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Feed-forward Neural Networks 

 

1 Introduction 

 

The development of layered feed-forward networks began in the late 1950's, 

represented by Rosenblatt's perceptron and Widrow's ADaptive LINear Element 

(ADLINE)  

 

Both the perceptron and ADLINE are single layer networks and are often referred to 

as single layer perceptrons.  

 

Single layer perceptrons can only solve linearly separable problems.  

 

The limitations of the single layer network has led to the development of multi-layer 

feed-forward networks with one or more hidden layers, called multi-layer perceptron 

(MLP) networks. MLP networks overcome many of the limitations of single layer 

perceptrons, and can be trained using the backpropagation algorithm. The 

backpropagation technique was invented independently several times.  

 

In 1974, Werbos developed a backpropagation training algorithm. However, Werbos' 

work remained almost unknown in the scientific community, and in 1985, Parker 

rediscovered the technique. Soon after Parker published his findings, Rumelhart, 

Hinton and Williams also rediscovered the technique. It is the efforts of Rumelhart 

and the other members of the Parallel Distributed Processing (PDP) group, that make 

the backpropagation technique a mainstay of neurocomputing.  

 

To date, backpropagation networks are the most popular neural network model and 

have attracted most research interest among all the existing models. 
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2 Single Layer Perceptron 

 

The single layer perceptron was first devised by Rosenblatt in the late 1950's and early 

1960's. The basic model of a perceptron capable of classifying a pattern into one of 

two classes is shown in Fig. 1.  
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Figure 1 A basic perceptron model 

 

The machine consists of an array S of sensory units which are randomly connected to 

a second array A of associative units. Each of these units produces an output only if 

enough of the sensory units which are connected to it are activated, that is, the output 

signals of the associative units are binary. 

 

The sensory units can be viewed as the means by which the machine receives stimuli 

from its external environment. The outputs of the associative units are the input to the 

perceptron.  

 

The response of the machine is proportional to the weighted sum of the outputs of the 

associative units; i.e., if xi denotes the output signal of the ith associative unit and wi 

the corresponding weight, the response is given by  
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and this response signal is passed through a hard limiting non-linearity to produce the 

output of the machine. 
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An effective technique for analysing the behaviour of the perceptron network shown 

in Fig. 1 is to plot a map of the decision regions created in the multidimensional space 

spanned by the input variables. The perceptron network of Fig. 1 forms the decision 

regions separated by a hyperplane defined by 
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As can be seen from (2), the decision boundary is determined by the connection 

weights of the network.  

 

Figure 2 shows an example of the decision regions created by the perceptron network 

for two-dimensional input vectors. In this case, the hyperplane is a line. These 

decision regions classify the input patterns as belonging to one of the two classes. In 

Fig. 2, inputs above the boundary line lead to a class 1 (y >= 0) response, and input 

patterns below the boundary line lead to a class 2 (y < 0) response. 
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Figure 2. Decision regions formed by the perceptron network 

 

2.1 The Perceptron Training Algorithm 

 

The training algorithm for the perceptron network of Fig. 1 is a simple scheme for the 

iterative determination of the weight vector W. This scheme, known as the perceptron 

convergence procedure, can be summarised as follows. 

 

The initial connection weights are set to small random non-zero values. A new input 

pattern is then applied and the output is computed as  
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xf  is the hard limiting non-linearity and n is 

the iteration index.  

 

Connection weights are updated according to 
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where η  is a positive gain factor less than 1 
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The perceptron convergence procedure does not adapt the weights if the output 

decision is correct.  

 

If the output decision disagrees with the binary desired response ( )nd , however, 

adaptation is effected by adding the weighted input vector to the weight vector when 

the error is positive, or subtracting the weighted input vector from the weight vector 

when the error is negative.  

 

The perceptron convergence procedure is terminated when the training patterns are 

correctly separated.  

 

Figure 3 shows an example of the use of the perceptron convergence procedure. 

Samples from class 1 are represented by circles in the figure, and samples from class 2 

are represented by crosses. Samples from class 1 and class 2 were presented 

alternately. The four lines show the four decision boundaries after the weights had 

been adapted following errors on iterations 0, 2, 4, and 80. In this example it can be 

seen that the classes were well separated after only four iterations. 
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Figure 3 An example of the perceptron convergence process 

 

Rosenblatt proved that if the inputs presented are separable into two classes, the 

perceptron convergence procedure converges and positions the decision hyperplane 

between those two classes. One problem with the perceptron convergence procedure is 

that the decision boundaries may oscillate continuously when inputs are not separable 

and distributions overlap.  

 

3 The ADLINE and Widrow-Hoff Algorithm 

 

The adaptive linear element (ADLINE) is a simple type of processing element that has 

a real vector X  as its input and a real number y  as its output (Fig. 4) and uses the 

Widrow-Hoff training algorithm. 
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Figure 4 Adaptive Linear Element (ADLINE) 

 

The input to the ADLINE is X x x x
N

= ( , ,..., )
0 1

, where x0  is the bias input, set to a 

constant value (usually x0 =1). The output of the ADLINE is the inner product of the 

input vector X  and the weight vector W w w w wN= ( , , , , )0 1 2 L , that is  

 

y x w x w x wn N= + + +0 0 1 1 L  

 

The weight vector W  defines a hyperplane in the N-dimensional space of input 

vectors X , as shown in Fig. 5.  
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Figure 5 ADLINE decision boundary in the input space.For all input vectors X  

that fall in the area above the decision hyperplane, the ADLINE output y > C. For 

all input vectors X  that fall in the area below the hyperplane, the ADLINE output 

y < C. 
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The hyperplane is given by  

 

C1100 =+++ Nnwxwxwx L  

 

where C is a constant number. 

 

Cost Function of the ADLINE  

 

For each input vector X n( )  to the ADLINE, there exists a corresponding target output 

(desired output) d n( ). The cost function of the ADLINE is defined as 
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where P is the number of training vectors, and y n( )  is the actual output of ADLINE 

for the nth training vector X n( )  

 

The objective of training is to find a weight vector W * that minimises the cost 

function 

 

3.1 The Widrow-Hoff Training Algorithm 

 

In 1959, Bernard Widrow, along with his student Macron E. Hoff, developed an 

algorithm for finding the weight vector W *. This algorithm is the well known 

Widrow-Hoff algorithm, also known as the LMS law and the delta rule. 

 

The method for finding W* is to start from an initial value of W  and then 'slide down' 

the ADLINE cost function surface until the bottom of the surface is reached. Since the 

cost function is a quadratic function of the weights, the surface is convex and has a 

unique (global) minimum. 
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The basic principle of the Widrow-Hoff algorithm is a gradient descent technique and 

has the form of 
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where   δ( ) ( ) ( )n d n y n= − .  

Instead of computing the true gradient using equation (7), the Widrow-Hoff algorithm 

uses the instantaneous gradient which is readily available from a single input data 

sample, and the Widrow-Hoff training algorithm is given by 
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where η  is the training constant. 

 

The training constant η  determines the stability and convergence rate, and is usually 

chosen by trial and error. If η  is too large, the weight vector will not converge; if η  is 

too small, the rate of convergence will be slow. 
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4 Multi-layer Feed-forward Networks and the Backpropagation Training 

 Algorithm 

 

In the previous two sections, networks with only input and output units were 

described. These networks have proved useful in a wide variety of applications. The 

essential character of such networks is that they map similar input patterns to similar 

output patterns. This is why such networks can do a relatively good job in dealing 

with patterns that have never been presented to the networks. However the constraint 

that similar input patterns lead to similar outputs is also a limitation of such networks. 

For many practical problems, very similar input patterns may have very different 

output requirements. In such cases, the networks described in sections 2.2 and 2.3 

may not be able to perform the necessary mappings.  

 

Minsky and Papert pointed out that such networks cannot even solve the exclusive-or 

(XOR) problem illustrated in the table below. 

 

 

XOR TRUTH TABLE 

 

Input patterns outputs 

0   0 0 

0   1 1 

1   0 1 

1   1 0 
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Figure 6 Single layer feed-forward network is incapable of solving the XOR problem 

 

To see this in a more straightforward way, we recall from the above sections that 

single layer networks form a hyperplane that separates the N-dimensional Euclidean 

space of input vectors. In the case of the XOR problem, the input vectors are two-

dimensional and the hyperplane (which is determined by the weights of the network) 

is a straight line. As can be seen from Fig. 6, this line should divide the space such 

that the points (0,0) and (1,1) lie on one side and the points (0,1) and (1,0) lie on the 

other side of the line. This is clearly impossible for a single layer network.  

 

To overcome the limitations of single layer networks, multi-layer feed-forward 

networks can be used, which not only have input and output units, but also have 

hidden units that are neither input nor output units. A three layer feed-forward 

network with one hidden layer is shown in Fig. 7.  
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Figure 7 A three layer feed-forward network 

 

Multi-layer networks overcome many of the limitations of single layer networks, but 

were generally not used in the past (before mid 1980s) because an effective training 

algorithm was not available. With the publication of the backpropagation training 

algorithm by Rumelhart, Hinton and Williams in the mid-1980's, multi-layer feed-

forward networks, some times called multi-layer perceptron (MLP) networks have 

become a mainstay of neural network research. In September 1992, Professor B. 

Widrow from Stanford University told the delegates of the 1992 European Neural 

Network Conference that "three quarters of the neural network researchers in the USA 

work on backpropagation networks".  

 

The capabilities of multi-layer networks stem from the non-linearities used with the 

units. Each neuron in the network receives inputs from other neurons in the network, 

or receives inputs from the outside world. The outputs of the neurons are connected to 

other neurons or to the outside world. Each input is connected to the neurons by a 
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weight. The neuron calculates the weighted sum of the inputs (called the activation), 

which is passed through a non-linear transfer function to produce the actual output for 

the neuron. The most popular non-linear transfer function is of the sigmoidal type.  

 

A typical sigmoid function has the form: 
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When g  become large, the sigmoid function become a signum function as shown in 

Fig. 8 
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Figure 8 Sigmoid function used in multi-layer feed-forward networks 

 

The introduction of one hidden layer allows the network to represent an arbitrary 

Boolean function, and the use of two hidden layers allows the network to represent an 

arbitrary decision space. The hidden units also enable networks to automatically 

represent geometrical invariance such as translation invariance. 

A theorem which states that the backpropagation network is able to implement any 

function of practical interest to any desired degree of accuracy was proven by Hecht-

Nielsen and is expressed below. 
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Backpropagation Network Function Approximation Theorem: Given any ε > 0 

and any L2  function f RN M: ,0 1 → , there exists a three-layer (with two hidden 

layers) backpropagation network that can approximate f  to within ε  mean squared 

error accuracy. 

 

The above theorem guarantees the ability of a multi-layer network with the correct 

weights to accurately implement an arbitrary L2  function. It does not state how the 

weights should be selected or even whether these weights can be found using existing 

network learning algorithms. 

 

Notwithstanding the fact that the backpropagation networks are not guaranteed to be 

able to find the correct weights for any given task, they have found numerous 

applications in a variety of problems. Sejnowski and Rosenberg have demonstrated 

that backpropagation networks can learn to convert text to realistic speech. Burr has 

shown that backpropagation networks can be used for recognition of spoken digits 

and hand-written characters with excellent performance. Backpropagation networks 

can also be used for data compression by forcing the output to reproduce the input for 

a network with a lower-dimensional hidden layer, and many many more … 

 

 

4.1 Backpropagation Training Algorithm 

 

The backpropagation training algorithm is an extension of the Widrow-Hoff 

algorithm. It uses a gradient descent technique to minimise a cost function equal to 

the mean squared difference between the desired and the actual network outputs. The 

backpropagation training algorithm proposed by Rumelhart et al. involves the 

presentation of a set of pairs of input and output patterns. The network first uses the 

input vector to produce its own output vector (actual network output) and then 

compares this actual output with the desired output, or target vector. If there is no 
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difference, no training takes place, otherwise the weights of the network are changed 

to reduce the difference between actual and desired outputs. 

 

Cost Function of Backpropagation Network: The cost function that the 

backpropagation network tries to minimise is the squared difference between the 

actual and desired output value summed over the output units and all pairs of input 

and output vectors. 
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be a measure of error on input/output pattern n 

 

where ( )nd j  is the desired output for the jth component of the output vector for input 

pattern n, M is the number of output units,and ( )no j  is the jth element of the actual 

output vector produced by the presentation of input pattern n. 
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be the weighted sum input to unit j in the hidden layer produced by the presentation of 

input pattern n, 

 

where w
hji

 is the weight connecting input unit i and hidden unit j, and N is the number 

of input units. 
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be the weighted sum input to unit j in the output layer produced by the presentation of 

input pattern n, where H is the number of hidden units, o
hi

(n) is the output of hidden 

16 

unit i produced by the presentation of  input pattern n,and woji  is the weight 

connecting hidden unit i and output unit j. 

 

The outputs of the hidden units and output units are, respectively, 

 

  ( ) ( )( )nsfno hjhj =       (4.5) 

 

  ( ) ( )( )nsfno ojj =       (4.6) 

 

where f  is a differentiable and non-decreasing non-linear transfer function. 
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be the overall measure of error, where P is the total number of the training samples. 

E  is called the Cost Function of the backpropagation network. The backpropagation 

algorithm is the technique which finds the weights that minimise the cost function E . 

 

Gradient Descent Technique: The computational method used with the 

backpropagation training algorithm in attempting to find the correct weight values is 

a gradient descent technique. Common to all gradient search techniques is the use of 

the gradient, in this case, the gradient of the cost function 






=∇

Lw
E

w
E

w
EE ∂

∂
∂

∂
∂

∂ ,,,
21
L , where L is the total number of weights in the 

network. In the process of training the network, only the discrete approximation to the 

true gradient of E  can be obtained and used. 

 

Following the presentation of each pattern to the network, the weights can be updated 

according to 

 



17 

( ) ( ) ( )
ij

ijij w
nE

nwnw
∂

∂η−=+1        (4.8) 

 

Alternatively, following the presentation of a complete cycle of patterns the weights 

can be updated according to 
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where w n
ij
( ) is the value of wij  before updating, w n

ij
( )+1  is the value of wij  after 

updating, and η  is the learning rate which determines the convergence rate and 

stability of the training process. 

 

The above two Equations are is called the on-line training mode and batch training 

mode. In training the networks, either equation may be used to achieve almost the 

same results. 
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According to equation(4.4) we have 
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Now let us define 
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To compute ( )nojδ , we apply the chain rule to write the partial derivative as the 

product of two factors. Thus 
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From equation (4.6) we have 
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To compute the first factor in equation (4.13), following the definition of ( )nE  in 

equation (4.2), we have 
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Substituting for the two factors in equation (4.13), we have 
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combining equations (4.10), (4.11) and (4.16), we have 
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Now to compute 
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According to equation (4.5) we have 
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Using the chain rule, we have 
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From equations (4.19), (4.20) and (4.21), we have  
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From equation (4.7), we have  
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Depending on whether the units are in the output layer or the hidden layer, the partial 

derivative is calculated according to equations (4.17) and (4.24), or equations (4.22) 

and (4.23), respectively. The backpropagation training can be summarised in the 

following steps, which are executed iteratively until the cost function E has decreased 

to an acceptable value: 

 

1. Initialise weights to small random values 

2. Present input and desired output 

3. Calculated the partial derivative of the weights 

4. Adapt weights according to equation (4.8) or (4.9) 

5. Repeat by going to 2 



21 

BACKPROPAGATION TRAINING ALGORITHM 
 

Backpro_proc() Begin 
 
///////////////////////////////////////////////////////////////////// 
//Define Input, output, error, gradient, bias, and weight vectors  // 
            
float w[2][64][64],e[64],eh[64],h[64],o[64],y[64], 
H[64],b[2][64], input[64]; 
 
// w[0][[i][j]  ith inpu to jth hidden neuron 
// w[1][i][j]  ith hidden to jth output neuron 
// b[0][i]  Bias of ith hidden neuron 
// b[1][i]  Bias of the ith output neuron 
// e[i]   Error information for ith output neuron 
// eh[i]   Error information for ith hidden neuron 
// h[i]   weighted sum of ith hidden neuron 
// H[i]   Output of the ith hidden neuron 
// o[i]   weighted sum of the ith output neuron 
// y[i]   Output of the ith output neuron 
// input[i]  ith component of the input vector 
 
///////////////////////////////////////////////////////////////////// 
 
//Step 1// 
//Initial wights// 
 
 srand(seed); 
 for(l=0;l<2;l++) 
    { 
    for(i=0;i<64;i++) 
       { 
       for(j=0;j<64;j++) 
   { 

w[l][i][j]=(float)(random(2400)-1200.0)/5000; 
   } 
       } 
    } 
 
      for(l=0;l<2;l++) 
  { 
  for(i=0;i<64;i++) 
     { 

b[l][i]=(float)(random(2400)-1200.0)/10000.0; 
     } 
  } 
 
///////////////////////////////////////////////////////////////////// 
 
//Step 2 
//hidden layer output// 
 
 for(k=0;k<h_node;k++) //h_node = #of hidden nodes// 
   { 
   h[k]=0; 
   for(i=0;i<INPUT_VECTOR_SIZE;i++)  

//INPUT_VECTOR_SIZE #input nodes 
      { 
      h[k]+=input[i]*w[0][i][k]; 
      } 
   h[k]+=b[0][k]; 
   H[k]=sigmoid(h[k]); 
   } 
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//output layer output// 
 
 for(k=0;k<OUTPUT_VECTOR_SIZE;k++)  

//OUTPUT_VECTOR_SIZE # of output nodes 
    { 
    o[k]=0; 
    for(i=0;i<h_node;i++) 
       { 
       o[k]+=H[i]*w[1][i][k]; 
       } 
    o[k]+=b[1][k]; 
    y[k]=sigmoid(o[k]); 
    } 
 
///////////////////////////////////////////////////////////////////// 
 
Step 3 
 
//error information// 
 
//output layer// 
 
   for(i=0;i<OUTPUT_VECTOR_SIZE;i++) 
  { 
  e[i]=grad(o[i])*(output[i]-y[i]); 
  } 
 
//hidden layer// 
 
     for(i=0;i<h_node;i++) 
  { 
  eh[i]=0; 
  for(k=0;k<OUTPUT_VECTOR_SIZE;k++) 
    { 
    eh[i]+=e[k]*w[1][i][k]; 
    } 
  eh[i]=grad1(h[i])*eh[i]; 
  } 
 
///////////////////////////////////////////////////////////////////// 
 
Step 4 
//update weights// 
 
 
//output layer// 
 
 for(i=0;i<h_node;i++) 
    { 
    for(j=0;j<OUTPUT_VECTOR_SIZE;j++) 
       { 
       w[1][i][j]=w[1][i][j]+A*H[i]*e[j]; //A = training rate, η 
       } 
    } 
 
 for(j=0;j<OUTPUT_VECTOR_SIZE;j++) 
   { 
    b[1][j]=b[1][j]+A*e[j]; 
   } 
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//hidden layer// 
 
     for(i=0;i<INPUT_VECTOR_SIZE;i++) 
 { 
 for(j=0;j<h_node;j++) 
    { 
    } 
 } 
 
     for(j=0;j<h_node;j++) 
 { 
 b[0][j]=b[0][j]+A*eh[j]; 
 } 
///////////////////////////////////////////////////////////////////// 
 
//Repeat By going to Step 2// 
 

Backpro_proc() End  
 
 
//First order derivertive of the Sigmoid function// 
 
 float grad(x) 
 float x; 
 { 
 float h; 
 h=2*exp(-x)/pow((1+exp(-x)),2.0); 
 return(h); 
 } 
 
//Sigmoid Function// 
 
 float sigmoid(x)   
 float x; 
 { 
 float h; 
 h=(1-exp(-x))/(1+exp(-x)); 
 return(h); 
 } 
 
//First order derivertive of liner transfer function// 
 
 float grad(x) 
 float x; 
 { 
 float h; 
 h=1; 
 return(h); 
 } 
 
//Sigmoid Function// 
 
 float sigmoid(x)   
 float x; 
 { 
 float h; 
 h=x; 
 return(h); 
 } 

 

Some traning examples 
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1. Exclusive-Or (XOR) Task 

The network consists of two input units, two hidden units, and one output unit. 

 

2. 8-3-8 Encoder Task : 

The network consists of eight input units, three hidden units, and eight output units.  

 

3 10-5-10 Encoder Task: 

The network consists of ten input units, five hidden units, and ten output units. 

 

4 10-5-10 Complement Encoder Task : 

 

8-3-8 ENCODER 
input output 

10000000 10000000 
01000000 01000000 
00100000 00100000 
00010000 00010000 
00001000 00001000 
00000100 00000100 
00000010 00000010 
00000001 00000001 

10-5-10 ENCODER 
input output 

1000000000 1000000000 
0100000000 0100000000 
0010000000 0010000000 
0001000000 0001000000 
0000100000 0000100000 
0000010000 0000010000 
0000001000 0000001000 
0000000100 0000000100 
0000000010 0000000010 
0000000001 0000000001 

 

10-5-10 COMPLEMENT ENCODER 
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input output 
0111111111 0111111111 
1011111111 1011111111 
1101111111 1101111111 
1110111111 1110111111 
1111011111 1111011111 
1111101111 1111101111 
1111110111 1111110111 
1111111011 1111111011 
1111111101 1111111101 
1111111110 1111111110 

Iterations
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Training of 10-5-10 complement encoder task 
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Training of 10-5-10 complement encoder task 
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Iterations
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Training of 10-5-10 complement encoder task 
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Training history for 10-5-10 complement encoder benchmark task  


