
1

School of Computer Science G51CSA

1

Computer Systems Architecture

Data And Program
Representation

School of Computer Science G51CSA

2

Digital Logic

v Built on two-valued logic system

v Can be interpreted as

v – Five volts and zero volts

v – High and low

v – True and false

2

School of Computer Science G51CSA

3

Data Representation

v Builds on digital logic

v Applies familiar abstractions

v Interprets sets of Boolean values as

v – Numbers

v – Characters

v – Addresses

School of Computer Science G51CSA

4

Binary Digit (Bit)

v Direct representation of digital logic values

v Assigned mathematical interpretation

v 0 and 1

v Multiple bits used to represent complex data item

3

School of Computer Science G51CSA

5

Byte

v Set of multiple bits

v Size depends on computer

v Examples of byte sizes

v – CDC: 6-bit byte

v – BBN: 10-bit byte

v – IBM: 8-bit byte

v On many computers, smallest addressable unit of storage

v Note: following most modern computers, we will assume an

8-bit byte

School of Computer Science G51CSA

6

Byte Size And Values

v Number of bits per byte determines range of values that can
be stored

v Byte of k bits can store 2k values

v Examples

v – Six-bit byte can store 64 possible values

v – Eight-bit byte can store 256 possible values

4

School of Computer Science G51CSA

7

Binary Representation

0 0 0 0 0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1 0 1 1 1

v All possible combinations of three bits

School of Computer Science G51CSA

8

Meaning Of Bits

v Bits themselves have no intrinsic meaning

v Byte merely stores string of 0’s and 1’s

v All interpretation determined by use

5

School of Computer Science G51CSA

9

Example Of Interpretation

v Assume three bits used for status of peripheral devices

v – First bit has the value 1 if a disk is connected

v – Second bit has the value 1 if a printer is connected

v – Third bit has the value 1 if a keyboard is connected

School of Computer Science G51CSA

10

Arithmetic Values

v Combination of bits interpreted as an integer

v Positional representation uses base 2

v Note: interpretation must specify order of bits

6

School of Computer Science G51CSA

11

Illustration Of Positional Interpretation

Example:

0 1 0 1 0 1

is interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21

School of Computer Science G51CSA

12

The Range Of Values

A set of k bits can be interpreted to represent a binary
integer.

When conventional positional notation is used, the
values that can be represented with k bits range from

0 through 2k– 1.

7

School of Computer Science G51CSA

13

Hexadecimal Notation

Convenient way to represent binary data

Uses base 16

Each hex digit encodes four bits

School of Computer Science G51CSA

14

Hexadecimal Digits

Hex Binary Decimal

Digit Value Equivalent

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 2

3 0 0 1 1 3

4 0 1 0 0 4

5 0 1 0 1 5

6 0 1 1 0 6

7 0 1 1 1 7

Hex Binary Decimal

Digit Value Equivalent

8 1 0 0 0 8

9 1 0 0 1 9

A 1 0 1 0 10

B 1 0 1 1 11

C 1 1 0 0 12

D 1 1 0 1 13

E 1 1 1 0 14

F 1 1 1 1 15

8

School of Computer Science G51CSA

15

Hexadecimal Constants

Supported in some programming languages

Typical syntax: constant begins with 0x

Example:

0xDEC90949

School of Computer Science G51CSA

16

Example Character Encodings

v EBCDIC

v ASCII

v Unicode

9

School of Computer Science G51CSA

17

EBCDIC

v Extended Binary Coded Decimal Interchange Code

v Defined by IBM

v Popular in 1960s

v Still used on IBM mainframe computers

v Example encoding: lower case letter a assigned binary
value

10000001

School of Computer Science G51CSA

18

ASCII

v American Standard Code for Information Interchange

v Vendor independent: defined by American National

Standards Institute (ANSI)

v Adopted by PC manufacturers

v Specifies 128 characters

v Example encoding: lower case letter a assigned binary
value

01100001

10

School of Computer Science G51CSA

19

Full ASCII Character Set

School of Computer Science G51CSA

20

Unicode

Each character is 16 bits long

Can represent larger set of characters

Motivation: accommodate languages such as Chinese

本課程是一門關於電腦體系結構的發展以及電腦系統軟硬體元件設計中的影響因素的學科。其
主題包括：指令集設計、處理器微架構及流水線操作、高速緩衝記憶體(cache)及虛擬記憶體的
組織結構、保護及共用、輸入/輸出(I/O)及中斷;順序及亂序超標量體系結構、超長指令字
(VLIW)電腦、向量超級電腦、多線程體系結構、對稱多處理器;以及平行電腦。

6.823 is a study of the evolution of computer architecture and the factors
influencing the design of hardware and software elements of computer systems.
Topics may include: instruction set design; processor micro-architecture and
pipelining; cache and virtual memory organizations; protection and sharing; I/O
and interrupts; in-order and out-of-order superscalar architectures; VLIW
machines; vector supercomputers; multithreaded architectures; symmetric
multiprocessors; and parallel computers.

11

School of Computer Science G51CSA

21

Integer Representation In Binary

Each binary integer represented in k bits

Computers have used k = 8, 16, 32, 60, and 64

Many computers support multiple integer sizes (e.g., 16
and 32 bit integers)

2k possible bit combinations exist for k bits

Positional interpretation produces unsigned integers

School of Computer Science G51CSA

22

Unsigned Integers

v Straightforward positional interpretation

v Each successive bit represents next power of 2

v No provision for negative values

v Arithmetic operations can produce overflow or underflow

(result cannot be represented in k bits)

v Handled with wraparound and carry bit

12

School of Computer Science G51CSA

23

Illustration Of Overflow

v Values wrap around address space

v Hardware records overflow in separate carry indicator

School of Computer Science G51CSA

24

Example Signed Integer Representations

v Sign magnitude

v One’s complement

v Two’s complement

v Note: each has interesting quirks

13

School of Computer Science G51CSA

25

Sign Magnitude Representation

v Familiar to humans

v First bit represents sign

v Successive bits represent absolute value of integer

v Interesting quirk: can create negative zero

School of Computer Science G51CSA

26

Sign-magnitude representation

Sign-magnitude representation: Most significant bit (sign
bit) used to indicate the sign and the rest represent the
magnitude. if

sign bit = 0 Positive number
sign bit = 1 Negative number

 ==

=−=

=

∑

∑

−

=

−

=

0 if 2

1 if 2

2

0

2

0

n

n

i
i

i

n

n

i
i

i

abA

abA

A
+18 = 00010010

-18 = 10010010

14

School of Computer Science G51CSA

27

Sign-magnitude representation

Problems with sign-magnitude representation:

J Addition and subtraction:

Require examination of both sign and magnitude

J Representing zero: +0 and -0

+0 = 00000000

-0 = 10000000

School of Computer Science G51CSA

28

Two’s complement Representation

J Positive number uses positional representation

J Negative number formed by subtracting 1 from positive
value and inverting all bits of result

J Example: 4-bit representation

0 0 1 0 represents 2
1 1 1 0 represents –2

J High-order bit is set if number is negative

J Interesting quirk: one more negative values than positive
values

15

School of Computer Science G51CSA

29

Example Of Values In Unsigned And Two’s Complement Representations

Binary Unsigned Two’s Complement
Value Equivalent Equivalent

11 1 1 15 -1
1 1 1 0 14 -2
1 1 0 1 13 -3
1 1 0 0 12 -4
1 0 1 1 11 -5
1 0 1 0 10 -6
1 0 0 1 9 -7
1 0 0 0 8 -8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0

School of Computer Science G51CSA

30

Implementation Of Unsigned And Two’s Complement

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic; software
running on the computer can choose an interpretation for
each integer.

Example (k = 4)

– Adding 1 to binary 1 0 0 1 produces 1 0 1 0
– Unsigned interpretation goes from 9 to 10
– Two’s complement interpretation goes from -7 to -6

16

School of Computer Science G51CSA

31

Sign Extension

J Needed when computer has multiple sizes of integers
J Works for unsigned and two’s complement
representations
J Extends high-order bit (known as sign bit)

J Assume a computer
J – Supports 16-bit and 32-bit integers
J – Uses two’s complement representation

J When 16-bit integer assigned to 32-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

J In essence, sign bit from short integer must be extended

School of Computer Science G51CSA

32

Example Of Sign Extension During Assignment

J The 8-bit version of integer -3 is:

1 1 1 1 1 1 0 1

J The 16-bit version of integer -3 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

J During assignment to a larger integer, hardware copies
all bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits

17

School of Computer Science G51CSA

33

Conversion between different bit lengths

+18 = 00010010 (sign magnitude, 8-bit)
+18 = 0000000000010010 (sign magnitude, 16-bit)
-18 = 10010010 (sign magnitude, 8-bit)
-18 = 1000000000010010 (sign magnitude, 16-bit)

+18 = 00010010 (twos complement, 8-bit)
+18 = 0000000000010010 (twos complement, 16-bit)
-18 = 11101110 (twos complement, 8-bit)
-18 = 1111111111101110 (twos complement, 16-bit)

Fixed point Representation

Twos complement representation

School of Computer Science G51CSA

34

Example Of Sign Extension During Shift

J Right shift of a negative value should produce a negative value

J Example

J – Shifting -4 one bit should produce -2 (divide by 2)

J – Using sixteen-bit representation, -4 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

J After right shift of one bit, value is -2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

J Solution: replicate high-order bit during right shift

18

School of Computer Science G51CSA

35

Summary Of Sign Extension

Sign extension: in two’s complement arithmetic,
when an integer Q composed of K bits is copied to an
integer of more than K bits, the additional high-order
bits are made equal to the top bit of Q. Extending the
sign bit means the numeric value remains the same.

School of Computer Science G51CSA

36

Because two’s complement hardware performs sign
extension, copying an unsigned integer to a larger
unsigned integer changes the value; to prevent such
errors from occurring, a programmer or a compiler
must add code to mask off the extended sign bits.

A Consequence For Programmers

19

School of Computer Science G51CSA

37

v Need to choose order for

v – Storage in physical memory system
v – Transmission over serial medium (e.g., a data network)

v Bit order
v – Handled by hardware
v – Usually hidden from programmer

v Byte order
v – Affects multi-byte data items such as integers
v – Visible and important to programmer

Numbering Bits And Bytes

School of Computer Science G51CSA

38

v Least significant byte of integer in lowest memory location

v – Known as little endian

v Most significant byte of integer in lowest memory location

v – Known as big endian

v Other orderings
v – Digital Equipment Corporation once used an ordering with sixteen-bit
words in big endian order and bytes within the words in little endian order.

v Note: only big and little endian storage are popular

Possible Byte Order

20

School of Computer Science G51CSA

39

v Note: difference is especially important when transferring data
between computers for which the byte ordering differs

Illustration Of Big And Little Endian Byte Order

School of Computer Science G51CSA

40

J Numbers with fractions

J Could be done in pure binary

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

J Where is the binary point?

J Fixed?
Very limited - cannot represent very large or very small numbers

J Moving?
How do you show where it is?

Real Numbers

21

School of Computer Science G51CSA

41

Floating Point Representation

Principles

Scientific notation:

141043.5000,000,000,000,543 ×=
Slide the decimal point to a convenient location
Keep track of the decimal point use the exponent of 10

Do the same with binary number in the form of

EBS ±×± J Sign: + or -
J Significant: S
J Exponent: E

School of Computer Science G51CSA

42

Floating Point Representation

Example

J 32-bit floating point format.
J Leftmost bit = sign bit (0 positive or 1 negative).
J Exponent in the next 8 bits. Use a biased representation.

A fixed value, called bias, is subtracted from the field to get the true exponent
value. Typically, bias = 2k-1 - 1, where k is the number of bits in the exponent
field. Also known as excess-N format, where N = bias = 2k-1 - 1. (The bias could
take other values)

In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to
+128

J Final portion of word (23 bits in this example) is the significant
(sometimes called mantissa).

22

School of Computer Science G51CSA

43

Floating Point Representation

Many ways to represent a floating point number, e.g.,

625 20110.021102110.0 ×××
Normalization: Adjust the exponent such that the leading bit
(MSB) of mantissa is always 1. In this example, a normalized
nonzero number is in the form

Ebbbb ±×± 2... .1
J Left most bit always 1 - no need to store
J 23-bit field used to store 24-bit mantissa with a value
between 1 to 2

School of Computer Science G51CSA

44

Floating Point Representation

J Sign stored in the first bit
J Left most bit of the TRUE mantissa always 1 - no need to store
J The value of 127 is added to the TRUE exponent to be stored
J The base is 2

23

School of Computer Science G51CSA

45

IEEE 754 Standard

Floating Point Representation

J Single Format and Double Format

1 Single Precision format:
1 32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits

1 Numbers are normalised to form: ; where b = 0 or 1

1 Exponent formatted using excess-127 notation with implied base of 2

1 Theoretical exponent range 2-127 to 2128

1 Actuality, exponent values of 0 and 255 used for special values

1 Exponent range restricted to -126 to 127

1 0.0 defined by a mantissa of 0 and the special exponent value of 0

1 Allows + - infinity defined by a mantissa value of 0 and exponent value 255

Ebbbb ±×± 2....1

School of Computer Science G51CSA

46

Range Of Values In IEEE Floating Point

1 Single precision range is:

2126 to 2127

1 Decimal equivalent is approximately:

1038 to 1038

1 Double precision range is:

10308 to 10308

24

School of Computer Science G51CSA

47

Data Aggregates

1 Typically arranged in contiguous memory

1 Example: three integers

School of Computer Science G51CSA

48

Integer Arithmetic

Negation

Sign-magnitude: Invert the sign bit

Twos complement:

J Invert each bit (including the sign bit).
J Treat the result as unsigned binary integer, and add 1

E.g.

25

School of Computer Science G51CSA

49

Integer Arithmetic

Addition and Subtraction Overflow
Result larger than can be
held in the word size being
used resulting in overflow.

If two numbers have the same
sign are added, then overflow
occurs iif (if and only if) the
result has the opposite sign.

Carry bit ignored

School of Computer Science G51CSA

50

Subtraction

To subtract one number
(subtrahend) from another
number minuend), take the
twos complement (negation)
of the subtrahend and add it
to the minuend.

Integer Arithmetic

(M - S)

Overflow rule
applies here also

26

School of Computer Science G51CSA

51

Integer Arithmetic

Addition and Subtraction Hardware Block Diagram

School of Computer Science G51CSA

52

Integer Arithmetic

Multiplication: Unsigned binary integers

27

School of Computer Science G51CSA

53

Integer Arithmetic
Multiplication

Flowchart for unsigned binary multiplication

School of Computer Science G51CSA

54

Integer Arithmetic

Division: Unsigned binary integer

28

School of Computer Science G51CSA

55

Floating Point Arithmetic

Addition and Subtraction

J Check for zero
J Align the significants
J Add or subtract the significants
J Normalise the result

E.g. 0.5566 x 103 + 0.7778 x 103

0.5323 x 102 + 0.7268 x 10-1

School of Computer Science G51CSA

56

Summary

Basic output from digital logic is a bit

Bits grouped into sets to represent

– Integers
– Characters
– Floating point values

Integers can be represented as
– Sign magnitude
– Two’s complement

29

School of Computer Science G51CSA

57

Summary

One piece of hardware can be for both

– Two’s complement arithmetic
– Unsigned arithmetic

Bytes of integer can be numbered in
– Big-endian order
– Little-endian order

Organizations such as ANSI and IEEE define
standards for data representation

School of Computer Science G51CSA

58

Summary

Integer arithmetic

two’s complement - subtraction and addition
rules, overflow rule

Floating point arithmetic

