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Digital Logic

vV Built on two-valued logic system

v Can be interpreted as

VvV — Five volts and zero volts

vV — High and low

V — True and false
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Data Representation

r

vV Builds on digital logic

v Applies familiar abstractions

Vv Interprets sets of Boolean values as
vV — Numbers
vV — Characters

V — Addresses
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Binary Digit (Bit)
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v Direct representation of digital logic values

vV Assigned mathematical interpretation

V 0and !/

Vv Multiple bits used to represent complex data item
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Byte

v Set of multiple bits
v Size depends on computer
v Examples of byte sizes
v — CDC: 6-bit byte
v — BBN: 10-bit byte
v — IBM: 8-bit byte
v On many computers, smallest addressable unit of storage
v Note: following most modern computers, we will assume an

8-bit byte
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Byte Size And Values

v Number of bits per byte determines range of values that can
be stored

v Byte of & bits can store 2* values

v Examples

v — Six-bit byte can store 64 possible values

v — Eight-bit byte can store 256 possible values
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Binary Representation

¥

000 001 010 011
100 101 110 111

v All possible combinations of three bits
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Meaning Of Bits
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Vv Bits themselves have no intrinsic meaning

v Byte merely stores string of 0’s and 1°s

v All interpretation determined by use
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Example Of Interpretation

v Assume three bits used for status of peripheral devices

v — First bit has the value 1 if a disk is connected
Vv — Second bit has the value 1 if a printer is connected

Vv — Third bit has the value 1 if a keyboard is connected
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Arithmetic Values

v Combination of bits interpreted as an integer

v Positional representation uses base 2

v Note: interpretation must specify order of bits
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Ilustration Of Positional Interpretation

¥

25=32 24=16 23=8 22=4 21=2 20=1

I S DU B

Example:

010101

is interpreted as:

O0X254+1x24+0%x23+1x22+0x%x21+1x20=2]
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The Range Of Values
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A set of k bits can be interpreted to represent a binary
integer.

When conventional positional notation is used, the
values that can be represented with k bits range from

0 through 2% 1.
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Hexadecimal Notation

¥

Convenient way to represent binary data

Uses base 16

Each hex digit encodes four bits
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Hexadecimal Digits
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Hex Binary Decimal
Digit Value Equivalent
0 0000 0
1 0001 1 Hex Binary Decimal
2 0010 2 Digit Value Equivalent
3 0011 3 8 1000 8
4 0100 4 ? 1oo1 ?
5 0101 5 A 1010 10
6 0110 6 B 1011 11
7 0111 7 Cc 1100 12
D 1101 13
E 1110 14
F 1111 15
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Hexadecimal Constants

Supported in some programming languages

Typical syntax: constant begins with Ox

Example:

0xDEC90949
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Example Character Encodings

v EBCDIC
v ASCII

v Unicode
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EBCDIC

r

v Extended Binary Coded Decimal Interchange Code
v Defined by IBM

v Popular in 1960s

v Still used on IBM mainframe computers

v Example encoding: lower case letter a assigned binary
value

10000001
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ASCII
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v American Standard Code for Information Interchange
v Vendor independent: defined by American National
Standards Institute (ANSI)

v Adopted by PC manufacturers

Vv Specifies 128 characters

v Example encoding: lower case letter a assigned binary
value

01100001

The University of
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Full ASCII Character Set

r

00 nul | 01 soh | 02 stx | 03 etx | 04 eot | 05 enq | 06 ack | 07 bel
08 bs | 09 ht | DA If OB vt OC np |OD cr |OE so | OF si
10 dle | 11 de1 | 12 dc2 | 13 dc3 | 14 dc4 | 15 nak | 16 syn | 17 etb
18 can [ 19 em | 1A sub | 1B esc | 1C fs 1D gs e s 1F us
20 sp | 21 ! 2 " 23 # 24 % 25 % 26 & 27
28 29 ) 2A 2B+ 2c 2D - 2E . F
30 0 31 1 32 2 3 3 34 4 35 5 36 6 3T 7
38 8 39 9 a0 3B 3C < 3D = 3E > 3F 7
40 @ 4“1 A 42 B 43 C 4 D 45 E 46 F 47 G
48 H 49 | A ) 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 § 54 T 55 U 56 V 57 W
58 X 50 Y 5A Z 5B [ 5¢ \ 50 ] 5 " 5F
60 ¢ 61 a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C | 6D m 6E n 6F o
70 p 1 q 72 73 s 74t 7% u 76 v 7w
7 x 9 vy TA z B { | 7m0} 7TE  ~ TF  del
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Unicode
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Each character is 16 bits long
Can represent larger set of characters

Motivation: accommodate languages such as Chinese

FAREE-FIHNEMERAEENERUREKAGEERTASG TP ERRNER. H
FTHEEE: BORN BERMEBRIIKGIRE. SEEETIEE(cache) RERTIFIEMN
LS. RERXAE. GA/GHI/O)RPEH;IEFRIALFREESEALE. BREST
(VUW)EfS. mEBRER. SHARERAGE. BB EEE URTTER.

6.823 is a study of the evolution of computer architecture and the factors
influencing the design of hardware and software elements of computer systems.
Topics may include: instruction set design; processor micro-architecture and
pipelining; cache and virtual memory organizations; protection and sharing; 1I/O
and interrupts; in-order and out-of-order superscalar architectures; VLIW
machines; vector supercomputers; multithreaded architectures; symmetric
multiprocessors; and parallel computers.
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Integer Representation In Binary

) g

Each binary integer represented in k bits
Computers have used k =8, 16, 32, 60, and 64

Many computers support multiple integer sizes (e.g., 16
and 32 bit integers)

2k possible bit combinations exist for k bits

Positional interpretation produces unsigned integers
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Unsigned Integers
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v Straightforward positional interpretation
v Each successive bit represents next power of 2

v No provision for negative values

Vv Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

v Handled with wraparound and carry bit
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IMustration Of Overflow

¥

)

averflow result

v Values wrap around address space

v Hardware records overflow in separate carry indicator
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Example Signed Integer Representations
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v Sign magnitude
vV One’s complement
v Two’s complement

Vv Note: each has interesting quirks
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Sign Magnitude Representation

¥

v Familiar to humans
v First bit represents sign
v Successive bits represent absolute value of integer

v Interesting quirk: can create negative zero
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Sign-magnitude representation

r

Sign-magnitude representation: Most significant bit (sign
bit) used to indicate the sign and the rest represent the
magnitude. if

signbit=0  Positive number
signbit=1  Negative number
n-2
A=>2'b, ifa, =0
=0 +18 =00010010

-18=10010010

A= —nf::z"bi ifa, =1

i=0
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Problems with sign-magnitude representation:
J Addition and subtraction:
Require examination of both sign and magnitude
J Representing zero: +0 and -0
+0 = 00000000

-0 =10000000
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Sign-magnitude representation
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J Positive number uses positional representation

J Negative number formed by subtracting 1 from positive
value and inverting all bits of result

J Example: 4-bit representation

00 1 0 represents 2
111 0 represents —2

J High-order bit is set if number is negative

J Interesting quirk: one more negative values than positive

values
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Two’s complement Representation
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Example Of Values In Unsigned And Two’s Complement Representations

r

Binary Unsigned Two’s Complement
Value Equivalent Equivalent
1111 15 -1
1110 14 -2
1101 13 -3
1100 12 -4
1011 1 -5
1010 10 -6
1001 9 -7
1000 -8
0111 7 7
0110 6 6

0101 5 5
0100 4 4

0011 3 3
0010 2 2

0001 1 1

0000 0 Q
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Implementation Of Unsigned And Two’s Complement

r

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic, software
running on the computer can choose an interpretation for
each integer.

Example (k=4)
— Adding 1 to binary 1 0 0 1 produces 1 0 1 0

— Unsigned interpretation goes from 9 to 10
—Two’s complement interpretation goes from -7 to -6
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Sign Extension

) g

J Needed when computer has multiple sizes of integers
J Works for unsigned and two’s complement
representations

J Extends high-order bit (known as sign bir)

J Assume a computer
J — Supports 16-bit and 32-bit integers
J — Uses two’s complement representation

J When 16-bit integer assigned to 32-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

J In essence, sign bit from short integer must be extended
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Example Of Sign Extension During Assignment
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J The 8-bit version of integer -3 is:

11111101

J The 16-bit version of integer -3 is:
I111111111111101

J During assignment to a larger integer, hardware copies

all bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits
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Twos complement representation

r

Conversion between different bit lengths

+18 = 00010010  (sign magnitude, 8-bit)

+18 =0000000000010010  (sign magnitude, 16-bit)

-18 = 10010010  (sign magnitude, 8-bit)

-18 =1000000000010010  (sign magnitude, 16-bit)
+18 = 00010010  (twos complement, 8-bit)
+18 =0000000000010010  (twos complement, 16-bit)
-18 = 11101110  (twos complement, 8-bit)

-18=1111111111101110  (twos complement, 16-bit)

Fixed point Representation
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Example Of Sign Extension During Shift
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J Right shift of a negative value should produce a negative value
J Example
J — Shifting -4 one bit should produce -2 (divide by 2)
J — Using sixteen-bit representation, -4 is:
I111111111111100
J After right shift of one bit, value is -2:
I1T11111111111110

J Solution: replicate high-order bit during right shift
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Summary Of Sign Extension

) g

Sign extension. in two’s complement arithmetic,
when an integer Q composed of K bits is copied to an
integer of more than K bits, the additional high-order
bits are made equal to the top bit of Q. Extending the
sign bit means the numeric value remains the same.
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A Consequence For Programmers

) g

Because two’s complement hardware performs sign
extension, copying an unsigned integer to a larger
unsigned integer changes the value, to prevent such
errors from occurring, a programmer or a compiler
must add code to mask off the extended sign bits.
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Numbering Bits And Bytes

r

Vv Need to choose order for

v — Storage in physical memory system
v — Transmission over serial medium (e.g., a data network)

v Bit order
v — Handled by hardware
vV — Usually hidden from programmer

v Byte order
Vv — Affects multi-byte data items such as integers
v — Visible and important to programmer
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Possible Byte Order
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v Least significant byte of integer in lowest memory location
vV — Known as little endian

vV Most significant byte of integer in lowest memory location
v — Known as big endian

v Other orderings

V — Digital Equipment Corporation once used an ordering with sixteen-bit
words in big endian order and bytes within the words in little endian order.

vV Note: only big and little endian storage are popular

The University of
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Ilustration Of Big And Little Endian Byte Order

¥

0 1 2 3

0x00 0x00 0x00 0x01

Big Endian
3 2 1 0

0x00 0x00 0x00 0x01

Little Endian

v Note: difference is especially important when transferring data
between computers for which the byte ordering differs
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Real Numbers

r

J Numbers with fractions

J Could be done in pure binary
1001.1010 = 24 + 20 +2-1 + 2-3=9,625

J Where is the binary point?

J Fixed?

Very limited - cannot represent very large or very small numbers
J Moving?

How do you show where it is?
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Floating Point Representation
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Principles

Scientific notation:
543,000,000,000,000 = 5.43x10"

Slide the decimal point to a convenient location
Keep track of the decimal point use the exponent of 10

Do the same with binary number in the form of

+ §x B Isigntor-
- J Significant: S
J Exponent: E
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Floating Point Representation

—— 5 hits o 23 bits -
Exampl } ‘ biased exponent | significand

r

J 32-bit floating point format.

J Leftmost bit = sign bit (0 positive or 1 negative).

J Exponent in the next 8 bits. Use a biased representation.
A fixed value, called bias, is subtracted from the field to get the true exponent
value. Typically, bias = 2! -1, where k is the number of bits in the exponent

field. Also known as excess-N format, where N = bias = bALS (The bias could
take other values)

In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to
+128

J Final portion of word (23 bits in this example) is the significant
(sometimes called mantissa).
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Floating Point Representation

Many ways to represent a floating point number, e.g.,

0.110%2° 11027 0.0110x2°

Normalization: Adjust the exponent such that the leading bit
(MSB) of mantissa is always 1. In this example, a normalized
nonzero number is in the form

+1.bbb..bx2*"

J Left most bit always 1 - no need to store
J 23-bit field used to store 24-bit mantissa with a value
between 1 to 2
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Floating Point Representation

sign of
significand E
e -— 8 bits o 23 hits -
\T ‘ biased exponent ‘ significand
{a) Format

10100 2o

1.1010001 = 2 = 0 10010011 10100010000000000000000 = 1.638125 x 2
-1.1010001 = 2'91%% - 1 10010011 10100010000000000000000 = -1.638125 x 27
11010001 = 271909 = § 01101011 10100010000000000000000 = 1.638125 x 2737
-1.1010001 x 2717%9% - 1 01101011 10100010000000000000000 = -1.638125 = 272°

J Sign stored in the first bit

J Left most bit of the TRUE mantissa always 1 - no need to store
J The value of 127 is added to the TRUE exponent to be stored
J The base is 2

The University of

No‘ting ham School of Computer Science G51CSA

44

22



Floating Point Representation

r

IEEE 754 Standard

J Single Format and Double Format

1 Single Precision format:
1 32 bits, sign = 1 bit, Exponent = 8bits, Mantissa = 32 bits
1 Numbers are normalised to form: + | ppp _px2:2 ; whereb=0or 1
1 Exponent formatted using excess-127 notation with implied base of 2
1 Theoretical exponent range 2717 0 2"
1 Actuality, exponent values of 0 and 255 used for special values
1 Exponent range restricted to -126 to 127
1 0.0 defined by a mantissa of 0 and the special exponent value of 0
1

Allows + - infinity defined by a mantissa value of 0 and exponent value 255
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Range Of Values In IEEE Floating Point
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1 Single precision range is:
2126 ¢ 2127

1 Decimal equivalent is approximately:
1038 to 1038

1 Double precision range is:
10308 to 10308

The University of
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Data Aggregates

1 Typically arranged in contiguous memory
1 Example: three integers

0 1 2 3 4 5
T T T

integer #1 integer #2 integer #3
1 | |
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Integer Arithmetic
Negation
Sign-magnitude: Invert the sign bit
Twos complement:

J Invert each bit (including the sign bit).
J Treat the result as unsigned binary integer, and add 1

E.g.
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Addition and Subtraction

Integer Arithmetic

The University of

Overflow
1001 1100
+0101 +0100 Result larger than can be
1110 = -2 10000 = 0 held in the word size being
(a) (-7) + (+5) (b) (-4) + (+4) used resulting in overflow.
If two numbers have the same
0011 1100 sign are added, then overflow
+0100 +1111 occurs iif (if and only if) the
0111 = 7 11011 = -5 . .
result has the opposite sign.
(c) (+3) + (+4) (@) (-4) + (-1)
Carry bit ignored
0101 1001
+0100 +1010
1001 = Overflow 10011 = Overflow
(e) (+5) + (+4) () -7) +(-6)

H School of Computer Science G51CSA
Nottingham ©
Integer Arithmetic
0010 0101 .
+1001 +1110 Subtraction
1011 10011 = 3
(a) M =2 = 0010 (b) M = 5 = 0101 To subtract one number
5 =7 =011 8 =2 = 0010 (subtrahend) from another
-8 = 1001 -8 = 1110 .
number minuend), take the
o1 o101 twos complement (negation)
+1110 +0010 of the subtrahend and add it
41001 0111 = 7 to the minuend.
(¢) M =-5 = 1011 (d) M = 5 = 0101
§ =2 = 0010 § =-2 = 1110
-5 = 1110 -5 = 0010
o111 010 Overflow rule
+0111 +1100 .
1110 = Overflow 10110 = Overflow applles here alSO
(e) M =17 = 0111 (f) M =-6 = 1010
5§ =-7 = 1001 S =4 = 0100
-8 = 0111 -8 = 1100
M -S)

The University of
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Integer Arithmetic

r

OF = overflow bit

W = Switch feclect addition e subiraction) - Addition and Subtraction Hardware Block Diagram
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Integer Arithmetic

r

Multiplication: Unsigned binary integers

1011 Multiplicand (11)
%1101 Multiplier (13)
1011
0000
1011
1011 ]
10001111 Product (143)

» Partial products

The University of
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Integer Arithmetic
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Multiplication

Multiplicand

CoA 0

M & Multiplicand
Q & Multiplier
Count < n
 —

Add Shift and Add
Cantrol Logic

Shift Right

<
(R

0 0010 1111

] 1101 1111
0 0110 1111

1 Qo001 1111
0 1000 1111

The University of

1011

1011
1011

1011

1011
1011

1011
1011

Initial Values

add } First
Shift Cyecle
X Second
shift cyele
Add Third
Shift Cycle

Add } Fourth
Shift Cycle

Multiplier

Shift right C, A, Q
Count « Count - 1)

Product
inA,Q

Flowchart for unsigned binary multiplication

NO!tinghalTl School of Computer Science G51CSA .
Integer Arithmetic
Division: Unsigned binary integer
00001101 -=—— Quotient
Divisor ——» 1011/10010011 -«—— Dividend
1011¥
001110
1011
Partial 001111
inders
remainders 1 ICI l 1
100 «4—— Remainder
The University of
E Noitingham School of Computer Science G51CSA .
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Floating Point Arithmetic
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Addition and Subtraction

J Check for zero

J Align the significants

J Add or subtract the significants
J Normalise the result

E.g.  05566x10°+0.7778 x 10°

0.5323 x 10° + 0.7268 x 10™
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Summary
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®Basic output from digital logic is a bit
®Bits grouped into sets to represent

®- Integers
@ Characters
@®- Floating point values

@®Integers can be represented as
@®- Sign magnitude
®- Two’s complement
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Summary

) g

®0One piece of hardware can be for both

@®- Two’s complement arithmetic
@®- Unsigned arithmetic

@®Bytes of integer can be numbered in
@®- Big-endian order
@®- Little-endian order

@®Organizations such as ANSI and IEEE define
standards for data representation
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Summary

) g

@®Integer arithmetic

® two’s complement - subtraction and addition
rules, overflow rule

@®Floating point arithmetic
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