

	Binar	y Represent	ation	
000	0 0 1	010	011	
100	101	110	111	
v All p	ossible combinati	ons of three bit	S	
The University of Nottingham	School of Computer Science G51	CSA		7

Hex	Binary	Decimal			
Digit	Value	Equivalent			
0	0000	0			
1	0001	1	Hex	Binary	Decimal
2	0010	2	Digit		Equivalen
3	0011	3	8	1000	8
4	0100	4	9	1001	9
5	0101	5	A	1010	10
6	0110	6	В	1011	11
7	0111	7	С	1100	12
· · ·	••••		D	1101	13
			E	1110	14
			F	1111	15

00	nul	01	soh	02	stx	03	etx	04	eot	05	ena	06	ack	07	bel
08	bs	09	ht	0A	lf	0B	vt	0C	np	0D	cr .	0E	so	0F	si
10	dle	11	dc1	12	dc2	13	dc3	14	dc4	15	nak	16	syn	17	etb
18	can	19	em	1A	sub	1B	esc	1C	fs	1D	gs	1e	rs	1F	us
20	sp	21	1	22		23	#	24	\$	25	%	26	&	27	,
28	(29)	2A	*	2B	+	2C	,	2D	-	2E	1.1	2F	1
30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7
38	8	39	9	3A	1	3B	;	3C	<	3D	=	3E	>	3F	?
40	@	41	Α	42	в	43	С	44	D	45	Е	46	F	47	G
48	н	49	1	4A	J	4 B	Κ	4C	L	4D	М	4 E	Ν	4F	0
50	Р	51	Q	52	R	53	S	54	т	55	U	56	V	57	W
58	Х	59	Y	5A	Z	5B	[5C	A.	5D	1	5E	۸	5F	_
60	4	61	а	62	b	63	С	64	d	65	е	<mark>66</mark>	f	67	g
68	h	69	i i	6A	j.	6B	k	6C	1	6D	m	6E	n	6F	0
70	р	71	q	72	r	73	s	74	t	75	u	76	v	77	w
78	x	79	у	7 A	z	7B	{	7C	1	7D	}	7E	~	7F	del

Binary Value	Unsigned Two's Equivalent	Complement Equivalent
11 1 1	15	-1
1110	14	-2
1101	13	-3
1100	12	-4
1011	11	-5
1010	10	-6
1001	9	-7
1000	8	-8
0111	7	7
0110	6	6
0101	5	5
0100	4	4
0011	3	3
0010	2	2
0001	1	1
0000	0	0

<section-header><text><text><text><list-item><list-item><list-item><list-item><table-container><table-container><table-container><table-row></table-row>

Summary Of Sign Extension

School of Computer Science G51CSA

Sign extension: in two's complement arithmetic, when an integer Q composed of K bits is copied to an integer of more than K bits, the additional high-order bits are made equal to the top bit of Q. Extending the sign bit means the numeric value remains the same.

The University of

Nottingham

School of Computer Science G51CSA

	Integer Arithn	netic	
Addition and Subt 1001 +0101 1110 = -2 (a) (-7) + (+5)	raction 1100 1000 10000 = 0 (b) (-4) + (+4)	Overflow Result larger than can be held in the word size being used resulting in overflow.	
$\begin{array}{r} 0011 \\ + \underline{0100} \\ 0111 \\ = 7 \\ (c) (+3) + (+4) \end{array}$	$ \begin{array}{r} 1100 \\ +\underline{1111} \\ \underline{1}1011 \\ -5 \\ (d) (-4) + (-1) \end{array} $	If two numbers have the same sign are added, then overflow occurs iif (if and only if) the result has the opposite sign.	
$\begin{array}{r} 0101 \\ + \underline{0100} \\ 1001 = \text{Overflow} \\ (e) (+5) + (+4) \end{array}$	1001+101010011 = Overflow(f) (-7) + (-6)	Carry on ignored	
The University of Nottingham School of	Computer Science G51CSA		49

0010	0101	
$+\frac{1001}{1011} = -5$	$\frac{+110}{10011} = 3$	Subtraction
(a) M = 2 = 0010 S = 7 = 0111 -S = 1001	(b) $M = 5 = 0101$ S = 2 = 0010 -S = 1110	To subtract one number (subtrahend) from another number minuend), take the
1011 + <u>1110</u> 10001 = -7	$ \begin{array}{r} 0101 \\ + 0010 \\ 0111 = 7 \end{array} $	twos complement (negation) of the subtrahend and add it to the minuend.
(c) M =-5 = 1011 S = 2 = 0010 -S = 1110	(d) $M = 5 = 0101$ S = -2 = 1110 -S = 0010	
0111 + <u>0111</u> 1110 = Overflow	1010 + <u>1100</u> 10110 = Overflow	Overflow rule applies here also
(e) $M = 7 = 0111$ S = -7 = 1001 -S = 0111 (M - S)	(f) $M = -6 = 1010$ S = 4 = 0100 -S = 1100	

