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ABSTRACT 

 

Agent-based Simulation is used for different purposes in 

Computer Science and Economics. While computer 

scientists design agents for controlling complex systems or 

for instilling objects with autonomy and intelligence, 

economists use agents for gaining a better understanding of 

the dynamics within economic systems. For the modelling 

task both communities use their specialised modelling 

approaches which are very different from each other. We 

believe that the tools used for the purpose of designing 

software agents have great potential to be useful for 

designing agent-based models to study Economics problems. 

In this paper, we provide some general guidance for building 

Agent-based Computational Economics (ACE) models using 

Software Engineering (SE) modelling methods. The 

applicability of these methods is demonstrated by studying a 

real-life multi-player dilemma using an ACE and SE 

approach. 

 
I. INTRODUCTION 

 
The research on autonomous “distributed computational 

units” has helped Multi Agent Systems (MAS) to become a 

well-established and applied branch of Artificial 

Intelligence. Recently, other disciplines such as social 

science and economics have applied the concept of agents in 

fine-grained models with the attention to dynamic, called 

Agent-based Modelling and Simulation (ABMS) (Tesfatsion, 

2006). Economists, recognizing that the model of classical 

economics does not always match with human behaviour in 

real life situations, have started to use agent-based models 

for economic systems. With the decentralized processes 

provided by agent-based models, economists aim to gain a 

better understanding of economic systems by developing 

models that better represent the systems in real life. This new 

field, which uses agent-based models in economics, is 

generally referred to as Agent-based Computational 

Economics (ACE). 

One research approach in ACE is that the economists and 

computer scientists collaborate. The economists design and 

develop the conceptual model of an economic system and its 

dynamics via the interaction among the economic agents. 

Then the conceptual model is sent to programmers to 

develop the computer software for this system simulation. 

However, most economists do not have formal training in 

software engineering methodology and design their model 

using the knowledge of classical economic modelling. If the 

design is improved, the collaboration can be more effective 

and the final agent-based model will reflect the real world 

better. 

We believe that the economists can benefit from software 

engineering methodology used for the purpose of designing 

software agents in computer science. Computer scientists 

have improved the software engineering methodology for 

many years, and have extensive experience in agent design 

and implementation. One of the most important software 

engineering methodologies is Object-Oriented Analysis and 

Design (OOAD). In this paper, we briefly examine the 

differences between agents of economists and computer 

scientists, and then suggest how OOAD can be used for 

modelling economic agents. 

 
II. BACKGROUND 

 
A. From MAS to ACE via ABMS 

 

Historically, research of systems of multiple agents was 

first investigated in the field of Distributed Artificial 

Intelligence. Jennings (1998) stated that the term “multi 

agent systems” refers to systems composed of many 

autonomous agents (or, more generally, components). 

Software agents are often viewed as complex objects with 

attitude. An agent can observe the environment, 

communicate with other agents, and make a decision without 

direct external intervention. Research in MAS involves 

multiple autonomous agents aiming to solve a given problem 

that is beyond the capability of any individual. MAS 

provides robustness and efficiency, allows inter-operation of 

existing systems, and solves problems in which data, 

expertise or control is distributed. One example of early 

application is Cammarata’s (1983) study of cooperation 

strategy for resolving conflicts among plans of a group of 

agents in air-traffic control. MAS also attracted early 

attention with robotics, specifically the “robotic soccer” 

domain (Kitano et al., 1997). The interaction between MAS 

and Software Engineering has created a new paradigm: 

Agent-Oriented Software Engineering (AOSE) (Wooldridge, 

2001). AOSE, in which agent-based computing is applied to 

software engineering, will not be discussed in detail because 



we focus on explaining the object-oriented thinking for 

agent-based social simulation. 

With the growing capabilities of computers, the agents 

have been developed and many tools were created to support 

building a multi-agent system. Social scientists have seen the 

potential of agents and started to use the agent concept in 

social simulation. Social simulation is an imitation of a 

social system, which involves designing the model and 

performing experiments to gain understanding of the system 

and the humans in it (Gilbert, 1995). These fine-grained 

models with attention to dynamics have created a research 

field, Agent Based Modelling and Simulation (ABMS). It is 

an individual-centric, decentralized approach. In ABMS, a 

system is modelled as a collection of agents, which are 

autonomous decision-making units with diverse 

characteristics. The interaction of the individual behaviours 

of the agents results in the global behaviour of the system. 

Recently, ABMS has become a powerful technique with 

many applications in Sociology, Biology, Economics, etc. 

Economics is one of the first disciplines using ABMS as 

a new research approach. In economics, economies are 

complex dynamic systems, which are composed of many 

interacting units and exhibit emergent properties. 

Economists have worked on modelling economic systems 

for many years. Recently, economists have a new agent-

based methodology for modelling economic systems from 

the bottom up, considering the global behaviours rooted in 

the local interactions (Tesfatsion, 2006), called ACE. In 

ACE, agents can be any economic entities such as 

individuals (consumers, workers), social groupings (families, 

firms), institutions (markets), etc. 

Gotts (2002) and Conte (1998) mentioned some 

differences between MAS (by computer scientists) and 

Agent-Based Social Simulation, which can be related to 

ACE (by economists). One of the differences is the focus. 

Computer scientists design the agent for complex systems or 

solving a particular engineering problem such as robotic 

control or prediction. Economists focus on modelling an 

economic system in order to have better understanding of the 

system and agents’ behaviours. Given the different foci in 

research and different backgrounds, both communities use 

their specialized modelling approaches which are very 

different from each other. Although there are many 

differences, economists can still benefit from computer 

scientists, such as applying AI techniques (like genetic 

algorithms) in ACE models. We believe that OOAD, which 

is used for the purpose of designing software agents, has 

great potential to be useful for designing agent-based models 

to study economics problems. 

 

C. Object-Oriented Analysis and Design 

 
Object-Oriented Analysis and Design (OOAD) is 

applying the object-oriented paradigm and the visual 

modelling to the software development life cycle. The 

fundamental idea of OOAD is to break a complex system 

into its various objects (Booch, 2006). An object has 

attributes which define the state of the object and methods 

which describe its behaviours. Objects can communicate by 

sending messages to each other, and cooperate to solve a 

task. Objects which have the same characteristics are 

organized into a class. One of the most important principles 

in software engineering is separation of concerns, which is 

the idea of separating computer software into sections such 

that each section addresses a separate concern and overlaps 

in functionality are reduced to a minimum. 

The Unified Modelling Language (UML) is the most 

universally recognized graphic representation scheme for 

object-oriented systems. It is a standard language for 

visualizing, specifying, constructing, and documenting the 

artifacts of software systems as well as business modelling 

and other non-software systems. UML is flexible, extensible, 

and independent of any particular design process. With UML 

as one standard set of graphical notations, modellers, and 

developers can express their designs and communicate. 

There are 3 types of UML diagrams (out of total of 26) that 

will be used in this paper: use case diagrams, class diagrams, 

and state diagrams. 

 

1. UML Use Case Diagram 

Use Case Diagrams are a type of UML diagram that can 

be used to describe the interaction of actors with the system. 

This diagram is used in analysis of the system. A use case 

diagram consists of four elements: the system; actors which 

can be classed into people, organizations, devices, softwares, 

etc.; use cases which represent actions that are performed by 

actors; relationships between and among the actors and the 

use cases. Figure 1 is an example of a use case diagram of an 

automated teller machine (ATM). The system is a Bank 

ATM. There are three actors (customer, technician, bank) 

and four use cases (check balance, deposit, withdraw, 

maintenance). A relationship between use cases and actors is 

represented by a straight line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Use Case Diagram of a Bank ATM 

 

2. UML Class Diagram 

Class diagrams specify an object’s internal data and 

representation, and defines the operations the object can 

perform. This diagram is used for structional design of the 

system. In class diagrams, a class is represented with a box, 

which consists of three parts. The first part contains the 

name of the class; the second part the attributes of the class; 

and the third part the methods or operations that the class 

can perform. Figure 2 is an example of Customer class of the 

Bank ATM example. The Customer class has three attributes 

(id, name, balance) and can perform three operations 

(checkBalance, deposit, withdraw). 

Customer 

-id: Integer 

-name: String 

-balance: Double 

+checkBalance() 

+deposit() 

+withdraw 

Figure 2: Class Diagram of Customer class 
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3. UML State Diagram 

Statechart diagrams describe different states of a system 

and the transitions between them, and can be used to 

visualize and model the reaction of objects by 

internal/external factors. This diagram is used for 

behavioural design of the system. Figure 3 shows the state 

machine of an example Customer class, which has two main 

states: “Idle”, and “Using ATM”. In the “Using ATM” state, 

there are four sub-states (“Authentication”, “Checking 

balance”, “Deposit”, “Withdraw”). At the top is the 

statechart entry, which initializes the initial state of this 

statechart to be “Idle”. When in “Using ATM”, the initial 

sub-state is “Authentication”. Then, depending on the action 

the customer is going to take, the state can be either 

“Checking balance”, “Deposit”, “Withdraw”, before going to 

final sub-state in “Using ATM”. 

 

 

 

 

 

 

 

 

 

Figure 3: State machine diagram of Customer class 

 

III. OBJECT-ORIENTED ANALYSIS AND DESIGN 

FOR ECONOMIC AGENTS 

 

When models are getting more complex, it might be 

helpful to use the object-oriented approach. However, the 

difficulty for experienced economists is the transition from a 

functional or data centred problem-solving strategy to an 

object centred problem-solving strategy. In order to 

demonstrate the object-centred thinking, the next sections 

will describe how to use OOAD to model economic agents 

in a case study of a shared house. 

 

A. A case study of a shared house 

 

We will model a real-life multi-player dilemma: washing 

dishes in a shared house. An individual can choose to wash 

the dishes or not. One can contribute time to wash the dishes. 

If one chooses not to wash the dishes, one gains by saving 

his time. However, if everyone does so, there will be no 

clean dishes for anyone. With the limited amount of dishes, 

this situation is called Common Pool Resources (CPR)  

game in economics. A CPR  is a good that individuals cannot 

be excluded from (non-excludable) and use by an individual 

reduces its availability to others (rivalrous) (Ostrom, 1990). 

The next section will describe the modelling process of 

this case study. All models are implemented in AnyLogic 6 

(XJ Technologies, 2014), a multi-method simulation 

modelling tool developed by XJ Technologies. 

 

B. Model 1: Typical Economic Model (without OOAD) 

 

We choose a generic CPR simulation (Pahl-Wostl, 2004), 

which was later utilized as a basis for developing the 

econnomics simulation of our shared house case study. The 

structure of our simulation is kept as similar to Pahl-Wostl’s 

original simulation as possible. 

This model use synchronous scheduling, in which agents 

will update their characteristic at the end of the time step. At 

every round, all agents have 10 minutes of free time and 

make a decision how much time will be spent on washing 

dishes. To define profit, it can be said that the more invested 

time doing the cleaning resulted in more free time (as profit) 

for the agents. So the invested minutes of all agents will be 

increased by 60% and divided evenly among them as profit. 

The outcome of every agent after each round can be 

calculated using Equation (1). 

 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑟𝑒𝑒𝑇𝑖𝑚𝑒 − 𝑡𝑒𝑚𝑝𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
× 𝑚𝑎𝑥𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒
+ (𝑡𝑒𝑚𝑝𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 × 3)
× 𝑚𝑎𝑥𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒 × 0.6 ÷ 4 

 

(1) 

 

Each agent also has a variable expectedCooperativeness 

(from 0 to 1) which is the level of cooperativeness it expects 

the other three agents to adopt (default value is 0.5). Then 

after every round, the expected cooperativeness is re-

calculated using Equation (2) to improve the agent’s general 

belief about others (with default learningRate = 0.5). 

 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
= (1 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒)
× 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
+ 𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒
× 𝑚𝑒𝑎𝑛𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑂𝑡ℎ𝑒𝑟𝑠 

 

(2) 

 

The decision is modelled as a variable ranged from 0 to 

1, representing the cooperativeness of the agent. When the 

decision is 1, the agent spends all 10 minutes washing 

dishes. There are three types of agents with three different 

strategies: 

 Cooperative strategy: the agent always cooperates. 

In this model, the cooperative agent will cooperate 

by spending most time washing dishes but it is also 

based on expected cooperativeness. If the expected 

cooperativeness is greater than 0.4, decision = 1. 

Otherwise, decision = 0.75. 

 Reciprocal strategy: the agent changes their 

contribution according to recently experiences. In 

the case of reciprocal strategy, the agent will adjust 

the contribution to be the same as the mean 

expected contribution of the previous round 

(decision = expectedCooperativeness). 

 Maximizing strategy: the agent always tries to 

deflect by maximizing its own profit. The decision 

is tried out from 0 to 1 with a predefined step of 0.1 

(temporaryDecision = 0, 0.1, 0.2, …, 1). With every 

temporary decision, the outcome is calculated using 

Equation (1). Then the decision with highest 

expected outcome is chosen. 

An agent of the Model 1 is implemented in AnyLogic as 

an active object with five variables. 

 strategy has values of 1, 2, and 3 corresponding to 

three strategies of the agent. 

 expectedCooperation (ranged from 0.0 to 1.0) 

represents the mean expected contribution by other 

agents. 

Idle 

Using ATM 

Authentication 

Check balance 

Deposit 

Withdraw 



 learningRate is used to represent rate of learning in 

the Equation (2) and has the default value of 0.5. 

 decision (ranged from 0.0 to 1.0) represents the 

cooperativiness of the agent. 

 freeTime (ranged from 0.0 to 10.0) represents the 

free time that agent has. 

 

C. Model 2: A Model built using OOAD 

 

In this version, OOAD is used during the analysis and 

design process. Similar to Model 1, the agents in the shared 

house can use one of three strategies: cooperative strategy, 

maximizing strategy, and reciprocal strategy. The 

cooperativeness and decision making of agents are modelled 

in the same as way as in the previous model. But in this 

version, the model uses asynchronous scheduling, in which 

agents’ charateristics are updated and made available 

throughout the interations within a time step. Using 

statechart, agent only act when an event is triggered (a 

condition is met or a message is received). This makes 

asynchronous scheduling more computationally efficient and 

reflects the real world more accurately. The modelling 

process will utilize three types of UML diagrams with 

object-oriented thinking in mind. To demonstrate the use of 

OOAD, the following workflow is used: 

 

Phase  

Analysis 1. Identify interaction of agents with the 

system using Use Case Diagram 

Design 

2. Modelling structure of agents using 

Class Diagram 

3. Modelling behaviour of agents using 

Statechart 

 

Next sections describe each step in the workflow of how 

the agents are designed and implemented. 

 

1. Identify agent interaction with Use Case Diagram 

When using Use Case Diagram in our case study, the 

system is the simulated environment, and an actor is an agent 

interacting with the system. In this case, Person is an actor of 

the shared house. A person can perform two actions “use the 

dishes” or “wash them”, which are two use cases. Figure 4 

shows the use case diagram of this system. 

 

 

 

 

 

 

 

Figure 4: Use Case Diagram of the case study 

 

2. Modelling structure of agents using Class Diagram 

Based on the model description, the Person class (Figure 

5) has five variables and two functions. The structure of the 

agent is similar to Model 1 but with two extra functions for 

two actions of the agents. 

 makeDecision function makes a decision on  the 

cooperativeness based on strategy of the agent. 

 updateBelief function calculates the expected 

coopertiveness using Equation (1). 

Person 

-strategy: Integer 

-expectedCooperation: Double 

-learningRate: Double 

-decision: Double 

-freeTime: Double 

+makeDecision() 

+updateBelief() 

Figure 5: Class Diagram of Person agent 

 

3. Modelling behaviour of agents using Statechart 

Agent behaviour can be defined through its internal states 

and transitions; an agent alters its behaviour when its internal 

state changes. Statecharts can be implemented by adopting 

the state design pattern. Fortunately, modellers of all levels 

of expertise can now take advantage of recent visual support 

on statechart in simulation software such as AnyLogic 

(Wilensky, 2014), or Repast Simphony (Argonne National 

Laboratory, 2014). 

In this scenario, the Person agent has three states: two 

states to represent two use cases (Wash and Use) and one 

state for when the agent is doing nothing (Idle). The 

statechart is shown in the Figure 6. In the beginning, the 

agent is in state Idle. When it is the meal time, the transition 

is triggered from Idle to Use. Each agent has three meals a 

day which are randomized in three different periods at the 

beginning of each day. After the agent has been in the Use 

state for a period, the outgoing transition will be triggered. 

When the agent leaves the Use state, the makeDecision 

function will be called to update the decision variable. The 

next state will be decided based on the decision variable. If 

the variable is 0, the agent will be in Idle state. Otherwise, it 

will go to Wash state. The greater the decision value is, the 

more time the agent stays in Wash state. After making the 

decision to use or wash dishes, the agent updates its belief by 

recalculating the expect cooperativeness using Equation (1). 

 

 
Figure 6: Statechart of Person agent 

 

D. Add punishment options 

In order to test the extensibility of two models, Model 1 

and 2 will be extended by adding punishment options for 

agents. When the punishment option is available, economists 

can study how cooperation will be affected by punishment. 

In this case, Fehr (2002) stated that cooperation flourishes if 

altruistic punishment is possible. Altruistic punishment 

means that individuals punish although the punishment is 

costly for them and yields no material gain. An agent can 

decide to spend maximum 5 minutes for punishment. Every 

minute invested to punish, the punished player has to lose 3 

minutes of free time. 

To extend Model 1, we add a code section for 

punishment after the decision making and belief update. 

Each agent will examine the decision of each of other three 

Shared House 

Use Dishes 

Person Wash Dishes 



agents and decide the punishment. The punishment heuristic 

is given below in pseudo code (p is the punisher; o is the 

agent in question for punishment). 

 
deflection=othersMeanDecision-o.decision; 

if (deflection < 0) 

    deflection = 0; 

if (deflection > 0.1) 

    angerLevel = p.inclinationBeAnnoyed 

+deflection; 

else 

    angerLevel = p.inclinationBeAnnoyed 

+deflection - 0.8; 

if (uniform() < (2*angerLevel)) 

    p.punishDecision = (p. willingToPunish 
+deflection) / 2; 

else 

    p.punishDecision = 0; 

 

Since punishment is allowed, the player has to take 

punishment into account when making decision. The 

outcome equation needs to be updated: after calculated with 

Equation (1), the outcome value will deduce the expected 

punishment from other agents: 
 

if (expectedCooperativeness>tempDecision) 

 outcome = outcome - expectBePunished * (3 

people) * 3 * maxPunishTime; 

 

The implemenatation of agent in Model 1 is extended by 

adding 4 variables: inclinationBeAnnoyed, willingToPunish, 

punishDecision, and expectBePunished. 

For Model 2, we follow the workflow. First another use 

case “Punish” is added to Use Case Diagram. Then the 4 

punishment-related variables (similar to Model 1) and a 

punish method is added in Class Diagram. Lastly, the 

punishment behaviour is added into the statechart with two 

states: Punish and BePunished (Figure 7). In the Punish 

state, the agent will consider each of other three agents for 

punishment. The punishment heuristic is the same. When a 

punishment is decided, the punisher sends a message to the 

punished agent and this agent’s state changes to BePunished 

for the period of punished time. After all three agents are 

considered, the punishing agent is back to Idle state. 

 
Figure 7: Statechart of Person agent (with punishment) 

 

IV. EXPERIMENTATION 

 

Due to the space restrictions, we only present one 

experiment. In this experiement, the simulation runs with 

four agents: one cooperator, two maximizers, and one 

reciprocator. Model 1 runs for 15 rounds; while Model 2 

runs for 15 meals (5 days with 3 meals a day). The mean 

cooperativeness of all agents over time is collected in four 

different scenarios: Model 1 and 2 with or without 

punishment. In each scenario, the models run 100 times and 

the average cooperativeness of each round is calculated. 

Figure 8 illustrates the mean cooperativeness of four 

agents in the house over time. In the senarios where 

punishment is allowed, the mean cooperativeness is 

escalating over time and becomes stable at 0.8. In the 

scenarios without punishment, the cooperativeness in the 

shared house decreases over time then remains stable at 0.33. 

The reason for the decrease is the two maximizers reduce the 

mean cooperativeness of the house lower than the 

expectation of the reciprocator. Therefore, the reciprocator 

keeps lowering the decision variable until its expectation is 

equal to the mean cooperativeness of the house. The trend of 

cooperativeness is expected and similar to Pahl-Wostl’s 

simulation. 

Without punishment, the mean cooperativeness of Model 

1 is similar to Model 2. But when punishment is allowed, 

Model 2 has a sudden drop in the second round before raises 

back to 0.8. The difference between Model 1 and 2 occurs 

because of the dissimilarity in order within decision making 

and the belief update between two models. In Model 1, in 

every round, all agents make the decision; and when every 

agent is finished with that, they will update the expected 

cooperativeness. In Model 2, all agents make a decision 

during a period of a meal time, and update the expected 

cooperativeness before going back to Idle state. 

In Model 2, when the reciprocator makes a decision after 

the contributor, the reciprocator knows there are already 

contributions and raises his expected cooperativeness. But 

when the reciprocator makes a decision before the 

contributor, the reciprocator does not see any contribution. 

So his expected cooperativeness of other agents is lower than 

the previous case. This causes a significant drop in the 

reciprocator’s cooperativeness in the next meal which leads 

to the sudden drop in Model 2. 

Model 2 has discovered some dynamics of how the order 

in agent making decision affects the cooperativeness, which 

is not presented in Model 1. This is a result of making the 

agent behaviour more realistic with asynchonous updates in 

Model 2. 

 

 
Figure 8: Mean cooperativeness over time 

 

Assuming similar findings are possible with complex 

agents (in terms of cognitive capability and behaviours), it 

still can be difficult for ACE to design and build such an 
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agent. Therefore, OOAD along with UML diagrams are 

recommended to use as the formal specification for ACE to 

ease the modelling process at all stages, from analysis to 

design and implementation. 

 

V. DISCUSSION 

 

A. UML: a formal visual language for agent specification 

Even though only three out of 26 types of UML digrams 

are used in this workflow, when systems are getting more 

complex, modellers could find it useful to utilize other UML 

diagrams, as for example the Sequence Diagram, which 

describes how agents, objects, and the system interact and 

exchange messages over time. 

Although ABMS research has increasingly agreed to use 

adopt OOAD to design and implement their models, UML is 

not mentioned much in their publications (Bersini, 2012). 

Bersini (2012) has made an effort to introduce some UML  

diagrams (class, sequence, state and activity diagrams) to the 

ABMS community. This paper’s goal is not to compete but 

to extend this effort by demonstrating the application of 

OOAD thinking and UML. Not only does this help the 

communication between a wide range research disciplines, it 

can also facilitate a good development methodology for 

better agent-related researches. 

 

B. OOAD as a complementary approach 

In the above case study, the Person agent is not too 

complicated; and OOAD can still be applied. The more 

complex the system is, the more useful OOAD will be. In 

fact, OOAD is a good tool to use in KIDS (Keep It 

Descriptive Stupid) approach proposed by Edmonds (2005). 

KIDS approach suggests to start with a descriptive model as 

evidence and resources allow (which can be a complex 

model) and then only simplifies it when this turns out to be 

justified (as evidence and understanding of the model 

support this). In contrast, the KISS approach, termed by 

Axelrod (1997), starts with the simplest model and allows 

for more complex models if the simpler ones turn out to be 

adequate. 

Neither KISS nor KIDS is the best one in every situation. 

But in the areas dominated by complex phenomena 

(typically in social science), the balance is shifted towards 

KIDS. Similarly, it is not always the best to use OOAD. 

When modellers want to build a descriptive model with 

complex agents, OOAD is a powerful tool to use. Otherwise, 

applying OOAD would be only optional. 

 

V. CONCLUSION 

This paper presents how OOAD can be used to design 

economic agents. In the suggestion, use case diagrams are 

used to identify the interation of agents with the system; 

class diagrams to describe the structure of agents; and 

statecharts to model agents’ behaviour. This work is a 

general guidance that is sufficient for applying OOAD to 

modelling economic agents with complex decision-making 

process. It helps to increase the reusability and extensibility 

of agent-based models in the sense that existing models can 

be quickly adjusted by others researchers to perform 

different experiments. It is also easier to assemble different 

parts from multiple models to develop a new one. 

Using OOAD as a complementary approach not only 

enhances the design of agents but also improves the 

communication between economists and computer scientists. 

This work is meant to be the first step to overcome the 

communication barrier between economists and computer 

scientists to achieve a standard agent technology with 

integrated interdisciplinary foundation. 

For the future works, all features of Pahl-Wostl’s 

simulation need to be implemented so that we can compare 

between two models for better validation. Furthermore, we 

can implement more social games and experiment to 

improve the approach and create a framework, in which 

OOAD is used for designing agents in social simulation. 
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