
components essential for this project. The main focus was on identifying suitable
models, fine-tuning strategies, and learning the notion of agent-based simulation
modelling.

Given the project’s focus on the generation of GAML scripts from natural language
descriptions and Unified Modelling Language (UML) diagrams, preparation for the
internship required a comprehensive understanding of multiple domains: agent-based
simulation modelling, the GAMA platform, and the intricacies of generative AI models,
specifically in the context of script generation. This chapter outlines the steps taken to
acquire the necessary knowledge and skills, detailing the preparatory work undertaken
to ensure a solid foundation for the internship.

3.1 Open Source Models

Given the project’s focus on leveraging generative AI for script translation, it was
essential to develop an understanding of the current Large Language Models (LLMs).
As I had previous experience of implementing decoder-only General Purpose
Transformer (GPT) models, I furthered my knowledge by reviewing a survey1 that
covered a range of other architectures underpinning existing LLMs.

With a solid understanding of the theoretical aspects of generative AI, I proceeded to
experiment with existing LLMs offerings. I shortlisted various models which I
considered to be well-documented and widely used – I have previously experienced
many compatibility issues due to frequent (breaking) changes to many of the
libraries/frameworks that exist in the deep learning ecosystem. Naturally, a strong user
support base is advantageous in such situations. I then conducted narrowed my
shortlist to models that have commonly been used as base models for similar tasks, such
as Python/XML code generation; Hugging Face (https://huggingface.co/) model
repository allows users to filter for common models.

Each shortlisted model was compared against several benchmarks that quantify model
performance in various areas that I deemed relevant to the project; Massive Multitask
Language Understanding (MMLU), Discrete Reasoning Over Paragraphs (DROP) and
EvalPlus. MMLU2 is a benchmark to evaluate general language understanding in
zero-shot and few-shot settings. DROP3 is an evaluation where models must extract
relevant information from English-text paragraphs before executing discrete reasoning
steps on them. EvalPlus4 is a code generation benchmark that measures the quantity

1Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024).
Large language models: A survey. arXiv:2402.06196

2Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J. (2020).
Measuring massive multitask language understanding. arXiv:2009.03300.

3Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., & Gardner, M. (2019). DROP: A reading
comprehension benchmark requiring discrete reasoning over paragraphs. arXiv:1903.00161.

4Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2024). Is your code generated by chatgpt really correct?
rigorous evaluation of large language models for code generation. Advances in Neural Information Pro-
cessing Systems, 36.

6

and quality of synthesised code. Please refer to Table 1 below to see each model’s
performance in the respective benchmarks.

Table 1: Benchmark comparison of shortlisted models

Context
Window

MMLU
(5 shot)

DROP
(3-shot, F1)

EvalPlus

Llama3 - 8B 8k 66.6 58.4 29.3
Mistral - 7B 8k 62.5 54.4 23.8
Gemma - 7B 8k 64.3 56.3 28.7

References: https://ai.meta.com/blog/meta-llama-3/ (MMLU, DROP) and
https://evalplus.github.io/leaderboard.html (EvalPlus).
Please note: DROP scores referenced were measured by Meta FAIR (creators of Llama
models), as creators of the other models in the table did not publish such scores.

Finally, I empirically evaluated each models’ performance in generating GAML code,
this assessment was necessary because the EvalPlus benchmark does not cover GAML
code generation. Model performance (latency) was also evaluated empirically, because
no existing leaderboard has recorded all the shortlisted LLMs running on the same
hardware (the closest leaderboard to cover all models can be found at
https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard).

My test data includes the following prompts, and all testing was conducted in a
zero-shot manner:

1. Prompt 1: How can I define the experiment attributes, actions, and behaviours in
a model in GAML (GAMA Markup Language)?

2. Prompt 2: Give me a GAML code snippet for a grid structure named
”vegetationCell” with a size of 50x50, considering a neighbourhood of 4 cells
around the current cell. The attributes include ”maxFood”,”foodProd”, ”food” a
colour attribute based on food level, and a list of neighbours at a distance of 2
cells.

3. Prompt 3: Generate a code snippet that defines a list of string called
”listOfString” composed of three elements ”A”, ”B” and ”C”.

At the end of this process, I choose Llama3-8B as the base model to meet the specific
needs of the project.

3.2 Fine-Tuning Approaches: Supervised & Retrieval
Augmented Generation (RAG)

I considered both popular, industry standard approaches to fine-tuning models;
conventional fine-tuning and RAG.

Conventional fine-tuning involves supervised training of a base model on a task-specific

7

dataset (that is representative of the kind of input the model will encounter when
deployed).

RAG, on the other hand, integrates retrieval mechanisms into the generation process,
allowing the model to access knowledge bases that are external to the model, such as a
corpora of text documents relevant to the area of interest. Embedding vectors are used
to represent tokens of text in each document and the retrieval mechanism matches
queries with the most appropriate content (which has the closest embeddings to the
input prompt).

I decided that I would design and implement both fine-tuning approaches to compare
them in the context of modelling development.

3.3 Conceptual Knowledge: Agent-Based Simulation

To understand the context of the project, it was imperative to develop a thorough
understanding of ABM. ABM is a powerful computational technique used in the study
of complex systems, particularly those involving human interactions and
decision-making. In ABM, individual entities (agents) with distinct behaviours interact
within an environment, leading to emergent phenomena which may be non-linear and
difficult to predict. For example, consider the simulation of a traffic flow in a city. In
this model, each car is represented as an individual agent with distinct behaviours such
as speed, lane-changing preferences, and response to traffic signals. These cars interact
with each other and with the road network (the environment). When traffic density
increases, agents may slow down, change lanes, or reroute based on local conditions.
The emergent phenomenon in this case is traffic congestion. While the behaviour of
each individual car is simple and predictable, the overall traffic pattern that arises from
just a single car slowing down can become hard to predict.

I gained understanding of social simulation and agent-based simulation from the book
Simulating Social Complexity5 (recommended by my supervisor).

3.4 Implementation Knowledge: Agent-Based Simulation

Familiarity with GAMA (an open-source platform for building agent-based models) and
it’s supported language, GAML, was essential for the project’s success. I used the
approach of ”learning by doing” and created several GAML models, including:

1. Predator-prey simulation model: simulates the interactions between predator and
prey populations in a common environment (habitat). This model required the
implementation of distinct agent types (predators and prey), each with their own
set of behaviours (e.g., hunting, fleeing, reproducing). The simulation
demonstrated how individual interactions could lead to population dynamics, such
as oscillations in predator and prey numbers, illustrating the non-linear feedback
loops common in ecological systems. I enjoyed learning how parameter changes
affect the dynamics in this scenario, for example, population cycles of both species
tend to oscillate, however, increasing the rabbit population too much can change
this dynamic as they compete with each other.

5Edmonds B and Meyer R (2017), Simulating Social Complexity: A Handbook - 2e

8

2. Flu-Dispersion Model: This model simulates the spread of an infectious disease
(such as influenza) within a population. The natural language input described the
movement of agents, transmission probabilities, and health states (e.g.,
susceptible, infected, recovered). This test assessed the model’s capacity to handle
scenarios with complex interactions between agents and environmental variables,
such as varying infection rates or differing movement patterns.

I also reviewed the GAMA documentation and official forum to understand its syntax
and learn best practices for coding simulation models. I am very grateful to my
supervisor, who gave me a walkthrough of the GAMA IDE and signposted me in the
right direction at the start of my journey learning GAMA. The hands-on experience
gained through these exercises was instrumental in bridging the gap between theoretical
knowledge and practical application.

3.5 Engineering Agent-Based Social Simulation (EABSS)

The learning process began with an in-depth review of the foundational EABSS
framework paper6. The paper provides a comprehensive methodology for developing
agent-based models that capture the complexities of social systems, emphasising
modular design, agent behaviour specification, and the importance of model validation.

4 Work Package 2: Design

In this phase, I advance onto designing two distinct pipeline architectures (for
supervised fine-tuning and RAG), followed by feasibility testing design that will allow
me review my hypotheses:

1. Models will not require fine-tuning to produce satisfactory results in the analysis
phase of EABSS (i.e. assuming a particular role to understand the problem
statement).

2. Fine-tuned models will perform better on UML generation than their
counterparts. In the context of this project, UML generation refers to the
generation of MermaidJS scripts; MermaidJS is a JavaScript-based tool that
enables users to create UML diagrams through simple, text-based syntax.

4.1 Fine-tuning pipeline design

In the supervised fine-tuning pipeline, data is processed into the correct format (for
Llama models this is a pair of instruction and output string values for each entry in the
training dataset), then, the processed dataset is stored as a list of JSON records. Just
before training, the JSON file is read by a Python script and converted into a Pandas
dataframe object.

The RAG pipeline makes use of the ChromaDB in-memory vector database, to index
embeddings of both natural language inputs from the user, a key advantage of using

6Siebers, P.O. & Klügl, F. (2017). What software engineering has to offer to agent-based social
simulation. In Edmonds, B. and Meyer, R. (Eds). Simulating Social Complexity: A Handbook - 2e.
Springer.

9

ChromaDB is that it is pre-packaged with a driver to match user prompts with the
appropriate embeddings – saving development related overhead. Various embedding
generators (models) exist, I chose the all-MiniLM-L6-v2 model embedding due its
compatibility with LangChain and low memory footprint. LangChain was utilised to
connect the retrieved information with the base language model. Finally, I developed a
Streamlit-based web application to communicate with this package.

During the whole process, I placed priority on using open-source libraries and
frameworks.

4.2 Test experiment design

Test experiments were structured to cover a range of scenarios, with increasing levels of
complexity, to comprehensively assess the model’s adaptability, accuracy, and reliability.
The three test cases below were selected based on their relevance to the core domains of
Operations Research and Social Simulation and are a mix of classical simulation
problems and comparatively modern use cases.

1. Predator-prey model (as described in section 3.4): simulates the interactions
between predator and prey populations in a common environment (habitat). This
model required the implementation of distinct agent types (predators and prey),
each with their own set of behaviours (e.g., hunting, fleeing, reproducing). The
simulation demonstrated how individual interactions could lead to population
dynamics, such as oscillations in predator and prey numbers, illustrating the
non-linear feedback loops common in ecological systems. I enjoyed learning how
parameter changes affect the dynamics in this scenario, for example, population
cycles of both species tend to oscillate, however, increasing the rabbit population
too much can change this dynamic as they compete with each other.

2. Ant pheromone diffusion model: simulates the behaviour of ants in a foraging
scenario, focusing on the influence of pheromone trails on their movement
patterns. This exercise required the implementation of individual ant agents, each
with behaviours such as moving, sensing pheromones, and depositing pheromones.
The simulation highlighted the emergent properties of collective behaviour, such
as the formation of optimal foraging paths.

3. Adaptive architecture in museum exhibitions model: consisting of 2 types of
artefacts: large wall-mounted smart content windows that move with visitors and
a smart partition wall that creates a dynamic and flexible exhibition environment
by continuously analysing visitor movement, making real-time decisions, and
physically re-configuring the space to optimise the experience.

Each test model will be generated using design patterns7 (natural language prompts)
that align with the EABSS framework.

7Siebers, P. O. (2024). Exploring the Potential of Conversational AI Support for Agent-Based Social
Simulation Model Design. arXiv preprint arXiv:2405.08032.

10

5 Work Package 3: Implementation

This section outlines the key steps in implementing the necessary components for the
successful deployment of the AI models. Starting with running base LLMs, I proceeded
to implementing the fine-tuning pipelines and curating task-specific datasets. Finally, I
deployed the fine-tuned models for experimentation.

5.1 Running Base LLMs

It was necessary to choose a platform to serve base LLMs. Ollama, an open-source,
lightweight server optimised for local deployment of language models was chosen.
Ollama’s built-in repository provides easy access to many popular base models,
including Llama3, which are guaranteed to be compatible with the server. Furthermore,
Ollama supports running custom models using Modelfile schemas for quick
experimentation. Consideration was also given to vLLM, another open-source inference
framework designed for serving LLMs, however, I regarded the lack of documentation
and support for various models as a major drawback.

One issue I faced was the inability to run base models on-device. My device (running
Windows 10, with Intel i5-1035G1 CPU @ 1.00GHz and NVIDIA GeForce MX350
GPU) has 16GB RAM and I was not able to run any model without facing high latency
(typically >5 minutes after just a few hundred tokens into conversation). Consequently,
I made use of virtual machines hosted in Google Cloud to execute and run models.

5.2 Curating and Creating Fine-tuning Dataset

The success of generative AI models in specific applications depends heavily on the
quality and relevance of the fine-tuning datasets used during the model optimisation
phase. The first step in curating the fine-tuning dataset involved a comprehensive
evaluation of the chosen base model’s performance in three key areas:

1. Ability to generate syntactically correct GAML scripts based on natural language
input and MermaidJS representations of UML was evaluated.

2. Ability to produce accurate UML (MermaidJS) diagrams from textual
descriptions. UML visual representations are an industry standard in modern
software development. Evaluation was focused on syntax correctness, logical
representation and the ability to generate UML features such as branching in
state diagrams, and inheritance in class diagrams.

3. Conversational competence within the EABSS Framework, for example, ability to
understand and respond accurately to queries such as generating sequence
diagrams from class and state diagrams generated in the steps prior.

I curated (part of 5.2.1) and synthesised (remainder of 5.2.1 and onwards) datasets for
fine-tuning, each described in the relevant subsection below.

11

5.2.1 GAML Code Generation Datasets

Since errors were discovered in the GAML scripts generated from the base Llama3
model, it was important to training the model to generate valid GAML scripts from the
following inputs:

• Natural language prompts related to general GAML knowledge. The dataset for
this task was retrieved from Hugging Face8 and processed by me.

• Specific simulation scenario prompts, that resemble scenarios the final LLM may
face in production.

• UML Mermaid JS sequence diagrams derived from state and class diagrams, to
further link UML representations and GAML code.

The integration of these datasets enabled a multi-faceted approach to code generation,
providing the model with diverse input types.

5.2.2 UML Class, Sequence, and State Diagrams

Diagrams were extracted from prompts describing natural language scenario prompts,
serving as an intermediate representation between textual descriptions and code. Class
diagrams were used to represent the structure of a system, sequence diagrams to
capture dynamic interactions, and state diagrams to depict the possible states of system
components. Sequence diagrams were also generated from MermaidJS scripts
representing class and state diagrams generated in prior stage of dataset creation. The
inclusion of these diagrams aimed to help the model learn the syntactic and semantic
connections between UML and GAML.

5.2.3 JASSS Keywords and Abstracts

Journal of Artificial Societies and Social Simulation (JASSS) is a leading publication in
the field of social simulation. Keywords and abstracts from the journal were used to
imbue the model with domain-specific terminology and contextual knowledge. This
domain knowledge helped the model better understand and generate simulation-related
content.

5.3 Implementing fine-tuning

A review of state-of-the-art methodologies revealed that llama.cpp was a widely used
C++ library for LLM inference. Various python libraries expose a llama.cpp API, as
well as handling the underlying model architecture, data loading, and training routines.
Fine-tuning requires careful calibration of several key parameters to ensure that the
model converges effectively and generalises well to the target tasks. The primary
parameters considered during the fine-tuning process were:

• Batch size: the number of samples processed before the model updates its weights.
Smaller batch sizes can lead to more noisy updates and slower convergence,
however it is found that smaller sizes eventually generalise better, whereas larger
batch sizes allow for faster training with the risk of overfitting and poorer
generalisation performance due to learning patterns in the data too precisely.

8https://huggingface.co/datasets/Phanh2532/GAML-Data

12

• Learning rate: controls the step size at each iteration while moving towards a
minimum of the loss function. A learning rate scheduler was also employed to
dynamically adjust the rate during training, starting higher to speed up
convergence and then reducing as the model approached optimal performance to
reduce the possibilty of divergence. Leading academics in the field of theoretical
machine learning have noted it is the single most important hyper-parameter
worth tuning9.

• Number of epochs: refers to how many times the entire training dataset passes
through the model. Determining the appropriate number of epochs involved
evaluating model performance at different stages to avoid overfitting while
ensuring sufficient training exposure to the dataset.

• Optimiser: the choice of optimiser significantly impacts the efficiency of the
fine-tuning process. Common optimizers such as Adam, AdamW, and SGD were
tested, with AdamW being selected due to its adaptive learning rate properties
and effective weight decay mechanism, which improved convergence while
mitigating overfitting.

The fine-tuning process was carried out using a Python script that integrates with the
Unsloth API. This setup allowed highly efficient Low Rank Approximation (LoRA)
fine-tuning that is highly configurable at no extra cost. LoRA modifies the attention
layers of a transformer model, instead of updating the entire weight matrices during
fine-tuning. Weight matrices are decomposed into two smaller matrices, where one is of
a lower rank, thus reducing the computational cost of training. A visual representation
of LORA can be found in Figure 2 below.

Figure 1: LORA (https://magazine.sebastianraschka.com/p/lora-and-dora-from-scratch)

The fine-tuning script was written such that each trained weight could be represented
using a 8-bit or 16-bit floating point value. 16-bit values allow for more accurate
representation of the weights, however, it is taxing on computational resources. In

9Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade: Second edition (pp. 437-478). Berlin, Heidelberg: Springer Berlin
Heidelberg.

13

contrast, less accurate 8-bit quantisation significantly reduces memory usage and
increases inference speed, making it highly suitable for rapid experimentation. Given
this trade-off, 8-bit quantisation was employed during the initial experimentation
phases - this allowed us to quickly assess model performance on new datasets and
configurations. Once a stable and promising model configuration was identified, 16-bit
quantisation was used for the final fine-tuning stages to enhance the accuracy of code
generation.

The output of the fine-tuning process were .gguf (Grok Generation Universal Format)
files that encapsulate the quantised weights, metadata, and architectural information of
a fine-tuned model in a format that is compatible (and efficient to load and execute)
with Ollama.

5.4 Running fine-tuned LLMs

The .gguf files are then referenced in a Modelfile (a schema to create instances of
models that is compatible with the Ollama server). Using the Ollama CLI, models are
then instantiated (ollama create <new-model-name> --file Modelfile) and
executed (ollama run <new-model-name>), ready for use.

6 Work Package 4: Testing

The testing phase of this project focuses on evaluating the performance of fine-tuned
generative AI models across several critical dimensions. The primary objective is to
assess how well these models can comprehend and reason through provided briefs,
generate logical and syntactically accurate UML diagrams, and subsequently produce
semantically and syntactically correct GAML code.

6.1 Llama3

6.1.1 RAG

Testing a proof-of-concept RAG pipeline (which used a corpora of news reports)
revealed significant performance limitations. The pipeline was exceedingly slow, and
thus unable to provide timely responses. Moreover, it frequently failed to generate
correct answers to questions, even when those answers were directly contained within
the provided documents. Furthermore, the RAG pipeline’s ability to generalise was
poor – it could not handle questions outside the scope of its training documents. As a
result, the pipeline under-performed in terms of both accuracy and generalisation,
making it unsuitable for this project’s needs.

I also believed it would not be feasible to create a corpora of documents that would
fulfill all the project criteria; accurate UML code generation and GAML script
generation, and possess domain knowledge. RAG relies on a large quantity of
documents to work adequately - we do not have enough examples of simulation model
documentation that conforms to EABSS at hand, and it is difficult to create high
numbers of quality synthetic data (consider multi-page developer documentation).

14

6.1.2 Supervised fine-tuning

Supervised fine-tuning on Llama3, in contrast, delivered better results. The fine-tuning
process was incremental, with each training/testing iteration focusing on progressively
more complex tasks. Initially, the model was fine-tuned to generate UML diagrams (in
MermaidJS) from natural language prompts. Subsequent iterations involved teaching
the model to generate GAML code from natural language prompts. I noticed infrequent
hallucinations by the model, but did not consider them serious as every model has the
potential to show this behaviour.

6.2 Llama3.1

During testing, Meta released Llama3.1 – an updated version of the Llama3 model.
Shortly after, I made the switch to using Llama3.1 with the expectation that a larger
context window would improve handling of long-form content. I also believe the gains in
reasoning and code generation benchmark performance could potentially reduce the
likelihood of hallucinations. Please find the table below to compare benchmark
performance of Llama3.1 and Llama310.

Table 2: Benchmark comparison of Llama3.1 and Llama3

Context
Window

MMLU
(5 shot)

DROP
(3-shot, F1)

EvalPlus

Llama3.1 - 8B 128k 37.1 59.5 72.8
Llama3 - 8B 8k 36.2 58.4 70.6

Despite the change of model, the design and implementation of the supervised
fine-tuning pipeline remained largely the same. Key differences were dependency
upgrades to fix breaking changes in the fine-tuning script and an Ollama server
upgrade, in order to run the model. Based on the poor results obtained with the
RAG-fine-tuned Llama3, I opted not to fine-tuning Llama3.1 using RAG, opting for
traditional fine-tuning only. The model was trained on the final iteration of training
data, which introduced UML diagram prompts (for GAML code generation) and a
collection of questions pertaining to abstracts of papers published in JASSS, to equip it
with domain-specific knowledge.

However, despite the improvements, hallucinations persisted, even when the input
prompts were part of the training data. This issue has been documented as
quantisation causing disturbances to the sophisticated knowledge structure during
pre-training11. Behaviour similar to that documented below was observed several times
throughout the testing process.

sb topaloglu1@instance-20240729-100526: $ ollama run

fine-tuned-model-2:latest

>>> Step-by-step, work through the following task list in the given order

10https://github.com/meta-llama/llama-models/blob/main/models/llama3 1/MODEL CARD.md
11Huang, W., Ma, X., Qin, H., Zheng, X., Lv, C., Chen, H., ... & Magno, M. (2024). How good are

low-bit quantized llama3 models? an empirical study. arXiv:2404.14047.

15

during the entire conversation. Got it? Say "yes" or say "no".

[’task’, [’create a new species called "human" from the basic template,

and add an action "talk" to it.’, ’define the action "talk" so that when

it is executed in a specific location named "town", a message appears on

the console of the user interface: "The human talks in town".’, ’add

another action named "walk" to the species "human", with no argument and

with the following code snippet inside it : "do walk speed: 0.5;"’,

’define an initialization block that will be executed when a new human is

created, which consists of positioning the agent at random within a

specific polygon called "town"’, ’define an experiment named "experiment"

that contains:’, ’a display named "main display" that has a camera

looking down on the "town" polygon.’, ’an output device called "console"

for displaying messages in the console window.’, ’launch this simulation

by running the main experiment "experiment", where we will see humans

wandering around and speaking in town.’],

6.3 Mistral-NeMo

Ultimately, I decided to switch to the Mistral-NeMo model for the last iteration of
testing. Mistral-NeMo was released after I made the initial decision to use the Llama
family of models, hence I became aware of its existence in the later stages of the
project. The model holds several advantages over Llama3.1, including a higher number
of parameters (12 billion vs. 8 billion) and a larger context window (up to 128k tokens).
These characteristics make it more suited for handling complex, context-rich tasks like
GAML script generation and UML diagram creation. Additionally, I noticed
Mistral-NeMo has garnered positive feedback from users in various online communities.

In comparison to Llama3.1, Mistral-NeMo provided better overall performance in
general question answering ability (MMLU 5 shot score is higher by 1.4%) and following
empirical evaluation to check for code generation, it was ultimately selected as the final
model for this project. I reduced my reliance on benchmark scores and the model
selection process was mostly empirical.

Please find some examples of generated UML diagrams, generated using a
single-prompt, without background knowledge, in the appendix A3.

I then generated GAML scripts, using basic text prompts as you can find in the
appendix.

I did not train Mistral-NeMo using RAG due to disappointing results in Llama3, and
unfortunately, I did not have the time to successfully fine-tune the model using
supervised methods, although I did create a script for this purpose.

The very short remainder of time (last couple of days) of testing was testing using the
EABSS script (kindly provided by my supervisor). In order to submit the design
patterns (which were an important deliverable), I did a lot of isolated testing (rather
than running the whole EABSS script, I executed parts on example scenarios - similar to
the ant foraging scenario in the appendix), this allowed me to refine the existing design

16

prompts and develop my own. Unfortunately, my assumption that running the EABSS
script would return similar results to lots of isolated tests run in succession was wrong.
I made this assumption due to the long (128k token) context length of the model, and
while context length was sufficient to run the EABSS script, the script introduced lots
of additonal information. From my experience running the EABSS script for testing (I
was only able to do one run because the script took several hours to complete, I expand
on this later in section 8.1) the model becomes over-concentrated on the additional
information introduced. The result is that UML representations are often syntatically
correct MermaidJS code albeit not logically coherent, please see the use case diagram in
the EABSS script run for this. This issue also transcends into GAML code generation.
Nevertheless, I propose 2 different design patterns to implement models in GAML:

1. Command the model to generate the GAML script in one attempt, followed by a
prompt commanding the model to adjust the generated code.

2. Command the model to generate the GAML script in parts (e.g. first global code
block then species implementations, then experiment code block), followed by a
prompt commanding the model to adjust the generated code.

7 Work Package 5: Report Writing

The final work package of this research project focused on consolidating the findings
and documenting the entire process. The objective was to produce a detailed and
coherent report that captures the progress made, challenges faced, and lessons learned
during the internship. Additionally, I outlined the next steps in pursuing the broader
objective of automating the simulation modelling workflow.

The report was structured to ensure clarity and logical progression from one section to
the next. Writing the report was an iterative process, involving constant refinement for
clarity and technical accuracy. Key aspects such as data interpretation, test results, and
the fine-tuning pipeline were revisited multiple times. I am very grateful to my
supervisor, who took the time to review and provide feedback on my report.

One challenge I faced writing the report was presenting the limitations of the models,
such as the hallucinations observed during Llama3 testing, without detracting from the
project’s overall contributions. This was achieved by referencing existing literature on
LLM quantisation and discussing potential avenues for improvement, thus framing the
limitations as areas for future research.

8 Outcomes

The internship resulted in several successful outcomes, both in terms of research results
and my personal development. Under the supervision of Prof. Siebers, I successfully
researched the feasibility of various open-source LLMs, including Mistral and Meta
Llama models for generating GAML simulation model scripts. While I experimented
with both traditional fine-tuning methods and RAG pipelines, to produce more
accurate, syntactically valid scripts, it was found that conventional fine-tuning on
smaller datasets provided more reliable answers without losing ability to generalise. It

17

was noticed that fine-tuning the Llama3/Llama3.1 models on large datasets resulted in
strong hallucinations that rendered the model unusable. A key learning for me
personally was realising that empirical evaluation has a strong place – performance of
models and techniques do not always translate to successful outcomes in a practical
sense. A major technical achievements was the creation of reusable design patterns for
conversational AI. These patterns were developed in close collaboration with my
supervisor and conform to the EABSS Framework. The most interesting discovery
during the internship for me was that there is potential to translate JavaScript
(MermaidJS) code into GAML code. The generalisable nature of the developed patterns
and processes means they can be adapted to different simulation engines with ease.
Along with these successful outcomes, there are some undesired outcomes that must be
improved upon. As mentioned earlier, running EABSS scripts is an extremely long
process because of the memory required to store long context windows (which are
needed considered the size of the input (and output generated) from the prompts.
Running the single EABSS script test I had the chance to do, after finalising my design
prompts, took over 4 hours as the inference process broke down 3/4 of the way into the
script – this was exacerbated by the lack of a powerful GPU in the virtual machine
which hosted the Ollama server. A learning for me was that I would perform such tasks
on much more powerful devices, and I would need to budget accordingly. After
spending the final 10 days trying to the best of my ability, to get a running and
operationally successful Mistral-NeMo model, it was unpleasant to watch the model not
perform as well as I anticipated; and it was difficult to leave the final GAML code with
bugs, as I didn’t have the time to debug the script.
Nevertheless, we are in a position to automate parts of the EABSS development process,
namely; preparation, analysis, design (partially – generation of state diagrams and its
relevant documentation), and conclusion. Design and implementation are phases that
LLMs typically struggle with, due to their lack of ability to generate syntatically correct,
logical MermaidJS and GAML code. The final Mistral-Nemo model has shown promise
to generate GAML code from MermaidJS UML representations, but can contain errors
that are difficult to debug. I have identified a solution for this in the section below.

8.1 Outlook

A shortcoming of the current model is the ability to reliably generate syntatically valid
and coherent use case diagrams, class diagrams and GAML scripts from UML
representations. To counteract this, I have written the design patterns to be restrictive
and prevent undesired output (such as XML representations of models), however this is
not a reliable approach. This can be improved by collecting more fine-tuning data. By
increasing the volume of domain-specific examples, we can enhance the model’s ability
to accurately generate GAML scripts from UML representations – this is particularly
important since the fine-tuning dataset used for Llama3/Llama3.1 did not have to be
very large since the number of parameters was less - did not need to be large to affect
model behaviour enough.

Another area for improvement involves providing additional domain-specific knowledge
to the model during fine-tuning. By using academic texts related to simulation
modelling, we can imbue the model with deeper contextual understanding. I am not
sure to what extent this is necessary for the Mistral-NeMo, in my run of the EABSS

18

script, it did not have an issue referencing academic works. If such fine-tuning is deemed
necessary, I would recommend providing more in-depth texts than abstracts – perhaps
excerpts from text books, so the model learns like a human does during fine-tuning.

A domain that I could not explore in this project due to time and hardware limitations
is Mixture of Experts (MoE) models. MoE models comprise multiple smaller models,
each specialised in a sub-domain. For instance, one model could focus on simulation
modelling literature, while another could specialise in GAML generation. This
architecture is particularly appealing because it enables more efficient handling of
domain-specific tasks. Each expert model contributes its specialised knowledge, which
can be combined to improve overall performance across diverse tasks. I believe this
approach would neutralise the inability to generalise that arises in a single model
fine-tuned across various different tasks. References in literature suggest that MoE
architectures significantly reduce computational costs while improving model
adaptability and task-specific precision12. Additional background reading on MoE
models can be found on a Hugging Face introductory blog post13.

As mentioned previously, the tools, methods, and design patterns for natural
language-to-script translation, can be adapted easily to different frameworks such as the
AgentPy Python library. This cross-compatibility will be essential in extending this
research beyond the GAMA platform, potentially improving simulation workflows in
fields ranging from epidemiology to environmental modelling.

8.2 Personal Reflection

Personally, this internship was my first experience working in a research-oriented
environment. I gained in-depth knowledge about both simulation modelling and
generative AI. Through background reading, I developed an understanding of
agent-based modelling and its various applications. I very much enjoyed collaborating
with my supervisor, Prof. Siebers, and gained a lot of tacit knowledge about
agent-based modelling from our discussions. Furthermore, I developed a deeper
understanding of the transformer-based architecture that underpins the state-of-the-art
LLMs, such as Llama3.1, and the natural language processing techniques necessary to
prepare training data for language models. I also had the opportunity to expand my
technical skill set, learning GAML as well as the llama.cpp inference library, LangChain
and the workings of the Compute Unified Device Architecture (CUDA) API for
fine-tuning. During the implementation and testing phases of the project, I encountered
breaking changes with various libraries, solving these issues gave me a much deeper
understanding of the technologies I used, as well as how they fit together. I learnt to
plan and write for an academic audience, and I enjoyed using LATEXfor the first time.

Overall, my internship experience has reinforced my commitment to pursue a
postgraduate research degree in computer science. This experience has enhanced my
critical thinking, time management, and communication skills. I have a clearer
understanding of how I can contribute to academia, particularly in the fields of AI and

12Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., ... & Sayed, W. E.
(2024). Mixtral of experts. arXiv:2401.04088.

13https://huggingface.co/blog/moe

19

Deep Learning.

8.3 Feedback

My internship experience was incredibly enjoyable and very rewarding, and I would
definitely recommend this opportunity to my peers.

One small challenge I experienced was accessing powerful computing resources.
Running and fine-tuning LLMs can be resource-intensive, and having access to more
powerful Graphics Processing Units (GPUs) would have allowed for faster on-device
model training and experimentation. There were times when I had to rely on
cloud-based virtual machines (with 24GB RAM and a non-NVIDIA GPU) which have
additional overhead and are time-consuming to configure. I appreciate there is a strong
demand for additional processing power due to the concentration of research in Deep
Learning at the moment. Perhaps it would be possible for the department to procure a
small number of GPUs if similar projects are planned for the future?

9 Appendix

9.1 A1: Git Repository

https://github.com/senertopaloglu/epsrc-summer-internship
Folders:

• GAML-Data: GAML general knowledge dataset.

• complete-finetune-datasets: ”final” form of all the task-specific datasets collated
to fine-tune the model.

• debugging-llama: some evidence of llama3.1 hallucination.

• fine-tune-training-losses: recordings of training accuracy data, as evidence of
fine-tuning.

• finetune-scripts-unsloth: unsloth fine-tuning scripts for llama3, llama3.1 and
Mistral-NeMo (I have made changes to these, particularly to solve dependency
conflicts and training parameter tunings).

• mistral-nemo: evidence of isolated training with mistral-nemo.

• news-summaries-pdf: document corpora for RAG proof of concept.

• report: please ignore, this contains a very early version of the report.

• synthetic-dataset-json: contains synthetic datasets in json form.

Files in top-level directory:

• Modelfile template: a template modelfile (schema) for instantiating models to run
in Ollama server.

• finetune-dataset.json: please ignore, this is old.

20

• mygpt.py: I initially experimented with my own GPT-based model, before I
quickly realised it would not work.

• news-summary-{x}.docx: please ignore, these are the .docx equivalent of the news
summary PDFs.

• ragapp.py: my RAG pipeline, with Streamlit UI.

• requirements.txt: to quickly retrieve all dependencies with correct versions - ideal
if you would like to use a virtual Python environment to run the project.

9.2 A2: Project Planning Diagram

Figure 2: Project phases and their sub-tasks

9.3 A3: Mistral-NeMo Zero Shot UML Diagrams

sb topaloglu1@instance-20240729-100526: $ ollama run

mistral-nemo:latest

>>> Generate UML state diagrams, using Mermaid JS, for each important

actor in the prompt provided: 1)Prompt: A cybersecurity firm detects a

threat, analyzes it, and deploys countermeasures to protect client data.

9.4 A4: Mistral-NeMo Zero Shot GAML Generation

Please see the relevant PDF inside the Report ZIP folder.

9.5 A5: Design Patterns

Insert input here.

9.5.1 Preparation

1. Work through each task list in the given order during the entire conversation.
Answer with just ”yes” if you understand or ”no”, if you don’t understand.

21

Figure 3: UML state diagram for CybersecurityFirm actor

2. Provide ALL RESPONSE CONTENT without asking questions during the entire
conversation. DO NOT print any keys (Example: Use ”Example” AND NOT
”{key-example}”) during the entire conversation. Use a ”scientific tone” during
the entire conversation, unless instructed otherwise. Do you understand? say
”yes” or ”no”.

3. Memorise ”Unified Modelling Language” as {key-uml}. Memorise ”Agent-Based
Social Simulation (ABSS) Study” as {key-studyType}. Got it? Say ”yes” or say
”no”.

9.5.2 Analysis

Problem Statement

1. Take on the ”role” of a ”Sociologist” with experience in ”Agent-Based Social
Simulation”. Memorise this role as {key-role1}. Do you understand? say ”yes” or
”no”.

2. Define the ”topic” of the memorised {key-studyType} as ”The goal of this study
is to generate IDEAS for using ADAPTIVE ARCHITECTURE in futuristic
MUSEUMS within an exhibition room that is visited by ADULTS and
CHILDREN. The adaptive architecture consists of 2 kinds of artefacts: (1) 2 large
wall-mounted SCREENS on which SMART CONTENT WINDOWS move with
the visitors and (2) a SMART PARTITION WALL that creates a dynamic and
flexible exhibition environment by continuously analysing visitor movement,
making real-time decisions, and physically reconfiguring the space to optimise the
experience for everyone. The adaptive architecture artefacts represent
AI-DRIVEN INTELLIGENT OBJECTS.”. Memorise this topic as {key-topic}.
Do you understand? say ”yes” or ”no”.

22

Figure 4: UML class diagram

3. Memorise ”Exploratory” as {key-researchDesign}. Memorise ”Social Studies” as
{key-domain}. Memorise ”Human Behaviour” as {key-specialisation}. Do you
understand? say ”yes” or ”no”.

4. Using a ”scientific and inspirational tone”. Define a novel and creative ”context”
for the memorised {key-topic} in 200 WORDS (if possible), then memorise this
context as {key-context}.

5. Define ”stakeholders” for the memorised {key-topic}, to participate in a
co-creation role-play game. Memorise these stakeholders together with their
personas as {key-stakeholders} (you do not need to create names for personas).

6. You will write a Markdown document using the memorised keys (separate each
section using headers). Only show the final, resulting markdown file code from
this prompt. Display ”Problem Statement” as markdown ’heading level 3’.
Structure: 1. display memorised {key-role1}, 2. display memorised {key-topic}, 3.
display memorised {key-researchDesign}, 4. display memorised {key-domain}, 5.
display memorised {key-specialisation}, 6. display memorised {key-context}, 7.

23

Figure 5: UML sequence diagram (from the prompt, state & class diagrams generated
previously).

display memorised {key-stakeholders}. Make sure to replace the keys inside ”{}”
with their values.

7. List 2 potential aims that satisfy the viewpoints of all participating memorised
{key-stakeholders}. Define 5 ”keywords” for the memorised {key-studyType} in
the context of the memorised key-topic in the form of a comma-separated list.
Memorise these 5 keywords as {key-keywords}.

8. Define the ”title” for the memorised {key-studyType} in the context of the
memorised {key-topic} in 12 WORDS (if possible). Memorise this title as
{key-title}.

9. Define the ”aim” for the memorised {key-studyType} in the context of the
memorised {key-topic} in 40 WORDS (if possible). CONSIDER the memorised
{key-potentialAims} in your definition. Use a ”scientific tone”. Memorise this aim
as {key-aim}.

10. Using exactly the same markdown code as what was generated before, append to
the end of the document the following sections/chapters: display memorised
{key-title}. display memorised {key-aim}. display memorised {key-keywords}.
Make sure to replace the keys inside ”{}” with their values.

Study Outline

1. Simulate and play a co-creation role-play game in which all the memorised
{key-stakeholders} discuss with each other potential Agent-Based Social
Simulation (ABSS) objectives for the study considering the pros and cons. Use a
”debating tone”. The moderator focuses on 1 novel RANDOM question. Provide
the question and the details of the controversial discussion. Agree on 4 potential
ABSS objectives that satisfy the view of all participating memorised

24

key-stakeholders. Memorise these potential ABSS objectives as
{key-potentialObjectives}. Did you memorise? state just ”yes” or ”no”.

2. Propose 3 criteria for ranking the 4 potential ABSS objectives to support the
decision which objectives to carry forward. Use a ”scientific tone”.

3. Define 2 ”ABSS objectives” for the memorised {key-studyType} in the context of
the memorised {key-topic}. CONSIDER the memorised
{key-potentialObjectives} in your definitions. List the objectives with 2 relevant
performance measures for each objective. Memorise these 2 objectives together
with the performance measures as {key-objectives}.

4. Play a new co-creation role-play game in which all the memorised
{key-stakeholders} discuss with each other potential ABSS hypotheses for the
study considering the pros and cons. Use a ”debating tone”. The moderator
focuses on 1 novel RANDOM question. Provide the question and the details of
the controversial discussion. Agree on a few potential ABSS hypotheses that
satisfy the view of all participating memorised {key-stakeholders}. Memorise
these potential ABSS hypotheses as {key-potentialHypotheses}. Propose 3
criteria for ranking the 4 potential ABSS hypotheses to support the decision
which hypotheses to carry forward. Use a ”scientific tone”.

5. Define 2 ”ABSS hypotheses” for the memorised {key-studyType} in the context
of the memorised {key-topic}. The hypotheses MUST not be related to the
memorised {key-objectives}. CONSIDER the memorised
{key-potentialHypotheses} in your definitions. Memorise these 2 hypotheses AND
the performance measures as {key-hypotheses}. Did you memorise? state just
”yes” or ”no”.

6. Play a new co-creation role-play game in which all the memorised
{key-stakeholders} discuss with each other potential ABSS experimental factors
for the study considering the pros and cons. Use a ”debating tone”. The
moderator focuses on 1 novel RANDOM question. Provide the question and the
details of the controversial discussion. Agree on 6 potential ABSS experimental
factors that satisfy the view of all participating memorised {key-stakeholders}.
Memorise these potential ABSS experimental factors as
{key-potentialExperimentalFactors}. Propose 3 criteria for ranking the 6
potential ABSS experimental factors to support the decision which experimental
factors to carry forward. Use a ”scientific tone”.

7. Define 3 ”ABSS experimental factors” for the memorised {key-studyType} in the
context of the memorised {key-topic}. You ALWAYS must satisfy the following 2
requirements for defining experimental factors: 1) The experimental factors need
to be useful for creating memorised {key-studyType} scenarios. 2) CONSIDER
the memorised key-objectives and the memorised {key-hypotheses} for defining
the experimental factors. MAKE SURE TO CONSIDER the memorised
{key-potentialExperimentalFactors} in your definitions. List the experimental
factors with 1 value range for each experimental factor. 1 of them MUST use a
’nominal scale’ AND 1 of them MUST use an ’ordinal scale’ AND 1 of them
MUST use a ’ratio scale’. Memorise these 3 experimental factors together with
the value ranges as {key-experimentalFactors}.

25

8. Play a new co-creation role-play game in which all the memorised
{key-stakeholders} discuss with each other potential ABSS outputs for the study
considering the pros and cons. Use a ”debating tone”. The moderator focuses on
1 novel RANDOM question. Provide the question and the details of the
controversial discussion. Agree on 6 potential ABSS outputs that satisfy the view
of all participating memorised {key-stakeholders}. Memorise these potential
ABSS outputs as {key-potentialOutputs}. Propose 3 criteria for ranking the 6
potential ABSS outputs to support the decision which outputs to carry forward.
Use a ”scientific tone”.

9. Define 3 ”ABSS outputs” for the memorised {key-studyType} in the context of
the memorised {key-topic}. You ALWAYS must satisfy the following 2
requirements for defining outputs: 1) Some outputs need to be useful for
measuring if the memorised {key-objectives} have been satisfied. 2) Some outputs
need to be useful for accepting or rejecting the memorised {key-hypotheses}.
CONSIDER the memorised {key-potentialOutputs} in your definitions. List the
outputs and explain links to the memorised {key-objectives} OR the memorised
{key-hypotheses} in 1 concise sentence each. Memorise these 3 outputs together
with the links as {key-outputs}.

10. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Study Outline” as
markdown ’Heading Level 3 ###’. Then: 1. List: a) the ”objective” in the
context of the memorised {key-studyType} in 1 concise sentence, b) the
”hypothesis” in the context of the memorised {key-studyType} in 1 concise
sentence, c) the ”experimental factor” in the context of the memorised
{key-studyType} in 1 concise sentence, d) the ”output” in the context of the
memorised {key-studyType} in 1 concise sentence. 2. Display your 3 criteria for
ranking the 4 potential ABSS objectives to support the decision which objectives
to carry forward (you have done this before, just output your previous answer
here in markdown). 3. list memorised {key-objectives}. 4. List the 3 criteria you
proposed for ranking the 6 potential ABSS experimental factors to support the
decision which experimental factors to carry forward (you have done this before,
just output your previous answer here in markdown). 5. List the memorised
{key-experimentalFactors}. 6. List the memorised {key-outputs}. Make sure to
replace the keys inside ”{}” with their values.

Model Scope

1. Now take on the additional ”role” of a ”Senior Software Developer” with
experience in the ”Unified Modelling Language (UML)”, memorise this role as
{key-role2}.

2. Play a co-creation role-play game in which all the memorised {key-stakeholders}
discuss with each other potential some ABSS UML actors for the study
considering the pros and cons. Use a ”debating tone”. The moderator focuses on
1 novel RANDOM question. Provide the question and the details of the
controversial discussion. Agree on some potential ABSS UML actors that satisfy

26

the view of all participating memorised {key-stakeholders}. Memorise these
potential ABSS UML actors as {key-potentialUMLActors}. Propose 3 criteria for
ranking the potential ABSS UML actors to support the decision which ABSS
UML actors to carry forward. Use a ”scientific tone”.

3. CONSIDER the memorised {key-potentialUMLActors} in your definitions.
Choose all the important ”ABSS UML actors”, if they are all important, choose
them all. Remember the memorised {key-topic}. Memorise these UML actors
together with a persona description as {key-umlActors}. Did you memorise?
simply answer with just ”yes” or ”no”.

4. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Define 15 ”real-world elements” with relevance to the
memorised {key-topic}. Make sure to replace the keys inside ”” with their values.
You ALWAYS must satisfy the following 8 requirements for defining real-world
elements: 1) Consider what ’real-world elements’ are needed to represent in the
model scope and to satisfy the memorised {key-aim}. 2) ALL 4 memorised
{key-umlActors} MUST BE REPRESENTED. 3) At least 2 Physical
Environment elements MUST be present. At least 2 Social Aspect elements
MUST be present. At least 2 Psychological Aspect elements MUST be present.
At least 2 Misc elements MUST be present. 4) Consider the memorised
{key-context}. 5) Consider all nouns in the conversation history. 6) Each element
can only be in 1 category. 7) Social Aspect elements MUST describe theories of
social behaviour. 8) Psychological Aspect elements MUST describe theories of
psychological behaviour. Feel free to be creative and add your ideas. Categorise
the ’real world elements’ into Actors, Physical Environment, Social Aspects,
Psychological Aspects, and Misc. TABLE MUST include 15 rows. Organise all 15
elements into categories and provide a brief explanation. Memorise these 15
elements and explanations as {key-explanations}. List the memorised {key-topic}
relevant real-world elements in the form of table rows. Provide a column for
Category. Provide a column for Sub-Category. Provide a column with the
memorised {key-explanations}. Provide a column with concise justifications in
ABOUT 25 WORDS. Memorise this table as {key-modelScope}.

5. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Define 4 models for implementing elements of the memorised
{key-modelScope}. Provide 1 social model AND 1 behavioural model AND 1
psychological model AND 1 technical model. Find relevant theoretical models in
the SCIENTIFIC LITERATURE. Provide a full EXISTING UP-TO-DATE
scientific paper (conference or journal) or book REFERENCE in HARVARD
STYLE for each in a separate column. Memorise these 4 model details together
with a description and the relevant reference as {key-implementationModels}.

6. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Model Scope” as Markdown
’Heading Level 3 ###’. Then: 1) List memorised {key-role2}, 2) List definitions
of: ”model scope” in the context of the memorised {key-study} and ”UML actor”
in the context of the memorised {key-uml}, 3) List each of the
{key-potentialUMLActors}, with their personas, 4) Display {key-modelScope}

27

table, 5) Display {key-ImplementatonModels}. Make sure to replace the keys
inside ”{}” with their values.

Key Activities

1. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Define 2 ”UML user stories” for each of the 4 memorised
{key-umlActors} (Example: As an ’actor’ I want ’action’ so that ’achievement’).
Memorise ALL 8 UML user stories as {key-umlUserStories}. Translate the
memorised {key-umlUserStories} into UML use cases. Memorise ALL 8 UML use
cases as {key-umlUseCases}. List ALL 8 memorised {key-umlUserStories} and
ALL 8 corresponding memorised {key-umlUseCases} side by side in two columns
inside the table sorted by memorised {key-umlActors}. Memorise this table as
{key-umlUseCaseTable}.

2. Generate a script for a ’comprehensive use case diagram’ in ”Mermaid.js”. Use
the memorised {key-umlActors} as UML actors. Remove all brackets from the
actor names. Use the memorised {key-umlUseCases} as UML use cases. You
ALWAYS must satisfy the following 4 requirements for defining the use case
diagram: 1) Each UML actor MUST be linked to at least 1 UML use case. 2)
Each UML use case MUST be linked to at least 1 UML actor OR MUST be
pointing to at least 1 other UML use case. 3) There is no UML actor to UML
actor interaction. 4) A UML use case CAN be linked to multiple UML actors.
Add relationships with ’detailed descriptors’. Start the script with ”graph LR”.
DO NOT Add subgraphs. Use the following format (Example for actor
A((actor))) AND (Example for use case A([activity])) AND (Example for
relationship: A –¿—activity— A1). Feel free to be creative and add your ideas.
Memorise this Mermaid.js script as {key-mermaidKeyActivitiesScriptDraft}

3. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Key Activities” as
Markdown ’Heading Level 3 ###’. Then: 1) list definitions of ”user story” in the
context of the memorised {key-uml} and ”use case” in the context of the
memorised {key-uml}, 2) display the memorised {key-umlUseCaseTable}, 3)
display {key-mermaidKeyActivitiesScript}. Make sure to replace the keys inside
”” with their values.

9.5.3 Design

Archetypes

1. Now, take on the additional third role of a ”Marketing Expert” with experience in
”Customer Management”. Memorise this role as {key-role3}.

2. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Archetypes” as Markdown
’Heading Level 3 ###’. Then: 1) Display memorised {key-role3}, 2) List:
definitions of ”archetype” and ”categorisation schema” in the context of the

28

memorised {key-job} in 1 sentence. Make sure to replace the keys inside ”” with
their values.

3. Play a co-creation role-play game in which all the memorised {key-stakeholders}
discuss with each other potential archetypes for each of the memorised
{key-umlActors} individually. Use a ”debating tone”. Provide 6 potential
archetypes FOR EACH of the 6 memorised {key-umlActors} including 3 criteria
to identify them. Agree on 2 potential archetypes FOR EACH of the memorised
{key-umlActors} that satisfy the view of all participating memorised
{key-stakeholders}. Memorise these potential archetypes as
{key-potentialArchetypes}. Use a ”scientific tone”.

4. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Define 4 categorisation schemata, 1 for each of the 4
memorised {key-umlActors}. You ALWAYS must satisfy the following 5
requirements for defining categorisation schemata: 1) Each of the 4 tables must be
based on memorised {key-umlActors} behaviour, preferences, characteristics,
demographics, habits, and the likelihood of actions. 2) Each of the 4 tables MUST
contain 3 characteristic rows. 3) Characteristics inside a table MUST use 1
’nominal scale’ AND MUST use 1 ’ordinal scale’ AND MUST use 1 ’ratio scale’.
4) Characteristics inside a table MUST provide value ranges for these scales. 5)
Table columns: Actor Category, Individual Characteristic, Scale, Value Range.
CONSIDER the memorised {key-potentialArchetypes} in your definitions.
Memorise ALL 4 categorisation schemata as {key-categorisationSchemata}.
Define 4 models for implementing elements of the memorised {key-modelScope}.
Provide 1 social model AND 1 behavioural model AND 1 psychological model
AND 1 technical model. Find relevant theoretical models in the SCIENTIFIC
LITERATURE. Provide a full EXISTING UP-TO-DATE scientific paper
(conference or journal) or book REFERENCE in HARVARD STYLE for each in a
separate column. Memorise these 4 model details together with a description and
the relevant reference as {key-implementationModels}.

Agent & Object Templates

1. Take on the additional ”role” of a ”Senior Software Developer” with experience in
the ”Unified Modelling Language”. Memorise this role as {key-role4}.

2. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Agent and Object
Templates” as Markdown ’Heading Level 3 ###’. Then: 1) List memorised
{key-role4}, 2) List: definitions of ”class”, ”class diagram”, ”state chart”, ”state
variable” in the context of the memorised {key-uml}.

3. Generate a script for a ’comprehensive class diagram’ in ”Mermaid.js”. From the
memorised {key-modelScope} use the Actor and Physical Environment Categories
for class names. Define a class for each of these. Add more classes. IN ADDITION
Add collective classes for individual actors where appropriate (Example: bird ¿
flock. Example: grape ¿ bunch). DO NOT use the examples. DO NOT create
abstract classes. DO NOT create classes with the same name. Delete all getter

29

and setter operations. Add additional attributes and operations. DO NOT define
relationships. Call the Main class ArtificialLab. Create only 1 ArtificialLab class.
Define arrays for ALL Actor objects and ALL Physical Environment objects as
attributes INSIDE the ArtificialLab class. Include MULTIPLE ”summary
statistics” operations for testing memorised {key-objectives} AND memorised
{key-hypotheses} INSIDE the ArtificialLab class. Remove ALL lines from the
script that contain ”//”. Feel free to be creative and add your ideas. Memorise
this mermaid.js script as {key-mermaidClassDiagramScriptDraft}.

4. INCREASE COMPLEXITY of {key-mermaidClassDiagramScriptDraft}. Add
additional attributes. Add additional operations. Add additional relationships
between classes. Provide CONNECTIONS between classes. Critically REFLECT
and IMPROVE the script based on your reflection. Find and remove any
mermaid.js script errors. Memorise this mermaid.js script as
{key-mermaidClassDiagramScript}.

5. For EACH INDIVIDUAL of the 4 memorised {key-umlActors} generate a script
for a ’comprehensive state machine diagram’ in ”Mermaid.js”. Define their states
and state transitions between these states. Add text to the transitions to describe
what they represent (Example: ’s1 –¿ s2: Generate A transition’). Consider the
start state (Example: ’[*] –¿ s1’). Consider stop state (Example: ’s1 –¿ [*]’). Add
a comment as line 0 with the actor’s name (Example: ’%% Name: Actor’). You
ALWAYS must satisfy the following 2 requirements for defining the state machine
diagram: 1) ALL states MUST have AT LEAST 1 entry transition AND 1 exit
transition. 2) Provide a memorised {key-uml} note for every individual state,
explaining the related state (Example: ’note left of [actual state] : Informative
text’). Memorise this mermaid.js script as
{key-mermaidStateMachineDiagramsScriptDraft}.

6. INCREASE COMPLEXITY of {key-mermaidClassDiagramScriptDraft}. If
necessary; add additional attributes, add additional operations, add additional
relationships between classes. Provide CONNECTIONS between classes.
Critically REFLECT and IMPROVE the script based on your reflection. Find
and remove any mermaid.js script errors. Memorise this mermaid.js script as
{key-mermaidClassDiagramScript}.

7. For EACH INDIVIDUAL of the memorised {key-umlActors}, generate a script for
a ’comprehensive state machine diagram’ in ”Mermaid.js”. Use
”stateDiagram-v2”. Define their states and state transitions between these states.
Add text to the transitions to describe what they represent (Example: ’s1 –¿ s2:
Generate A transition’). Consider the start state (Example: ’[*] –¿ s1’). Consider
stop state (Example: ’s1 –¿[*]’). You ALWAYS must satisfy the following 2
requirements for each state machine diagram: 1) ALL states MUST have AT
LEAST 1 entry transition AND 1 exit transition. Memorise this mermaid.js script
as {key-mermaidStateMachineDiagramsScriptDraft}.

8. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Iterate through the memorised
{key-mermaidStateMachineDiagramsScript} and define up to 3 variables FOR
EACH diagram for keeping track of continuous changes of agent and object states

30

(often a level of something: Example ’tiredness level’). Create a ”state variables
table” with all state variables (columns: state machine diagram, variable, unit,
definition of variable. Example: State machine shopper, satisfaction level, scale
1-10, represents the satisfaction level). Do NOT include the example. Memorise
this state variables table as {key-stateVariablesTable}.

9. Create a Markdown table for the following (DO NOT use ”¡br¿”, IGNORE ALL
space limitations): Create a ”state transitions table” with all state diagram
transitions (columns: actor, start state, end state, type of transition, detail).
Detail MUST be 1 concise sentence. Possible TYPE OF TRANSACTION:
timeout, condition, rate. Memorise this state transitions table as
{key-stateTransitionsTable}.

Interactions

1. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Interactions” as Markdown
’Heading Level 3 ###’. Then: 1) Display definition of the term ”sequence
diagram” in the context of the memorised {key-uml} in 1 concise sentence.

2. Generate a script for a ’comprehensive sequence diagram’ in ”Mermaid.js”. Use
the memorised {key-mermaidClassDiagramScript} for identifying all relevant
ACTORS and OBJECTS. Define interactions between the ’different actors’ and
’actors and objects’ FOR ALL memorised {key-umlUseCases}. Use cases should
be presented as NOTES on the vertical axis above each use case representation.
Actors and 7 objects should be as lifelines on the horizontal axis. EXCHANGE
”participant” with ”actor” for ALL ACTORS (Example: actor example). DO
NOT use aliases. Present ACTIVATIONS and DEACTIVATIONS for actors and
objects on the LIFELINES. Each use case should be connected to the
corresponding sequence of events. Add the prefix ”The” to all ACTOR and
OBJECT names. IGNORE the ”ArtificialLab”. Memorise this mermaid.js script
as {key-mermaidSequenceDiagramScriptDraft}.

3. Generate a script for a ’comprehensive sequence diagram’ in ”Mermaid.js”. Use
the memorised {key-mermaidClassDiagramScript} for identifying all relevant
ACTORS and OBJECTS. Define interactions between the ’different actors’ and
’actors and objects’ FOR ALL memorised {key-umlUseCases}. Use cases should
be presented as NOTES on the vertical axis above each use case representation.
Actors and 7 objects should be as lifelines on the horizontal axis. EXCHANGE
”participant” with ”actor” for ALL ACTORS (Example: actor example). DO
NOT use aliases. Present ACTIVATIONS and DEACTIVATIONS for actors and
objects on the LIFELINES. Each use case should be connected to the
corresponding sequence of events. Add the prefix ”The” to all ACTOR and
OBJECT names. IGNORE the ”ArtificialLab”. Memorise this mermaid.js script
as {key-mermaidSequenceDiagramScript}.

9.5.4 Implementation

Approach 1

31

1. Using the information provided, I require a COMPLETE, FULLY
IMPLEMENTED GAMA Markup Language (GAML) (NOT XML) simulation
script for the key topic to run in the GAMA simulation engine. A reminder:
{key-topic} is ”applying the predator-prey cycle.The predator-prey model
simulates the interactions between two species: predators and preys, within a
grid-like environment where vegetation cells represent areas where grass grows.
Preys feed on the grass, which regenerates at each simulation step, while
predators hunt and consume preys to gain energy. Both species follow specific
behaviors: they move to neighboring cells, consume available resources (preys or
grass), and lose energy over time. If their energy drops too low, they die.
However, if they maintain sufficient energy, they can reproduce, contributing to
population dynamics.”. The GAML script must start with ”model” keyword, so
the model starts with ”model <¡APPROPRIATE-MODELNAME>”. Make sure
to generate an ”experiment {...}” block, with ”output {...}” and ”display {...}”
blocks inside it. Make sure to initialise any parameters used in the ”experiment”
block, in the ”global {...}” block, if you think a modelling specialist would like to
alter its value. Use ”species” to define actors/systems/species which you may
have seen inside {key-mermaidClassDiagramScript}. Use interactions in
{key-mermaidSequenceDiagramScript} to connect the respective species. DO
NOT implement the artificial lab. To implement actions made by species, use
”action” if action is not expected to be conducted at each timestep or ”reflexes” if
action is expected to be conducted at each timestep. Begin to generate the
GAML script, remember it must be syntatically correct, valid (for example using
”<-” to initialise variables inside species) and be FULLY IMPLEMENTED (all
species, actions and reflexes). Make sure to add comments to the code. Memorise
this as {key-gamlScriptDraft}.

Approach 2

1. Using the information provided, I require a COMPLETE, FULLY
IMPLEMENTED GAMA Markup Language (GAML) (NOT XML) simulation
script for the key topic to run in the GAMA simulation engine. A reminder:
{key-topic} is ”applying the predator-prey cycle.The predator-prey model
simulates the interactions between two species: predators and preys, within a
grid-like environment where vegetation cells represent areas where grass grows.
Preys feed on the grass, which regenerates at each simulation step, while
predators hunt and consume preys to gain energy. Both species follow specific
behaviors: they move to neighboring cells, consume available resources (preys or
grass), and lose energy over time. If their energy drops too low, they die.
However, if they maintain sufficient energy, they can reproduce, contributing to
population dynamics.”. First: The GAML script must start with ”model”
keyword, so the model starts with ”model <¡APPROPRIATE-MODELNAME>”.

2. Then, generate a ”global {...}” block, if there are any important global variables,
or variables you think a modelling specialist would like to be able to alter its value.

3. Building upon the generated GAML script, generate ”species” blocks for each
actors/systems/species which you may have seen inside
{key-mermaidClassDiagramScript}. Use interactions in

32

{key-mermaidSequenceDiagramScript} to connect the respective species. DO
NOT implement the artificial lab. To implement actions made by species, use
”action” if action is not expected to be conducted at each timestep or ”reflexes” if
action is expected to be conducted at each timestep.

4. It is important to be able to run experiments. Generate the following at the end
of the generated GAML script; an ”experiment {...}” block, with ”output {...}”
and ”display {...}” blocks inside it, this will allow the user to run experiments.
Make sure to use any variables that have been initialised in the ”global” block, if
you think a modelling specialist would like to alter its value.

5. Make sure every species, reflex and action in {key-gamlScriptDraft} is fully
implemented. For example if a species named ”species1” has a action/reflex
named ”move()” make sure ”move()” is implemented. Make sure any function
calls or references to species have implementations. REFLECT and IMPROVE
the script based on your reflection. Find and remove any GAML errors. Make
sure to add comments to the code. Memorise this script as {key-gamlScript}.

9.5.5 Conclusion

1. Now, you will write a new, different Markdown document using the memorised
keys (separate each section using headers). Only show the final, resulting
markdown file code from this prompt. First, output ”Conclusion” as Markdown
’Heading Level 3 ###’. Then: Write a 300 WORD (if possible) conclusion of the
entire conversation history. Provide 3 paragraphs, testifying whether the aim has
been achieved, answering the questions related to the objectives and hypotheses,
providing 2 identified limitations of the current work, and proposing 2 ideas for
future work, based on these limitations. Also mention what the memorised
{key-gamlScript} achieves and how it fits into the hypotheses and objectives.
Memorise this conclusion as {key-conclusion}.

9.6 A6: Example

Please see the relevant PDF inside the Report ZIP folder, for the documented EABSS
script test using design patterns (with implementation approach 1).

33

	Introduction
	Project Structure
	Work Package 1: Preparation
	Open Source Models
	Fine-Tuning Approaches: Supervised & Retrieval Augmented Generation (RAG)
	Conceptual Knowledge: Agent-Based Simulation
	Implementation Knowledge: Agent-Based Simulation
	Engineering Agent-Based Social Simulation (EABSS)

	Work Package 2: Design
	Fine-tuning pipeline design
	Test experiment design

	Work Package 3: Implementation
	Running Base LLMs
	Curating and Creating Fine-tuning Dataset
	GAML Code Generation Datasets
	UML Class, Sequence, and State Diagrams
	JASSS Keywords and Abstracts

	Implementing fine-tuning
	Running fine-tuned LLMs

	Work Package 4: Testing
	Llama3
	RAG
	Supervised fine-tuning

	Llama3.1
	Mistral-NeMo

	Work Package 5: Report Writing
	Outcomes
	Outlook
	Personal Reflection
	Feedback

	Appendix
	A1: Git Repository
	A2: Project Planning Diagram
	A3: Mistral-NeMo Zero Shot UML Diagrams
	A4: Mistral-NeMo Zero Shot GAML Generation
	A5: Design Patterns
	Preparation
	Analysis
	Design
	Implementation
	Conclusion

	A6: Example

