
THE POTENTIAL OF

OBJECT-ORIENTED ANALYSIS AND DESIGN

FOR AGENT-BASED COMPUTATIONAL ECONOMICS

Tuong Manh Vu, Peer-Olaf Siebers, Christian Wagner

School of Computer Science

University of Nottingham

Nottingham, UK

E-mail: {psxtmvu, Peer-Olaf.Siebers, Christian.Wagner}@nottingham.ac.uk

KEYWORDS

Object-Oriented Analysis and Design, Agent-based

Modelling and Simulation, Agent-based Computational

Economics

ABSTRACT

Agent-based Simulation is used for different purposes in

Computer Science and Economics. While computer

scientists design agents for controlling complex systems or

for instilling objects with autonomy and intelligence,

economists use agents for gaining a better understanding of

the dynamics within economic systems. For the modelling

task both communities use their specialised modelling

approaches which are very different from each other. We

believe that the tools used for the purpose of designing

software agents have great potential to be useful for

designing agent-based models to study Economics problems.

In this paper, we provide some general guidance for building

Agent-based Computational Economics (ACE) models using

Software Engineering (SE) modelling methods. The

applicability of these methods is demonstrated by studying a

real-life multi-player dilemma using an ACE and SE

approach.

I. INTRODUCTION

The research on autonomous “distributed computational

units” has helped Multi Agent Systems (MAS) to become a

well-established and applied branch of Artificial

Intelligence. Recently, other disciplines such as social

science and economics have applied the concept of agents in

fine-grained models with the attention to dynamic, called

Agent-based Modelling and Simulation (ABMS) (Tesfatsion,

2006). Economists, recognizing that the model of classical

economics does not always match with human behaviour in

real life situations, have started to use agent-based models

for economic systems. With the decentralized processes

provided by agent-based models, economists aim to gain a

better understanding of economic systems by developing

models that better represent the systems in real life. This new

field, which uses agent-based models in economics, is

generally referred to as Agent-based Computational

Economics (ACE).

One research approach in ACE is that the economists and

computer scientists collaborate. The economists design and

develop the conceptual model of an economic system and its

dynamics via the interaction among the economic agents.

Then the conceptual model is sent to programmers to

develop the computer software for this system simulation.

However, most economists do not have formal training in

software engineering methodology and design their model

using the knowledge of classical economic modelling. If the

design is improved, the collaboration can be more effective

and the final agent-based model will reflect the real world

better.

We believe that the economists can benefit from software

engineering methodology used for the purpose of designing

software agents in computer science. Computer scientists

have improved the software engineering methodology for

many years, and have extensive experience in agent design

and implementation. One of the most important software

engineering methodologies is Object-Oriented Analysis and

Design (OOAD). In this paper, we briefly examine the

differences between agents of economists and computer

scientists, and then suggest how OOAD can be used for

modelling economic agents.

II. BACKGROUND

A. From MAS to ACE via ABMS

Historically, research of systems of multiple agents was

first investigated in the field of Distributed Artificial

Intelligence. Jennings (1998) stated that the term “multi

agent systems” refers to systems composed of many

autonomous agents (or, more generally, components).

Software agents are often viewed as complex objects with

attitude. An agent can observe the environment,

communicate with other agents, and make a decision without

direct external intervention. Research in MAS involves

multiple autonomous agents aiming to solve a given problem

that is beyond the capability of any individual. MAS

provides robustness and efficiency, allows inter-operation of

existing systems, and solves problems in which data,

expertise or control is distributed. One example of early

application is Cammarata’s (1983) study of cooperation

strategy for resolving conflicts among plans of a group of

agents in air-traffic control. MAS also attracted early

attention with robotics, specifically the “robotic soccer”

domain (Kitano et al., 1997). The interaction between MAS

and Software Engineering has created a new paradigm:

Agent-Oriented Software Engineering (AOSE) (Wooldridge,

2001). AOSE, in which agent-based computing is applied to

software engineering, will not be discussed in detail because

we focus on explaining the object-oriented thinking for

agent-based social simulation.

With the growing capabilities of computers, the agents

have been developed and many tools were created to support

building a multi-agent system. Social scientists have seen the

potential of agents and started to use the agent concept in

social simulation. Social simulation is an imitation of a

social system, which involves designing the model and

performing experiments to gain understanding of the system

and the humans in it (Gilbert, 1995). These fine-grained

models with attention to dynamics have created a research

field, Agent Based Modelling and Simulation (ABMS). It is

an individual-centric, decentralized approach. In ABMS, a

system is modelled as a collection of agents, which are

autonomous decision-making units with diverse

characteristics. The interaction of the individual behaviours

of the agents results in the global behaviour of the system.

Recently, ABMS has become a powerful technique with

many applications in Sociology, Biology, Economics, etc.

Economics is one of the first disciplines using ABMS as

a new research approach. In economics, economies are

complex dynamic systems, which are composed of many

interacting units and exhibit emergent properties.

Economists have worked on modelling economic systems

for many years. Recently, economists have a new agent-

based methodology for modelling economic systems from

the bottom up, considering the global behaviours rooted in

the local interactions (Tesfatsion, 2006), called ACE. In

ACE, agents can be any economic entities such as

individuals (consumers, workers), social groupings (families,

firms), institutions (markets), etc.

Gotts (2002) and Conte (1998) mentioned some

differences between MAS (by computer scientists) and

Agent-Based Social Simulation, which can be related to

ACE (by economists). One of the differences is the focus.

Computer scientists design the agent for complex systems or

solving a particular engineering problem such as robotic

control or prediction. Economists focus on modelling an

economic system in order to have better understanding of the

system and agents’ behaviours. Given the different foci in

research and different backgrounds, both communities use

their specialized modelling approaches which are very

different from each other. Although there are many

differences, economists can still benefit from computer

scientists, such as applying AI techniques (like genetic

algorithms) in ACE models. We believe that OOAD, which

is used for the purpose of designing software agents, has

great potential to be useful for designing agent-based models

to study economics problems.

C. Object-Oriented Analysis and Design

Object-Oriented Analysis and Design (OOAD) is

applying the object-oriented paradigm and the visual

modelling to the software development life cycle. The

fundamental idea of OOAD is to break a complex system

into its various objects (Booch, 2006). An object has

attributes which define the state of the object and methods

which describe its behaviours. Objects can communicate by

sending messages to each other, and cooperate to solve a

task. Objects which have the same characteristics are

organized into a class. One of the most important principles

in software engineering is separation of concerns, which is

the idea of separating computer software into sections such

that each section addresses a separate concern and overlaps

in functionality are reduced to a minimum.

The Unified Modelling Language (UML) is the most

universally recognized graphic representation scheme for

object-oriented systems. It is a standard language for

visualizing, specifying, constructing, and documenting the

artifacts of software systems as well as business modelling

and other non-software systems. UML is flexible, extensible,

and independent of any particular design process. With UML

as one standard set of graphical notations, modellers, and

developers can express their designs and communicate.

There are 3 types of UML diagrams (out of total of 26) that

will be used in this paper: use case diagrams, class diagrams,

and state diagrams.

1. UML Use Case Diagram

Use Case Diagrams are a type of UML diagram that can

be used to describe the interaction of actors with the system.

This diagram is used in analysis of the system. A use case

diagram consists of four elements: the system; actors which

can be classed into people, organizations, devices, softwares,

etc.; use cases which represent actions that are performed by

actors; relationships between and among the actors and the

use cases. Figure 1 is an example of a use case diagram of an

automated teller machine (ATM). The system is a Bank

ATM. There are three actors (customer, technician, bank)

and four use cases (check balance, deposit, withdraw,

maintenance). A relationship between use cases and actors is

represented by a straight line.

Figure 1: Use Case Diagram of a Bank ATM

2. UML Class Diagram

Class diagrams specify an object’s internal data and

representation, and defines the operations the object can

perform. This diagram is used for structional design of the

system. In class diagrams, a class is represented with a box,

which consists of three parts. The first part contains the

name of the class; the second part the attributes of the class;

and the third part the methods or operations that the class

can perform. Figure 2 is an example of Customer class of the

Bank ATM example. The Customer class has three attributes

(id, name, balance) and can perform three operations

(checkBalance, deposit, withdraw).

Customer

-id: Integer

-name: String

-balance: Double

+checkBalance()

+deposit()

+withdraw

Figure 2: Class Diagram of Customer class

Bank ATM

Check balance

Deposit

Withdraw

Maintenance

Customer

Technician

Bank

3. UML State Diagram

Statechart diagrams describe different states of a system

and the transitions between them, and can be used to

visualize and model the reaction of objects by

internal/external factors. This diagram is used for

behavioural design of the system. Figure 3 shows the state

machine of an example Customer class, which has two main

states: “Idle”, and “Using ATM”. In the “Using ATM” state,

there are four sub-states (“Authentication”, “Checking

balance”, “Deposit”, “Withdraw”). At the top is the

statechart entry, which initializes the initial state of this

statechart to be “Idle”. When in “Using ATM”, the initial

sub-state is “Authentication”. Then, depending on the action

the customer is going to take, the state can be either

“Checking balance”, “Deposit”, “Withdraw”, before going to

final sub-state in “Using ATM”.

Figure 3: State machine diagram of Customer class

III. OBJECT-ORIENTED ANALYSIS AND DESIGN

FOR ECONOMIC AGENTS

When models are getting more complex, it might be

helpful to use the object-oriented approach. However, the

difficulty for experienced economists is the transition from a

functional or data centred problem-solving strategy to an

object centred problem-solving strategy. In order to

demonstrate the object-centred thinking, the next sections

will describe how to use OOAD to model economic agents

in a case study of a shared house.

A. A case study of a shared house

We will model a real-life multi-player dilemma: washing

dishes in a shared house. An individual can choose to wash

the dishes or not. One can contribute time to wash the dishes.

If one chooses not to wash the dishes, one gains by saving

his time. However, if everyone does so, there will be no

clean dishes for anyone. With the limited amount of dishes,

this situation is called Common Pool Resources (CPR)

game in economics. A CPR is a good that individuals cannot

be excluded from (non-excludable) and use by an individual

reduces its availability to others (rivalrous) (Ostrom, 1990).

The next section will describe the modelling process of

this case study. All models are implemented in AnyLogic 6

(XJ Technologies, 2014), a multi-method simulation

modelling tool developed by XJ Technologies.

B. Model 1: Typical Economic Model (without OOAD)

We choose a generic CPR simulation (Pahl-Wostl, 2004),

which was later utilized as a basis for developing the

econnomics simulation of our shared house case study. The

structure of our simulation is kept as similar to Pahl-Wostl’s

original simulation as possible.

This model use synchronous scheduling, in which agents

will update their characteristic at the end of the time step. At

every round, all agents have 10 minutes of free time and

make a decision how much time will be spent on washing

dishes. To define profit, it can be said that the more invested

time doing the cleaning resulted in more free time (as profit)

for the agents. So the invested minutes of all agents will be

increased by 60% and divided evenly among them as profit.

The outcome of every agent after each round can be

calculated using Equation (1).

𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑓𝑟𝑒𝑒𝑇𝑖𝑚𝑒 − 𝑡𝑒𝑚𝑝𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
× 𝑚𝑎𝑥𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒
+ (𝑡𝑒𝑚𝑝𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 × 3)
× 𝑚𝑎𝑥𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑇𝑖𝑚𝑒 × 0.6 ÷ 4

(1)

Each agent also has a variable expectedCooperativeness

(from 0 to 1) which is the level of cooperativeness it expects

the other three agents to adopt (default value is 0.5). Then

after every round, the expected cooperativeness is re-

calculated using Equation (2) to improve the agent’s general

belief about others (with default learningRate = 0.5).

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
= (1 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒)
× 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
+ 𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒
× 𝑚𝑒𝑎𝑛𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑂𝑡ℎ𝑒𝑟𝑠

(2)

The decision is modelled as a variable ranged from 0 to

1, representing the cooperativeness of the agent. When the

decision is 1, the agent spends all 10 minutes washing

dishes. There are three types of agents with three different

strategies:

 Cooperative strategy: the agent always cooperates.

In this model, the cooperative agent will cooperate

by spending most time washing dishes but it is also

based on expected cooperativeness. If the expected

cooperativeness is greater than 0.4, decision = 1.

Otherwise, decision = 0.75.

 Reciprocal strategy: the agent changes their

contribution according to recently experiences. In

the case of reciprocal strategy, the agent will adjust

the contribution to be the same as the mean

expected contribution of the previous round

(decision = expectedCooperativeness).

 Maximizing strategy: the agent always tries to

deflect by maximizing its own profit. The decision

is tried out from 0 to 1 with a predefined step of 0.1

(temporaryDecision = 0, 0.1, 0.2, …, 1). With every

temporary decision, the outcome is calculated using

Equation (1). Then the decision with highest

expected outcome is chosen.

An agent of the Model 1 is implemented in AnyLogic as

an active object with five variables.

 strategy has values of 1, 2, and 3 corresponding to

three strategies of the agent.

 expectedCooperation (ranged from 0.0 to 1.0)

represents the mean expected contribution by other

agents.

Idle

Using ATM

Authentication

Check balance

Deposit

Withdraw

 learningRate is used to represent rate of learning in

the Equation (2) and has the default value of 0.5.

 decision (ranged from 0.0 to 1.0) represents the

cooperativiness of the agent.

 freeTime (ranged from 0.0 to 10.0) represents the

free time that agent has.

C. Model 2: A Model built using OOAD

In this version, OOAD is used during the analysis and

design process. Similar to Model 1, the agents in the shared

house can use one of three strategies: cooperative strategy,

maximizing strategy, and reciprocal strategy. The

cooperativeness and decision making of agents are modelled

in the same as way as in the previous model. But in this

version, the model uses asynchronous scheduling, in which

agents’ charateristics are updated and made available

throughout the interations within a time step. Using

statechart, agent only act when an event is triggered (a

condition is met or a message is received). This makes

asynchronous scheduling more computationally efficient and

reflects the real world more accurately. The modelling

process will utilize three types of UML diagrams with

object-oriented thinking in mind. To demonstrate the use of

OOAD, the following workflow is used:

Phase

Analysis 1. Identify interaction of agents with the

system using Use Case Diagram

Design

2. Modelling structure of agents using

Class Diagram

3. Modelling behaviour of agents using

Statechart

Next sections describe each step in the workflow of how

the agents are designed and implemented.

1. Identify agent interaction with Use Case Diagram

When using Use Case Diagram in our case study, the

system is the simulated environment, and an actor is an agent

interacting with the system. In this case, Person is an actor of

the shared house. A person can perform two actions “use the

dishes” or “wash them”, which are two use cases. Figure 4

shows the use case diagram of this system.

Figure 4: Use Case Diagram of the case study

2. Modelling structure of agents using Class Diagram

Based on the model description, the Person class (Figure

5) has five variables and two functions. The structure of the

agent is similar to Model 1 but with two extra functions for

two actions of the agents.

 makeDecision function makes a decision on the

cooperativeness based on strategy of the agent.

 updateBelief function calculates the expected

coopertiveness using Equation (1).

Person

-strategy: Integer

-expectedCooperation: Double

-learningRate: Double

-decision: Double

-freeTime: Double

+makeDecision()

+updateBelief()

Figure 5: Class Diagram of Person agent

3. Modelling behaviour of agents using Statechart

Agent behaviour can be defined through its internal states

and transitions; an agent alters its behaviour when its internal

state changes. Statecharts can be implemented by adopting

the state design pattern. Fortunately, modellers of all levels

of expertise can now take advantage of recent visual support

on statechart in simulation software such as AnyLogic

(Wilensky, 2014), or Repast Simphony (Argonne National

Laboratory, 2014).

In this scenario, the Person agent has three states: two

states to represent two use cases (Wash and Use) and one

state for when the agent is doing nothing (Idle). The

statechart is shown in the Figure 6. In the beginning, the

agent is in state Idle. When it is the meal time, the transition

is triggered from Idle to Use. Each agent has three meals a

day which are randomized in three different periods at the

beginning of each day. After the agent has been in the Use

state for a period, the outgoing transition will be triggered.

When the agent leaves the Use state, the makeDecision

function will be called to update the decision variable. The

next state will be decided based on the decision variable. If

the variable is 0, the agent will be in Idle state. Otherwise, it

will go to Wash state. The greater the decision value is, the

more time the agent stays in Wash state. After making the

decision to use or wash dishes, the agent updates its belief by

recalculating the expect cooperativeness using Equation (1).

Figure 6: Statechart of Person agent

D. Add punishment options

In order to test the extensibility of two models, Model 1

and 2 will be extended by adding punishment options for

agents. When the punishment option is available, economists

can study how cooperation will be affected by punishment.

In this case, Fehr (2002) stated that cooperation flourishes if

altruistic punishment is possible. Altruistic punishment

means that individuals punish although the punishment is

costly for them and yields no material gain. An agent can

decide to spend maximum 5 minutes for punishment. Every

minute invested to punish, the punished player has to lose 3

minutes of free time.

To extend Model 1, we add a code section for

punishment after the decision making and belief update.

Each agent will examine the decision of each of other three

Shared House

Use Dishes

Person Wash Dishes

agents and decide the punishment. The punishment heuristic

is given below in pseudo code (p is the punisher; o is the

agent in question for punishment).

deflection=othersMeanDecision-o.decision;

if (deflection < 0)

 deflection = 0;

if (deflection > 0.1)

 angerLevel = p.inclinationBeAnnoyed

+deflection;

else

 angerLevel = p.inclinationBeAnnoyed

+deflection - 0.8;

if (uniform() < (2*angerLevel))

 p.punishDecision = (p. willingToPunish
+deflection) / 2;

else

 p.punishDecision = 0;

Since punishment is allowed, the player has to take

punishment into account when making decision. The

outcome equation needs to be updated: after calculated with

Equation (1), the outcome value will deduce the expected

punishment from other agents:

if (expectedCooperativeness>tempDecision)

 outcome = outcome - expectBePunished * (3

people) * 3 * maxPunishTime;

The implemenatation of agent in Model 1 is extended by

adding 4 variables: inclinationBeAnnoyed, willingToPunish,

punishDecision, and expectBePunished.

For Model 2, we follow the workflow. First another use

case “Punish” is added to Use Case Diagram. Then the 4

punishment-related variables (similar to Model 1) and a

punish method is added in Class Diagram. Lastly, the

punishment behaviour is added into the statechart with two

states: Punish and BePunished (Figure 7). In the Punish

state, the agent will consider each of other three agents for

punishment. The punishment heuristic is the same. When a

punishment is decided, the punisher sends a message to the

punished agent and this agent’s state changes to BePunished

for the period of punished time. After all three agents are

considered, the punishing agent is back to Idle state.

Figure 7: Statechart of Person agent (with punishment)

IV. EXPERIMENTATION

Due to the space restrictions, we only present one

experiment. In this experiement, the simulation runs with

four agents: one cooperator, two maximizers, and one

reciprocator. Model 1 runs for 15 rounds; while Model 2

runs for 15 meals (5 days with 3 meals a day). The mean

cooperativeness of all agents over time is collected in four

different scenarios: Model 1 and 2 with or without

punishment. In each scenario, the models run 100 times and

the average cooperativeness of each round is calculated.

Figure 8 illustrates the mean cooperativeness of four

agents in the house over time. In the senarios where

punishment is allowed, the mean cooperativeness is

escalating over time and becomes stable at 0.8. In the

scenarios without punishment, the cooperativeness in the

shared house decreases over time then remains stable at 0.33.

The reason for the decrease is the two maximizers reduce the

mean cooperativeness of the house lower than the

expectation of the reciprocator. Therefore, the reciprocator

keeps lowering the decision variable until its expectation is

equal to the mean cooperativeness of the house. The trend of

cooperativeness is expected and similar to Pahl-Wostl’s

simulation.

Without punishment, the mean cooperativeness of Model

1 is similar to Model 2. But when punishment is allowed,

Model 2 has a sudden drop in the second round before raises

back to 0.8. The difference between Model 1 and 2 occurs

because of the dissimilarity in order within decision making

and the belief update between two models. In Model 1, in

every round, all agents make the decision; and when every

agent is finished with that, they will update the expected

cooperativeness. In Model 2, all agents make a decision

during a period of a meal time, and update the expected

cooperativeness before going back to Idle state.

In Model 2, when the reciprocator makes a decision after

the contributor, the reciprocator knows there are already

contributions and raises his expected cooperativeness. But

when the reciprocator makes a decision before the

contributor, the reciprocator does not see any contribution.

So his expected cooperativeness of other agents is lower than

the previous case. This causes a significant drop in the

reciprocator’s cooperativeness in the next meal which leads

to the sudden drop in Model 2.

Model 2 has discovered some dynamics of how the order

in agent making decision affects the cooperativeness, which

is not presented in Model 1. This is a result of making the

agent behaviour more realistic with asynchonous updates in

Model 2.

Figure 8: Mean cooperativeness over time

Assuming similar findings are possible with complex

agents (in terms of cognitive capability and behaviours), it

still can be difficult for ACE to design and build such an

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
e

an
 c

o
o

p
e

ra
ti

ve
n

e
ss

Round/Meal

Model 1 no punish Model 2 no punish

Model 1 punish Model 2 punish

agent. Therefore, OOAD along with UML diagrams are

recommended to use as the formal specification for ACE to

ease the modelling process at all stages, from analysis to

design and implementation.

V. DISCUSSION

A. UML: a formal visual language for agent specification

Even though only three out of 26 types of UML digrams

are used in this workflow, when systems are getting more

complex, modellers could find it useful to utilize other UML

diagrams, as for example the Sequence Diagram, which

describes how agents, objects, and the system interact and

exchange messages over time.

Although ABMS research has increasingly agreed to use

adopt OOAD to design and implement their models, UML is

not mentioned much in their publications (Bersini, 2012).

Bersini (2012) has made an effort to introduce some UML

diagrams (class, sequence, state and activity diagrams) to the

ABMS community. This paper’s goal is not to compete but

to extend this effort by demonstrating the application of

OOAD thinking and UML. Not only does this help the

communication between a wide range research disciplines, it

can also facilitate a good development methodology for

better agent-related researches.

B. OOAD as a complementary approach

In the above case study, the Person agent is not too

complicated; and OOAD can still be applied. The more

complex the system is, the more useful OOAD will be. In

fact, OOAD is a good tool to use in KIDS (Keep It

Descriptive Stupid) approach proposed by Edmonds (2005).

KIDS approach suggests to start with a descriptive model as

evidence and resources allow (which can be a complex

model) and then only simplifies it when this turns out to be

justified (as evidence and understanding of the model

support this). In contrast, the KISS approach, termed by

Axelrod (1997), starts with the simplest model and allows

for more complex models if the simpler ones turn out to be

adequate.

Neither KISS nor KIDS is the best one in every situation.

But in the areas dominated by complex phenomena

(typically in social science), the balance is shifted towards

KIDS. Similarly, it is not always the best to use OOAD.

When modellers want to build a descriptive model with

complex agents, OOAD is a powerful tool to use. Otherwise,

applying OOAD would be only optional.

V. CONCLUSION

This paper presents how OOAD can be used to design

economic agents. In the suggestion, use case diagrams are

used to identify the interation of agents with the system;

class diagrams to describe the structure of agents; and

statecharts to model agents’ behaviour. This work is a

general guidance that is sufficient for applying OOAD to

modelling economic agents with complex decision-making

process. It helps to increase the reusability and extensibility

of agent-based models in the sense that existing models can

be quickly adjusted by others researchers to perform

different experiments. It is also easier to assemble different

parts from multiple models to develop a new one.

Using OOAD as a complementary approach not only

enhances the design of agents but also improves the

communication between economists and computer scientists.

This work is meant to be the first step to overcome the

communication barrier between economists and computer

scientists to achieve a standard agent technology with

integrated interdisciplinary foundation.

For the future works, all features of Pahl-Wostl’s

simulation need to be implemented so that we can compare

between two models for better validation. Furthermore, we

can implement more social games and experiment to

improve the approach and create a framework, in which

OOAD is used for designing agents in social simulation.

REFERENCES

Axelrod, R. M. (1997). The complexity of cooperation: Agent-based

models of competition and collaboration. Princeton University

Press.

Bersini, H. (2012). Uml for abm. Journal of Artificial Societies and

Social Simulation, 15(1), 9.

Booch, G. (2006). Object Oriented Analysis & Design with

Application. Pearson Education India.

Cammarata, S., McArthur, D., & Steeb, R. (1983). Strategies of

cooperation in distributed problem solving (No. RAND/N-

2031-ARPA). RAND CORP SANTA MONICA CA.

Conte, R., Gilbert, N., & Sichman, J. S. (1998, January). MAS and

social simulation: A suitable commitment. In Multi-agent

systems and agent-based simulation (pp. 1-9). Springer Berlin

Heidelberg.

Edmonds, B., & Moss, S. (2005). From KISS to KIDS–an ‘anti-

simplistic’modelling approach (pp. 130-144). Springer Berlin

Heidelberg.

Fehr, E., & Gächter, S. (2002). Altruistic punishment in

humans. Nature,415(6868), 137-140.

Gilbert, N., & Conte, R. (1995). Artificial Societies: the computer

simulation of social life. Taylor & Francis, Inc..

Gotts, N. M., Polhill, J. G., & Law, A. N. R. (2003). Agent-based

simulation in the study of social dilemmas. Artificial

Intelligence Review, 19(1), 3-92.

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap

of agent research and development. Autonomous agents and

multi-agent systems, 1(1), 7-38.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., & Osawa, E. (1997,

February). Robocup: The robot world cup initiative.

In Proceedings of the first international conference on

Autonomous agents (pp. 340-347). ACM.

Ostrom, E. (1990). Governing the commons: The evolution of

institutions for collective action. Cambridge university press.

Pahl-Wostl, C., & Ebenhöh, E. (2004). An adaptive toolbox model:

a pluralistic modelling approach for human behaviour based on

observation. Journal of Artificial Societies and Social

Simulation, 7(1).

Tesfatsion, L. (2006). Agent-based computational economics: A

constructive approach to economic theory. Handbook of

computational economics, 2, 831-880.

Wooldridge, M., & Ciancarini, P. (2001, January). Agent-oriented

software engineering: The state of the art. In Agent-oriented

software engineering (pp. 1-28). Springer Berlin Heidelberg.

WEB REFERENCES

Wilensky, U. (2014). NetLogo. Available from

http://ccl.northwestern.edu/netlogo. Center for Connected

Learning and Computer-Based Modeling. Northwestern

University. Evanston, IL.

Argonne National Laboratory (2014). The Repast Suite. Available

from http://repast.sourceforge.net/

XJ Technologies (2014). AnyLogic 6. Available from

http://www.anylogic.com/.

