Computer Systems Architecture

Data And Program
Representation

The University of

NOltingham School of Computer Science G51CSA

¥

Digital Logic

vV Built on two-valued logic system

v Can be interpreted as

VvV — Five volts and zero volts

vV — High and low

V — True and false

The University of

No'tingham School of Computer Science G51CSA

r

Data Representation

r

vV Builds on digital logic

v Applies familiar abstractions

Vv Interprets sets of Boolean values as
vV — Numbers
vV — Characters

V — Addresses

The University of

NO!tinghalTl School of Computer Science G51CSA

Binary Digit (Bit)

r

v Direct representation of digital logic values

vV Assigned mathematical interpretation

V 0and !/

Vv Multiple bits used to represent complex data item

The University of
Noitingham School of Computer Science G51CSA

Byte

v Set of multiple bits
v Size depends on computer
v Examples of byte sizes
v — CDC: 6-bit byte
v — BBN: 10-bit byte
v — IBM: 8-bit byte
v On many computers, smallest addressable unit of storage
v Note: following most modern computers, we will assume an

8-bit byte

The University of

NO!tinghalTl School of Computer Science G51CSA

r

Byte Size And Values

v Number of bits per byte determines range of values that can
be stored

v Byte of & bits can store 2* values

v Examples

v — Six-bit byte can store 64 possible values

v — Eight-bit byte can store 256 possible values

The University of
Noitingham School of Computer Science G51CSA

r

Binary Representation

¥

000 001 010 011
100 101 110 111

v All possible combinations of three bits

The University of

NOltingham School of Computer Science G51CSA

Meaning Of Bits

r

Vv Bits themselves have no intrinsic meaning

v Byte merely stores string of 0’s and 1°s

v All interpretation determined by use

The University of

No'tingham School of Computer Science G51CSA

Example Of Interpretation

v Assume three bits used for status of peripheral devices

v — First bit has the value 1 if a disk is connected
Vv — Second bit has the value 1 if a printer is connected

Vv — Third bit has the value 1 if a keyboard is connected

The University of

NO!tinghalTl School of Computer Science G51CSA

r

Arithmetic Values

v Combination of bits interpreted as an integer

v Positional representation uses base 2

v Note: interpretation must specify order of bits

The University of
Noitingham School of Computer Science G51CSA

r

Ilustration Of Positional Interpretation

¥

25=32 24=16 23=8 22=4 21=2 20=1

I S DU B

Example:

010101

is interpreted as:

O0X254+1x24+0%x23+1x22+0x%x21+1x20=2]

The University of
NOltingham School of Computer Science G51CSA

The Range Of Values

r

A set of k bits can be interpreted to represent a binary
integer.

When conventional positional notation is used, the
values that can be represented with k bits range from

0 through 2% 1.

The University of
No'tingham School of Computer Science G51CSA

Hexadecimal Notation

¥

Convenient way to represent binary data

Uses base 16

Each hex digit encodes four bits

The University of

NOltingham School of Computer Science G51CSA

Hexadecimal Digits

r

Hex Binary Decimal
Digit Value Equivalent
0 0000 0
1 0001 1 Hex Binary Decimal
2 0010 2 Digit Value Equivalent
3 0011 3 8 1000 8
4 0100 4 ? 1oo1 ?
5 0101 5 A 1010 10
6 0110 6 B 1011 11
7 0111 7 Cc 1100 12
D 1101 13
E 1110 14
F 1111 15

The University of
No'tingham School of Computer Science G51CSA

Hexadecimal Constants

Supported in some programming languages

Typical syntax: constant begins with Ox

Example:

0xDEC90949

The University of

NOltingham School of Computer Science G51CSA

¥

Example Character Encodings

v EBCDIC
v ASCII

v Unicode

The University of

No'tingham School of Computer Science G51CSA

r

EBCDIC

r

v Extended Binary Coded Decimal Interchange Code
v Defined by IBM

v Popular in 1960s

v Still used on IBM mainframe computers

v Example encoding: lower case letter a assigned binary
value

10000001

The University of

NO!tinghalTl School of Computer Science G51CSA

ASCII

r

v American Standard Code for Information Interchange
v Vendor independent: defined by American National
Standards Institute (ANSI)

v Adopted by PC manufacturers

Vv Specifies 128 characters

v Example encoding: lower case letter a assigned binary
value

01100001

The University of
Noitingham School of Computer Science G51CSA

Full ASCII Character Set

r

00 nul | 01 soh | 02 stx | 03 etx | 04 eot | 05 enq | 06 ack | 07 bel
08 bs | 09 ht | DA If OB vt OC np |OD cr |OE so | OF si
10 dle | 11 de1 | 12 dc2 | 13 dc3 | 14 dc4 | 15 nak | 16 syn | 17 etb
18 can [19 em | 1A sub | 1B esc | 1C fs 1D gs e s 1F us
20 sp | 21 ! 2 " 23 # 24 % 25 % 26 & 27
28 29) 2A 2B+ 2c 2D - 2E . F
30 0 31 1 32 2 3 3 34 4 35 5 36 6 3T 7
38 8 39 9 a0 3B 3C < 3D = 3E > 3F 7
40 @ 4“1 A 42 B 43 C 4 D 45 E 46 F 47 G
48 H 49 | A) 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 § 54 T 55 U 56 V 57 W
58 X 50 Y 5A Z 5B [5¢ \ 50] 5 " 5F
60 ¢ 61 a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C | 6D m 6E n 6F o
70 p 1 q 72 73 s 74t 7% u 76 v 7w
7 x 9 vy TA z B { | 7m0} 7TE ~ TF del

The University of

NO!tinghalTl School of Computer Science G51CSA

Unicode

r

Each character is 16 bits long
Can represent larger set of characters

Motivation: accommodate languages such as Chinese

FAREE-FIHNEMERAEENERUREKAGEERTASG TP ERRNER. H
FTHEEE: BORN BERMEBRIIKGIRE. SEEETIEE(cache) RERTIFIEMN
LS. RERXAE. GA/GHI/O)RPEH;IEFRIALFREESEALE. BREST
(VUW)EfS. mEBRER. SHARERAGE. BB EEE URTTER.

6.823 is a study of the evolution of computer architecture and the factors
influencing the design of hardware and software elements of computer systems.
Topics may include: instruction set design; processor micro-architecture and
pipelining; cache and virtual memory organizations; protection and sharing; 1I/O
and interrupts; in-order and out-of-order superscalar architectures; VLIW
machines; vector supercomputers; multithreaded architectures; symmetric
multiprocessors; and parallel computers.

The University of

Noitingham School of Computer Science G51CSA
20

10

Integer Representation In Binary

) g

Each binary integer represented in k bits
Computers have used k =8, 16, 32, 60, and 64

Many computers support multiple integer sizes (e.g., 16
and 32 bit integers)

2k possible bit combinations exist for k bits

Positional interpretation produces unsigned integers

The University of

NO!tinghalTl School of Computer Science G51CSA
21

Unsigned Integers

) g

v Straightforward positional interpretation
v Each successive bit represents next power of 2

v No provision for negative values

Vv Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

v Handled with wraparound and carry bit

The University of

Noitingham School of Computer Science G51CSA
22

11

IMustration Of Overflow

¥

)

averflow result

v Values wrap around address space

v Hardware records overflow in separate carry indicator

The University of

H School of Computer Science G51CSA
Nottingham 2

Example Signed Integer Representations

r

v Sign magnitude
vV One’s complement
v Two’s complement

Vv Note: each has interesting quirks

The University of

H School of Computer Science G51CSA
Nottingham y

12

Sign Magnitude Representation

¥

v Familiar to humans
v First bit represents sign
v Successive bits represent absolute value of integer

v Interesting quirk: can create negative zero

The University of

H School of Computer Science G51CSA
Nottingham 25

Sign-magnitude representation

r

Sign-magnitude representation: Most significant bit (sign
bit) used to indicate the sign and the rest represent the
magnitude. if

signbit=0 Positive number
signbit=1 Negative number
n-2
A=>2'b, ifa, =0
=0 +18 =00010010

-18=10010010

A= —nf::z"bi ifa, =1

i=0

The University of

H School of Computer Science G51CSA
Nottingham N

13

¥

Problems with sign-magnitude representation:
J Addition and subtraction:
Require examination of both sign and magnitude
J Representing zero: +0 and -0
+0 = 00000000

-0 =10000000

The University of

No‘tingham School of Computer Science G51CSA

Sign-magnitude representation

27

r

J Positive number uses positional representation

J Negative number formed by subtracting 1 from positive
value and inverting all bits of result

J Example: 4-bit representation

00 1 0 represents 2
111 0 represents —2

J High-order bit is set if number is negative

J Interesting quirk: one more negative values than positive

values

The University of

No‘ting ham School of Computer Science G51CSA

Two’s complement Representation

28

14

Example Of Values In Unsigned And Two’s Complement Representations

r

Binary Unsigned Two’s Complement
Value Equivalent Equivalent
1111 15 -1
1110 14 -2
1101 13 -3
1100 12 -4
1011 1 -5
1010 10 -6
1001 9 -7
1000 -8
0111 7 7
0110 6 6

0101 5 5
0100 4 4

0011 3 3
0010 2 2

0001 1 1

0000 0 Q

The University of

NO!tinghalTl School of Computer Science G51CSA

29

Implementation Of Unsigned And Two’s Complement

r

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic, software
running on the computer can choose an interpretation for
each integer.

Example (k=4)
— Adding 1 to binary 1 0 0 1 produces 1 0 1 0

— Unsigned interpretation goes from 9 to 10
—Two’s complement interpretation goes from -7 to -6

The University of
Noitingham School of Computer Science G51CSA

15

Sign Extension

) g

J Needed when computer has multiple sizes of integers
J Works for unsigned and two’s complement
representations

J Extends high-order bit (known as sign bir)

J Assume a computer
J — Supports 16-bit and 32-bit integers
J — Uses two’s complement representation

J When 16-bit integer assigned to 32-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

J In essence, sign bit from short integer must be extended

The University of

NO!tinghalTl School of Computer Science G51CSA

Example Of Sign Extension During Assignment

) g

J The 8-bit version of integer -3 is:

11111101

J The 16-bit version of integer -3 is:
I111111111111101

J During assignment to a larger integer, hardware copies

all bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits

The University of
Noitingham School of Computer Science G51CSA

16

Twos complement representation

r

Conversion between different bit lengths

+18 = 00010010 (sign magnitude, 8-bit)

+18 =0000000000010010 (sign magnitude, 16-bit)

-18 = 10010010 (sign magnitude, 8-bit)

-18 =1000000000010010 (sign magnitude, 16-bit)
+18 = 00010010 (twos complement, 8-bit)
+18 =0000000000010010 (twos complement, 16-bit)
-18 = 11101110 (twos complement, 8-bit)

-18=1111111111101110 (twos complement, 16-bit)

Fixed point Representation

The University of

NO!tinghalTl School of Computer Science G51CSA

Example Of Sign Extension During Shift

r

J Right shift of a negative value should produce a negative value
J Example
J — Shifting -4 one bit should produce -2 (divide by 2)
J — Using sixteen-bit representation, -4 is:
I111111111111100
J After right shift of one bit, value is -2:
I1T11111111111110

J Solution: replicate high-order bit during right shift

The University of
Noitingham School of Computer Science G51CSA

17

Summary Of Sign Extension

) g

Sign extension. in two’s complement arithmetic,
when an integer Q composed of K bits is copied to an
integer of more than K bits, the additional high-order
bits are made equal to the top bit of Q. Extending the
sign bit means the numeric value remains the same.

The University of

NO!tinghalTl School of Computer Science G51CSA

A Consequence For Programmers

) g

Because two’s complement hardware performs sign
extension, copying an unsigned integer to a larger
unsigned integer changes the value, to prevent such
errors from occurring, a programmer or a compiler
must add code to mask off the extended sign bits.

The University of
Noitingham School of Computer Science G51CSA

18

Numbering Bits And Bytes

r

Vv Need to choose order for

v — Storage in physical memory system
v — Transmission over serial medium (e.g., a data network)

v Bit order
v — Handled by hardware
vV — Usually hidden from programmer

v Byte order
Vv — Affects multi-byte data items such as integers
v — Visible and important to programmer

The University of

NO!tinghalTl School of Computer Science G51CSA

Possible Byte Order

r

v Least significant byte of integer in lowest memory location
vV — Known as little endian

vV Most significant byte of integer in lowest memory location
v — Known as big endian

v Other orderings

V — Digital Equipment Corporation once used an ordering with sixteen-bit
words in big endian order and bytes within the words in little endian order.

vV Note: only big and little endian storage are popular

The University of
Noitingham School of Computer Science G51CSA

19

Ilustration Of Big And Little Endian Byte Order

¥

0 1 2 3

0x00 0x00 0x00 0x01

Big Endian
3 2 1 0

0x00 0x00 0x00 0x01

Little Endian

v Note: difference is especially important when transferring data
between computers for which the byte ordering differs

The University of

NOltingham School of Computer Science G51CSA

Real Numbers

r

J Numbers with fractions

J Could be done in pure binary
1001.1010 = 24 + 20 +2-1 + 2-3=9,625

J Where is the binary point?

J Fixed?

Very limited - cannot represent very large or very small numbers
J Moving?

How do you show where it is?

The University of

H School of Computer Science G51CSA
Nottingham "

20

Floating Point Representation

r

Principles

Scientific notation:
543,000,000,000,000 = 5.43x10"

Slide the decimal point to a convenient location
Keep track of the decimal point use the exponent of 10

Do the same with binary number in the form of

+ §x B Isigntor-
- J Significant: S
J Exponent: E

The University of

NO!tinghalTl School of Computer Science G51CSA

41

Floating Point Representation

—— 5 hits o 23 bits -
Exampl } ‘ biased exponent | significand

r

J 32-bit floating point format.

J Leftmost bit = sign bit (0 positive or 1 negative).

J Exponent in the next 8 bits. Use a biased representation.
A fixed value, called bias, is subtracted from the field to get the true exponent
value. Typically, bias = 2! -1, where k is the number of bits in the exponent

field. Also known as excess-N format, where N = bias = bALS (The bias could
take other values)

In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to
+128

J Final portion of word (23 bits in this example) is the significant
(sometimes called mantissa).

The University of
Noitingham School of Computer Science G51CSA

42

21

¥

Floating Point Representation

Many ways to represent a floating point number, e.g.,

0.110%2° 11027 0.0110x2°

Normalization: Adjust the exponent such that the leading bit
(MSB) of mantissa is always 1. In this example, a normalized
nonzero number is in the form

+1.bbb..bx2*"

J Left most bit always 1 - no need to store
J 23-bit field used to store 24-bit mantissa with a value
between 1 to 2

The University of

No‘tingham School of Computer Science G51CSA

43

r

Floating Point Representation

sign of
significand E
e -— 8 bits o 23 hits -
\T ‘ biased exponent ‘ significand
{a) Format

10100 2o

1.1010001 = 2 = 0 10010011 10100010000000000000000 = 1.638125 x 2
-1.1010001 = 2'91%% - 1 10010011 10100010000000000000000 = -1.638125 x 27
11010001 = 271909 = § 01101011 10100010000000000000000 = 1.638125 x 2737
-1.1010001 x 2717%9% - 1 01101011 10100010000000000000000 = -1.638125 = 272°

J Sign stored in the first bit

J Left most bit of the TRUE mantissa always 1 - no need to store
J The value of 127 is added to the TRUE exponent to be stored
J The base is 2

The University of

No‘ting ham School of Computer Science G51CSA

44

22

Floating Point Representation

r

IEEE 754 Standard

J Single Format and Double Format

1 Single Precision format:
1 32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits
1 Numbers are normalised to form: + | ppp _px2:2 ; whereb=0or 1
1 Exponent formatted using excess-127 notation with implied base of 2
1 Theoretical exponent range 2717 0 2"
1 Actuality, exponent values of 0 and 255 used for special values
1 Exponent range restricted to -126 to 127
1 0.0 defined by a mantissa of 0 and the special exponent value of 0
1

Allows + - infinity defined by a mantissa value of 0 and exponent value 255

The University of

NO!tinghalTl School of Computer Science G51CSA

45

Range Of Values In IEEE Floating Point

r

1 Single precision range is:
2126 ¢ 2127

1 Decimal equivalent is approximately:
1038 to 1038

1 Double precision range is:
10308 to 10308

The University of
Noitingham School of Computer Science G51CSA

46

23

¥

Data Aggregates

1 Typically arranged in contiguous memory
1 Example: three integers

0 1 2 3 4 5
T T T

integer #1 integer #2 integer #3
1 | |

The University of

No‘tingham School of Computer Science G51CSA

47

r

Integer Arithmetic
Negation
Sign-magnitude: Invert the sign bit
Twos complement:

J Invert each bit (including the sign bit).
J Treat the result as unsigned binary integer, and add 1

E.g.

The University of

No‘ting ham School of Computer Science G51CSA

48

24

Addition and Subtraction

Integer Arithmetic

The University of

Overflow
1001 1100
+0101 +0100 Result larger than can be
1110 = -2 10000 = 0 held in the word size being
(a) (-7) + (+5) (b) (-4) + (+4) used resulting in overflow.
If two numbers have the same
0011 1100 sign are added, then overflow
+0100 +1111 occurs iif (if and only if) the
0111 = 7 11011 = -5 . .
result has the opposite sign.
(c) (+3) + (+4) (@) (-4) + (-1)
Carry bit ignored
0101 1001
+0100 +1010
1001 = Overflow 10011 = Overflow
(e) (+5) + (+4) () -7) +(-6)

H School of Computer Science G51CSA
Nottingham ©
Integer Arithmetic
0010 0101 .
+1001 +1110 Subtraction
1011 10011 = 3
(a) M =2 = 0010 (b) M = 5 = 0101 To subtract one number
5 =7 =011 8 =2 = 0010 (subtrahend) from another
-8 = 1001 -8 = 1110 .
number minuend), take the
o1 o101 twos complement (negation)
+1110 +0010 of the subtrahend and add it
41001 0111 = 7 to the minuend.
(¢) M =-5 = 1011 (d) M = 5 = 0101
§ =2 = 0010 § =-2 = 1110
-5 = 1110 -5 = 0010
o111 010 Overflow rule
+0111 +1100 .
1110 = Overflow 10110 = Overflow applles here alSO
(e) M =17 = 0111 (f) M =-6 = 1010
5§ =-7 = 1001 S =4 = 0100
-8 = 0111 -8 = 1100
M -S)

The University of

Nottingham

School of Computer Science G51CSA

50

Integer Arithmetic

r

OF = overflow bit

W = Switch feclect addition e subiraction) - Addition and Subtraction Hardware Block Diagram

The University of

NO!tinghalTl School of Computer Science G51CSA

Integer Arithmetic

r

Multiplication: Unsigned binary integers

1011 Multiplicand (11)
%1101 Multiplier (13)
1011
0000
1011
1011]
10001111 Product (143)

» Partial products

The University of
Noitingham School of Computer Science G51CSA

26

Integer Arithmetic

r

Multiplication

Multiplicand

CoA 0

M & Multiplicand
Q & Multiplier
Count < n
 —

Add Shift and Add
Cantrol Logic

Shift Right

<
(R

0 0010 1111

] 1101 1111
0 0110 1111

1 Qo001 1111
0 1000 1111

The University of

1011

1011
1011

1011

1011
1011

1011
1011

Initial Values

add } First
Shift Cyecle
X Second
shift cyele
Add Third
Shift Cycle

Add } Fourth
Shift Cycle

Multiplier

Shift right C, A, Q
Count « Count - 1)

Product
inA,Q

Flowchart for unsigned binary multiplication

NO!tinghalTl School of Computer Science G51CSA .
Integer Arithmetic
Division: Unsigned binary integer
00001101 -=—— Quotient
Divisor ——» 1011/10010011 -«—— Dividend
1011¥
001110
1011
Partial 001111
inders
remainders 1 ICI l 1
100 «4—— Remainder
The University of
E Noitingham School of Computer Science G51CSA .

27

Floating Point Arithmetic

r

Addition and Subtraction

J Check for zero

J Align the significants

J Add or subtract the significants
J Normalise the result

E.g. 05566x10°+0.7778 x 10°

0.5323 x 10° + 0.7268 x 10™

The University of

NO!tinghalTl School of Computer Science G51CSA

Summary

r

®Basic output from digital logic is a bit
®Bits grouped into sets to represent

®- Integers
@ Characters
@®- Floating point values

@®Integers can be represented as
@®- Sign magnitude
®- Two’s complement

The University of
Noitingham School of Computer Science G51CSA

28

Summary

) g

®0One piece of hardware can be for both

@®- Two’s complement arithmetic
@®- Unsigned arithmetic

@®Bytes of integer can be numbered in
@®- Big-endian order
@®- Little-endian order

@®Organizations such as ANSI and IEEE define
standards for data representation

The University of

NO!tinghalTl School of Computer Science G51CSA

Summary

) g

@®Integer arithmetic

® two’s complement - subtraction and addition
rules, overflow rule

@®Floating point arithmetic

The University of
Noitingham School of Computer Science G51CSA

29

