
1

School of Computer Science G51CSA

1

Computer Systems Architecture

Processor Types
And

Instruction Sets

School of Computer Science G51CSA

2

FORTRAN 90
program

FORTRAN 90
Compiler

C++
program

C++
Compiler

Instruction set level

Hardware

Interfacing Compiler and Hardware

School of Computer Science G51CSA

3

What Instructions Should A Processor Offer?

v Minimum set is sufficient, but inconvenient

v Extremely large set is convenient, but inefficient

v Architect must consider additional factors

v – Physical size of processor

v – Expected use

v – Power consumption

School of Computer Science G51CSA

4

The Point About Instruction Sets

The set of operations a processor
provides represents a tradeoff
among the cost of the hardware, the
convenience for a programmer, and
engineering considerations such as
power consumption.

School of Computer Science G51CSA

5

Representation

v Architect must choose

v – Set of instructions

v – Exact representation hardware uses for
each instruction (instruction format)

v – Precise meaning when instruction
executed

v Above items define the instruction set

School of Computer Science G51CSA

6

Parts Of An Instruction

v Opcode specifies instruction to be performed

v Operands specify data values on which to
operate

v Result location specifies where result will be
placed

2

School of Computer Science G51CSA

7

Instruction Format

v Instruction represented as binary string

v Typically

v – Opcode at beginning of instruction

v – Operands follow opcode

School of Computer Science G51CSA

8

Illustration Of Typical Instruction Format

School of Computer Science G51CSA

9

Instruction Length

v Fixed-length

v – Every instruction is same size

v – Hardware is less complex

v – Hardware can run faster

v Variable-length

v – Some instructions shorter than others

v – Appeals to programmers

v – More efficient use of memory

School of Computer Science G51CSA

10

The Point About Fixed-Length Instructions

When a fixed-length instruction set is
employed, some instructions contain extra
fields that the hardware ignores. The unused
fields should be viewed as part of a hardware
optimization, not as an indication of a poor
design.

School of Computer Science G51CSA

11

General-Purpose Registers

v High-speed storage device

v Typically part of the processor

v Each register small size (typically, each register can
accommodate an integer)

v Basic operations are fetch and store

v Numbered from 0 through N–1

v Many processors require operands for arithmetic operations
to be placed in general-purpose registers

School of Computer Science G51CSA

12

Floating Point Registers

v Usually separate from general-purpose registers

v Each holds one floating-point value

v Many processors require operands for floating point

operations to be placed in floating point registers

3

School of Computer Science G51CSA

13

Example Of Programming With Registers

v Add X and Y, and place result in Z

v Steps

v – Load a copy of X into register 3

v – Load a copy of Y into register 4

v – Add the value in register 3 to the value in register 4, and
direct the result to register 5

v – Store a copy of the value in register 5 in Z

v Note: assumes registers 3, 4, and 5 are free

School of Computer Science G51CSA

14

Types Of Instruction Sets

v Two basic forms

v – Complex Instruction Set Computer (CISC)

v – Reduced Instruction Set Computer (RISC)

School of Computer Science G51CSA

15

CISC Instruction Set

v Many instructions (often hundreds)

v Given instruction can require arbitrary time to compute

v Examples of CISC instructions

v – Move graphical item on bitmapped display

v – Memory copy or clear

v – Floating point computation

School of Computer Science G51CSA

16

RISC Instruction Set

v Few instructions (typically 32 or 64)

v Each instruction executes in one clock cycle

v Example: MIPS instruction set

School of Computer Science G51CSA

17

Summary Of Instruction Sets

A processor is classified as CISC if the
instruction set contains instructions that
perform complex computations that can require
long times; a processor is classified as RISC if
it contains a small number of instructions that
can each execute in one clock cycle.

School of Computer Science G51CSA

18

Execution Pipeline

v Hardware optimization technique

v Allows processor to complete instructions faster

v Typically used with RISC instruction set

4

School of Computer Science G51CSA

19

Typical Instruction Cycle

v Fetch the next instruction

v Examine the opcode to determine how many
operands are needed

v Fetch each of the operands (e.g., extract values from
registers)

v Perform the operation specified by the opcode

v Store the result in the location specified (e.g., a
register)

School of Computer Science G51CSA

20

To Optimize Instruction Cycle

v Build separate hardware block for each step

v Arrange to pass instruction through sequence of hardware
blocks

Illustration Of Execution Pipeline (Example pipeline has
five stages)

School of Computer Science G51CSA

21

Pipeline Speed

v All stages operate in parallel

v Given stage can start to process a new instruction as
soon as current instruction finishes

v Effect: N-stage pipeline can operate on N
instructions simultaneously

School of Computer Science G51CSA

22

Illustration Of Instructions In A Pipeline

School of Computer Science G51CSA

23

RISC Processors And Pipelines

Although a RISC processor cannot perform all steps of
the fetch-execute cycle in a single clock cycle, an
instruction pipeline with parallel hardware provides
approximately the same performance: once the
pipeline is full, one instruction completes on every
clock cycle.

School of Computer Science G51CSA

24

Using A Pipeline

v Pipeline is transparent to programmer

v Disadvantage: programmer who does not
understand pipeline can produce inefficient code

v Reason: hardware automatically stalls pipeline if
items are not available

5

School of Computer Science G51CSA

25

Example Of Instruction Stalls

v Assume

v – Need to perform addition and subtraction operations

v – Operands and results in register A through E

v – Code is:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

v Second instruction stalls to wait for operand C

School of Computer Science G51CSA

26

A Note About Pipelines

Although hardware that uses an instruction pipeline
will not run at full speed unless programs are written
to accommodate the pipeline, a programmer can
choose to ignore pipelining and assume the hardware
will automatically increase speed whenever possible.

School of Computer Science G51CSA

27

No-Op Instructions

v Have no effect on

v – Registers

v – Memory

v – Program counter

v – Computation

v Documents an instruction stall

School of Computer Science G51CSA

28

Types Of Operations

v One possible categorization

v – Arithmetic instructions (integer arithmetic)

v – Logical instructions (also called Boolean)

v – Data access and transfer instructions

v – Conditional and unconditional branch instructions

v – Floating point instructions

v – Processor control instructions

School of Computer Science G51CSA

29

Program Counter

v Hardware register

v Used during fetch-execute cycle

v Gives address of next instruction to execute

v Also known as instruction pointer

School of Computer Science G51CSA

30

Fetch-Execute Algorithm Details

Assign the program counter an initial program address.

Repeat forever {

Fetch:

Access the next step of the program from the location given by
the program counter.

Set an internal address register, A, to the address beyond the
instruction that was just fetched.

Execute:

Perform the step of the program.

Copy the contents of address register A to the program counter.

}

6

School of Computer Science G51CSA

31

Example Instruction Set

v Known as MIPS instruction set

v Early RISC design

v Minimalistic

School of Computer Science G51CSA

32

MIPS Instruction Set (Part 1)

School of Computer Science G51CSA

33

MIPS Instruction Set (Part 2)

School of Computer Science G51CSA

34

MIPS Floating Point Instructions

School of Computer Science G51CSA

35

Aesthetic Aspects Of Instruction Set

v Elegance

v – Balanced

v – No frivolous or useless instructions

v Orthogonality

v – No unnecessary duplication

v – No overlap among instructions

Principle Of Orthogonality

The principle of orthogonality specifies that each instruction
should perform a unique task without duplicating or overlapping
the functionality of other instructions.

School of Computer Science G51CSA

36

• In a typical arithmetic or logical instruction, 3 addresses are required

– 2 operands and a result
– These addresses can be explicitly given or implied by the instruction

• 3 address instructions
– Both operands and the destination for the result are explicitly contained in

the instruction word

– Example: X = Y + Z

• With memory speeds (due to caching) approaching the speed of the
processor, this gives a high degree of flexibility to the compiler

• Avoid the hassles of keeping items in the register set -- use memory as
one large set of registers

• This format is rarely used due to the length of addresses themselves and
the resulting length of the instruction words

Addresses in an Instruction (I)

7

School of Computer Science G51CSA

37

• 2 address instructions
– One of the addresses is used to specify both an operand

and the result location
Example: X = X + Y

Very common in instruction sets

• 1 address instructions
– –Two addresses are implied in the instruction
– Traditional accumulator-based operations

Example: Acc = Acc + X

Addresses in an Instruction (II)

School of Computer Science G51CSA

38

• 0 address instructions

– All addresses are implied, as in register-based operations

Example: TBA (transfer register B to A)

• Stack-based operations

– All operations are based on the use of a stack in memory to store
operands

– Interact with the stack using push and pop operations

Addresses in an Instruction (III)

School of Computer Science G51CSA

39

• Trade off:

– Fewer addresses in the instruction results in

• – More primitive instructions
• – Less complex CPU
• – Instructions with shorter length
• – More total instructions in a program
• – Longer, more complex programs
• – Longer execution time

Addresses in an Instruction (IV)

School of Computer Science G51CSA

40

3 address

SUB Y,A,B
MUL T,D,E
ADD T,T,C
DIV Y,Y,T

2 address

MOV Y,A
SUB Y,B
MOV T,D
MUL T,E
ADD T,C
DIV Y,T

1 address

LOAD D
MUL E
ADD C
STORE Y
LOAD A
SUB B
DIV Y
STORE Y

Consider Y = (A-B) / (C+D*E)

Addresses in an Instruction (V)

School of Computer Science G51CSA

41

• Once we have determined the number of addresses
contained in an instruction, the manner in which each
address field specifies memory location must be
determined

• Want the ability to reference a large range of address
locations

• Tradeoff between
– Addressing range and flexibility
– Complexity of the address calculation

Addressing Mode

School of Computer Science G51CSA

42

• The operand is contained within the instruction itself

• Data is a constant at run time

• No additional memory references are required after the
fetch of the instruction itself

• Fast, but size of the operand (thus its range of values) is
limited

e.g. ADD 5
Add 5 to contents of accumulator
5 is operand

OperandOpcodeInstruction

Addressing Mode: Immediate Mode

8

School of Computer Science G51CSA

43

• Address field contains address of operand

• Effective address (EA) = address field (A)

• e.g. ADD A

– Add contents of cell A to accumulator

– Look in memory at address A for operand

• Single memory reference to access data

• No additional calculations to work out effective address

• Limited address space

Addressing Mode: Direct Addressing

School of Computer Science G51CSA

44

Address AOpcode

Instruction

Memory

Operand

Addressing Mode: Direct Addressing

School of Computer Science G51CSA

45

• The address field in the instruction specifies a memory
location which contains the address of the data

– Two memory accesses are required

– The first to fetch the effective address

– The second to fetch the operand itself

• Range of effective addresses is equal to 2n ,where n is the

width of the memory data word

• Number of locations that can be used to hold the effective

address is constrained to 2k , where k is the width of the

instruction’s address field

Addressing Mode: Indirect Addressing

School of Computer Science G51CSA

46

Address AOpcode

Instruction

Memory

Operand

Pointer to operand

Addressing Mode: Indirect Addressing

School of Computer Science G51CSA

47

• Register addressing: like direct, but address field specifies
a register location

Register Address ROpcode

Instruction

Registers

Operand

No memory access
Very fast execution
Very limited address space
Multiple registers helps
performance
Requires good assembly
programming or compiler
writing, N.B. C programming

Addressing Mode: Register Addressing

School of Computer Science G51CSA

48

• Register indirect: like indirect, but address field specifies a
register that contains the effective address

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Large address space (2n)

One fewer memory
access than indirect
addressing

Addressing Mode: Register Addressing

9

School of Computer Science G51CSA

49

EA = A + (R); Address field hold two values
A = base value; R = register that holds displacement or vice versa

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Address A

+

Addressing Mode: Displacement Addressing

School of Computer Science G51CSA

50

Programmer's Model
This is the greatly simplified view of how a 68000 processor works
which is all that a programmer really needs to know in order to write
68000 assembly language programs.

8 32-bit data registers, named D0, D1, .. , D7
7 32-bit address registers, named A0, A1, .. ,A6
a special 32-bit address register A7, used as a stack pointer
a 32-bit program counter (PC) register
a 16-bit status register

Data can be manipulated in chunks of:
1 bit; 8 bits(byte); 16 bits (word); 32 bits (longword)

Motorola 68000

School of Computer Science G51CSA

51

MOVE
This is used for copying data from one register to another, or
between registers and main memory.
eg

MOVE.B D1,D2
MOVE.W (A1),D3
MOVE.L #10,D0
MOVE.B D0,10000
MOVE.L $1000,D5

.B -> Byte; .W -> Word; L -> Longword

Motorola 68000

School of Computer Science G51CSA

52

Motorola 68000

ADD
This adds integers stored in registers or in memory

eg

ADD.B D1,D2

ADD.B #10,D2

At least one of the operands must be a register. The
result is left in the destination operand.

School of Computer Science G51CSA

53

An example program
The following short program adds two byte-sized numbers.Numbers to be added are
initially stored in memory. Numbers are at addresses $400420 and $400422. Answer will
be stored at memory address $400424

ORG $400400 Set start address of the program

START MOVE.B $400420, D0 Move first number to D0
ADD.B $400422, D0 Add second number to first
MOVE.B D0, $400424 Store answer in memory

STOP BRA STOP "Stop" the program
END

BRA: The branch instruction, used to jump to a named instruction somewhere in the program

Motorola 68000

School of Computer Science G51CSA

54

The memory on the bus of a Pentium processor is called physical memory.

It is organized as a sequence of 8-bit bytes.

Each byte is assigned a unique address, called a physical address, which
ranges from zero to a maximum of 2 32 –1 (4 gigabytes).

Memory can appear as a single, "flat" address space like physical memory.

Or, it can appear as one or more independent memory spaces, called
segments.

Segments can be assigned specifically for holding a program's code
(instructions), data, or stack

Intel Pentium Processor - Memory Organization

10

School of Computer Science G51CSA

55

Un-segmented or "Flat" Model

The simplest memory model is
the flat model.

In a flat model, segments can
cover the entire range of physical
addresses, or they can cover only
those addresses which are
mapped to physical memory.

00000000

FFFFFFFF

Intel Pentium Processor - Memory Organization

School of Computer Science G51CSA

56

The logical address space

16,383 segments, to 4 gigabytes each
Total 246 bytes (64 terabytes).

The processor maps this 64 terabyte
logical address space onto the physical
address space by the address translation
mechanism.

A pointer into a segmented address
space consists of two parts
1. A segment selector, which is a 16-bit
field which identifies a segment.
2. An offset, which is a 32-bit byte
address within a segment.

Intel Pentium Processor - Memory Organization

School of Computer Science G51CSA

57

Intel Pentium Processor - Data Types

School of Computer Science G51CSA

58

Intel Pentium Processor - Byte Ordering

School of Computer Science G51CSA

59

• The processor contains
sixteen registers which
can be used by an
application programmer.
As

1. General registers. These
eight 32-bit registers are
free for use by the
programmer.

2. Segment registers. These
registers hold segment
selectors associated with
different forms of memory
access.

3. Status and control registers.
These registers report and
allow modification of the
state of the processor.

Intel Pentium Processor - Registers

School of Computer Science G51CSA

60

General Registers

Eight 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI.

Operands for logical and arithmetic operations.

Operands for address calculations

Can be access as 8, 16, or 32 bit chunks.

All are available for address calculations and for the results of most
arithmetic and logical operations

A few instructions assign specific registers to hold operands so that
the instruction set can be encoded more compactly.

Intel Pentium Processor - Registers

11

School of Computer Science G51CSA

61

The information encoded in an instruction includes a specification of the
operation to be performed the type of the operands to be manipulated,
and the location of these operands.

Intel Pentium Processor - Instruction format

School of Computer Science G51CSA

62

Intel Pentium Processor - Instruction format

School of Computer Science G51CSA

63

ADD
ADD AL, imm8 Add immediate byte to AL
ADD AX, imm16 Add immediate word to AX
ADD EAX, imm32 Add immediate dword to EAX

Operation
DEST = DEST + SRC;

Description
The ADD instruction performs an integer addition of the two operands
(DEST and SRC). The result of the addition is assigned to the first operand
(DEST), and the flags are set accordingly.

Intel Pentium Processor - Instruction Examples

School of Computer Science G51CSA

64

ADD r/m8,imm8 Add immediate byte to r/m byte
ADD r/m16,imm16 Add immediate word to r/m word
ADD r/m32,imm32 Add immediate dword to r/m dword

ADD r/m8,r8 Add byte register to r/m byte
ADD r/m16,r16 Add word register to r/m word
ADD r/m32,r32 Add dword register to r/m dword

r/m8: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL,
AH, BH, CH, DH), or a byte from memory.
r/m16: a word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The
contents of memory are found at the address provided by the effective address
computation.
r/m32: a doubleword register or memory operand used for instructions whose operand-size
attribute is 32 bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP,
EBP, ESI, EDI. The contents of memory are found at the address provided by the
effective address computation.

Intel Pentium Processor - Instruction Examples

