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Computer Systems Architecture

Data And Program
Representation
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Digital Logic

v Built on two-valued logic system

v Can be interpreted as

v – Five volts and zero volts

v – High and low

v – True and false
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Data Representation

v Builds on digital logic

v Applies familiar abstractions

v Interprets sets of Boolean values as

v – Numbers

v – Characters

v – Addresses
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Binary Digit (Bit)

v Direct representation of digital logic values

v Assigned mathematical interpretation

v 0 and 1

v Multiple bits used to represent complex data item
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Byte

v Set of multiple bits

v Size depends on computer

v Examples of byte sizes

v – CDC: 6-bit byte

v – BBN: 10-bit byte

v – IBM: 8-bit byte

v On many computers, smallest addressable unit of storage

v Note: following most modern computers, we will assume an

8-bit byte
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Byte Size And Values

v Number of bits per byte determines range of values that can 
be stored

v Byte of k bits can store 2k values

v Examples

v – Six-bit byte can store 64 possible values

v – Eight-bit byte can store 256 possible values
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Binary Representation

0 0 0 0 0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1 0 1 1 1

v All possible combinations of three bits
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Meaning Of Bits

v Bits themselves have no intrinsic meaning

v Byte merely stores string of 0’s and 1’s

v All interpretation determined by use
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Example Of Interpretation

v Assume three bits used for status of peripheral devices

v – First bit has the value 1 if a disk is connected

v – Second bit has the value 1 if a printer is connected

v – Third bit has the value 1 if a keyboard is connected
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Arithmetic Values

v Combination of bits interpreted as an integer

v Positional representation uses base 2

v Note: interpretation must specify order of bits
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Illustration Of Positional Interpretation

Example:

0 1 0 1 0 1

is interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21
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The Range Of Values

A set of k bits can be interpreted to represent a binary 
integer.

When conventional positional notation is used, the 
values that can be represented with k bits range from

0 through 2k– 1.
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Hexadecimal Notation

Convenient way to represent binary data

Uses base 16

Each hex digit encodes four bits
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Hexadecimal Digits

Hex Binary Decimal 

Digit Value Equivalent

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 2

3 0 0 1 1 3

4 0 1 0 0 4

5 0 1 0 1 5

6 0 1 1 0 6

7 0 1 1 1 7

Hex Binary Decimal 

Digit Value Equivalent

8 1 0 0 0 8

9 1 0 0 1 9

A 1 0 1 0 10

B 1 0 1 1 11

C 1 1 0 0 12

D 1 1 0 1 13

E 1 1 1 0 14

F 1 1 1 1 15
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Hexadecimal Constants

Supported in some programming languages

Typical syntax: constant begins with 0x

Example:

0xDEC90949
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Example Character Encodings

v EBCDIC

v ASCII

v Unicode
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EBCDIC

v Extended Binary Coded Decimal Interchange Code

v Defined by IBM

v Popular in 1960s

v Still used on IBM mainframe computers

v Example encoding: lower case letter a assigned binary 
value

10000001
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ASCII

v American Standard Code for Information Interchange

v Vendor independent: defined by American National

Standards Institute (ANSI)

v Adopted by PC manufacturers

v Specifies 128 characters

v Example encoding: lower case letter a assigned binary 
value

01100001
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Full ASCII Character Set

School of Computer Science G51CSA

20

Unicode

Each character is 16 bits long

Can represent larger set of characters

Motivation: accommodate languages such as Chinese

本課程是一門關於電腦體系結構的發展以及電腦系統軟硬體元件設計中的影響因素的學科。其
主題包括：指令集設計、處理器微架構及流水線操作、高速緩衝記憶體(cache)及虛擬記憶體的
組織結構、保護及共用、輸入/輸出(I/O)及中斷;順序及亂序超標量體系結構、超長指令字
(VLIW)電腦、向量超級電腦、多線程體系結構、對稱多處理器;以及平行電腦。

6.823 is a study of the evolution of computer architecture and the factors 
influencing the design of hardware and software elements of computer systems. 
Topics may include: instruction set design; processor micro-architecture and 
pipelining; cache and virtual memory organizations; protection and sharing; I/O 
and interrupts; in-order and out-of-order superscalar architectures; VLIW 
machines; vector supercomputers; multithreaded architectures; symmetric 
multiprocessors; and parallel computers.



11

School of Computer Science G51CSA

21

Integer Representation In Binary

Each binary integer represented in k bits

Computers have used k = 8, 16, 32, 60, and 64

Many computers support multiple integer sizes (e.g., 16 
and 32 bit integers)

2k possible bit combinations exist for k bits

Positional interpretation produces unsigned integers
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Unsigned Integers

v Straightforward positional interpretation

v Each successive bit represents next power of 2

v No provision for negative values

v Arithmetic operations can produce overflow or underflow

(result cannot be represented in k bits)

v Handled with wraparound and carry bit
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Illustration Of Overflow

v Values wrap around address space

v Hardware records overflow in separate carry indicator
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Example Signed Integer Representations

v Sign magnitude

v One’s complement

v Two’s complement

v Note: each has interesting quirks



13

School of Computer Science G51CSA

25

Sign Magnitude Representation

v Familiar to humans

v First bit represents sign

v Successive bits represent absolute value of integer

v Interesting quirk: can create negative zero
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Sign-magnitude representation

Sign-magnitude representation: Most significant bit (sign 
bit) used  to indicate the sign and the rest represent the 
magnitude.  if

sign bit = 0 Positive number
sign bit = 1 Negative number
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Sign-magnitude representation

Problems with sign-magnitude representation:

J Addition and subtraction: 

Require examination of  both sign and magnitude

J Representing zero: +0 and -0

+0 = 00000000

-0 = 10000000
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Two’s complement Representation

J Positive number uses positional representation

J Negative number formed by subtracting 1 from positive
value and inverting all bits of result

J Example: 4-bit representation

0 0 1 0 represents 2
1 1 1 0 represents –2

J High-order bit is set if number is negative

J Interesting quirk: one more negative values than positive
values
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Example Of Values In Unsigned And Two’s Complement Representations

Binary Unsigned Two’s Complement
Value Equivalent Equivalent

11 1 1 15 -1
1 1 1 0 14 -2
1 1 0 1 13 -3
1 1 0 0 12 -4
1 0 1 1 11 -5
1 0 1 0 10 -6
1 0 0 1 9 -7
1 0 0 0 8 -8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0
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Implementation Of Unsigned And Two’s Complement

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic; software
running on the computer can choose an interpretation for 
each integer.

Example ( k = 4 )

– Adding 1 to binary 1 0 0 1 produces 1 0 1 0
– Unsigned interpretation goes from 9 to 10
– Two’s complement interpretation goes from -7 to -6
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Sign Extension

J Needed when computer has multiple sizes of integers
J Works for unsigned and two’s complement 
representations
J Extends high-order bit (known as sign bit)

J Assume a computer
J – Supports 16-bit and 32-bit integers
J – Uses two’s complement representation

J When 16-bit integer assigned to 32-bit integer, correct 
numeric value requires upper sixteen bits to be filled with 
zeroes for positive number or ones for negative number

J In essence, sign bit from short integer must be extended
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Example Of Sign Extension During Assignment

J The 8-bit version of integer -3 is:

1 1 1 1 1 1 0 1

J The 16-bit version of integer -3 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

J During assignment to a larger integer, hardware copies 
all bits of smaller integer and then replicates the high-order 
(sign) bit in remaining bits
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Conversion between different bit lengths

+18 =                 00010010 (sign magnitude, 8-bit)
+18 = 0000000000010010 (sign magnitude, 16-bit)
-18 =                 10010010 (sign magnitude, 8-bit)
-18 = 1000000000010010 (sign magnitude, 16-bit)

+18 =                 00010010 (twos complement, 8-bit)
+18 = 0000000000010010 (twos complement, 16-bit)
-18 =                 11101110 (twos complement, 8-bit)
-18 = 1111111111101110 (twos complement, 16-bit)

Fixed point Representation

Twos complement representation
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Example Of Sign Extension During Shift

J Right shift of a negative value should produce a negative value

J Example

J – Shifting -4 one bit should produce -2 (divide by 2)

J – Using sixteen-bit representation, -4 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

J After right shift of one bit, value is -2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

J Solution: replicate high-order bit during right shift
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Summary Of Sign Extension

Sign extension: in two’s complement arithmetic, 
when an integer Q composed of K bits is copied to an 
integer of more than K bits, the additional high-order 
bits are made equal to the top bit of Q. Extending the 
sign bit means the numeric value remains the same.
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Because two’s complement hardware performs sign 
extension, copying an unsigned integer to a larger 
unsigned integer changes the value; to prevent such 
errors from occurring, a programmer or a compiler 
must add code to mask off the extended sign bits.

A Consequence For Programmers
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v Need to choose order for

v – Storage in physical memory system
v – Transmission over serial medium (e.g., a data network)

v Bit order
v – Handled by hardware
v – Usually hidden from programmer

v Byte order
v – Affects multi-byte data items such as integers
v – Visible and important to programmer

Numbering Bits And Bytes
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v Least significant byte of integer in lowest memory location

v – Known as little endian

v Most significant byte of integer in lowest memory location

v – Known as big endian

v Other orderings
v – Digital Equipment Corporation once used an ordering with sixteen-bit 
words in big endian order and bytes within the words in little endian order.

v Note: only big and little endian storage are popular

Possible Byte Order
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v Note: difference is especially important when transferring data 
between computers for which the byte ordering differs

Illustration Of Big And Little Endian Byte Order
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J Numbers with fractions

J Could be done in pure binary

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

J Where is the binary point?

J Fixed?
Very limited - cannot represent very large or very small numbers

J Moving?
How do you show where it is?

Real Numbers



21

School of Computer Science G51CSA

41

Floating Point Representation

Principles

Scientific notation:

141043.5000,000,000,000,543 ×=
Slide the decimal point to a convenient location
Keep track of the decimal point use the exponent of 10

Do the same with binary number in the form of

EBS ±×± J Sign: + or -
J Significant: S
J Exponent: E
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Floating Point Representation

Example

J 32-bit floating point format.
J Leftmost bit = sign bit (0 positive or 1 negative).
J Exponent in the next 8 bits. Use a biased representation.

A fixed value, called bias, is subtracted from the field to get the true exponent 
value.  Typically, bias = 2k-1 - 1, where k is the number of bits in the exponent 
field. Also known as excess-N format, where N = bias = 2k-1 - 1. (The bias could 
take other values)

In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to 
+128

J Final portion of word (23 bits in this example) is the significant 
(sometimes called mantissa).
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Floating Point Representation

Many ways to represent a floating point number, e.g., 

625 20110.021102110.0 ×××
Normalization:  Adjust the exponent such that the leading bit 
(MSB) of mantissa is always 1. In this example, a normalized 
nonzero number is in the form

Ebbbb ±×± 2... .1
J Left most bit always 1 - no need to store
J 23-bit field used to store 24-bit mantissa with a value 
between 1 to 2
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Floating Point Representation

J Sign stored in the first bit
J Left most bit of the TRUE mantissa always 1 - no need to store
J The value of 127 is added to the TRUE exponent to be stored
J The base is 2
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IEEE 754 Standard

Floating Point Representation

J Single Format and Double Format

1 Single Precision format:
1 32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits

1 Numbers are normalised to form:                                ; where b = 0 or 1 

1 Exponent formatted using excess-127 notation with implied base of 2

1 Theoretical exponent range 2-127 to 2128

1 Actuality, exponent values of 0 and 255 used for special values

1 Exponent range restricted to -126 to 127

1 0.0 defined by a mantissa of 0 and the special exponent value of 0

1 Allows + - infinity defined by a mantissa value of 0 and exponent value 255

Ebbbb ±×± 2....1
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Range Of Values In IEEE Floating Point

1 Single precision range is:

2126 to 2127

1 Decimal equivalent is approximately:

1038 to 1038

1 Double precision range is:

10308 to 10308
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Data Aggregates

1 Typically arranged in contiguous memory

1 Example: three integers
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Integer Arithmetic

Negation

Sign-magnitude: Invert the sign bit

Twos complement:

J Invert each bit (including the sign bit).
J Treat the result as unsigned binary integer, and add 1

E.g.
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Integer Arithmetic

Addition and Subtraction Overflow
Result larger than can be 
held in the word size being 
used resulting in overflow.

If two numbers have the same 
sign are added, then overflow 
occurs iif (if and only if) the 
result has the opposite sign.

Carry bit ignored
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Subtraction

To subtract one number 
(subtrahend) from another 
number minuend), take the 
twos complement (negation) 
of the subtrahend and add it 
to the minuend.

Integer Arithmetic

(M - S)

Overflow rule 
applies here also
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Integer Arithmetic

Addition and Subtraction Hardware Block Diagram
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Integer Arithmetic

Multiplication: Unsigned binary integers
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Integer Arithmetic
Multiplication

Flowchart for unsigned binary multiplication
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Integer Arithmetic

Division: Unsigned binary integer
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Floating Point Arithmetic

Addition and Subtraction

J Check for zero
J Align the significants
J Add or subtract the significants
J Normalise the result

E.g. 0.5566 x 103 + 0.7778 x 103

0.5323 x 102 + 0.7268 x 10-1
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Summary

Basic output from digital logic is a bit

Bits grouped into sets to represent

– Integers
– Characters
– Floating point values

Integers can be represented as
– Sign magnitude
– Two’s complement
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Summary

One piece of hardware can be for both

– Two’s complement arithmetic
– Unsigned arithmetic

Bytes of integer can be numbered in
– Big-endian order
– Little-endian order

Organizations such as ANSI and IEEE define 
standards for data representation
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Summary

Integer arithmetic 

two’s complement - subtraction and  addition 
rules, overflow rule

Floating point  arithmetic


