
1

Feed-forward Neural Networks

1 Introduction

The development of layered feed-forward networks began in the late 1950's,

represented by Rosenblatt's perceptron and Widrow's ADaptive LINear Element

(ADLINE)

Both the perceptron and ADLINE are single layer networks and are often referred to

as single layer perceptrons.

Single layer perceptrons can only solve linearly separable problems.

The limitations of the single layer network has led to the development of multi-layer

feed-forward networks with one or more hidden layers, called multi-layer perceptron

(MLP) networks. MLP networks overcome many of the limitations of single layer

perceptrons, and can be trained using the backpropagation algorithm. The

backpropagation technique was invented independently several times.

In 1974, Werbos developed a backpropagation training algorithm. However, Werbos'

work remained almost unknown in the scientific community, and in 1985, Parker

rediscovered the technique. Soon after Parker published his findings, Rumelhart,

Hinton and Williams also rediscovered the technique. It is the efforts of Rumelhart

and the other members of the Parallel Distributed Processing (PDP) group, that make

the backpropagation technique a mainstay of neurocomputing.

To date, backpropagation networks are the most popular neural network model and

have attracted most research interest among all the existing models.

2

2 Single Layer Perceptron

The single layer perceptron was first devised by Rosenblatt in the late 1950's and early

1960's. The basic model of a perceptron capable of classifying a pattern into one of

two classes is shown in Fig. 1.

w

w3

S
Array

A
Array

R
Array

x3

x2

x
1

x
N

w2

wN

Figure 1 A basic perceptron model

The machine consists of an array S of sensory units which are randomly connected to

a second array A of associative units. Each of these units produces an output only if

enough of the sensory units which are connected to it are activated, that is, the output

signals of the associative units are binary.

The sensory units can be viewed as the means by which the machine receives stimuli

from its external environment. The outputs of the associative units are the input to the

perceptron.

The response of the machine is proportional to the weighted sum of the outputs of the

associative units; i.e., if xi denotes the output signal of the ith associative unit and wi

the corresponding weight, the response is given by

3

∑
=

=
N

i
ii xwr

1

 (1)

and this response signal is passed through a hard limiting non-linearity to produce the

output of the machine.







 ≥+

<−

=

01

01

rif

rif

y

An effective technique for analysing the behaviour of the perceptron network shown

in Fig. 1 is to plot a map of the decision regions created in the multidimensional space

spanned by the input variables. The perceptron network of Fig. 1 forms the decision

regions separated by a hyperplane defined by

0
1

=∑
=

N

i
ii xw (2)

As can be seen from (2), the decision boundary is determined by the connection

weights of the network.

Figure 2 shows an example of the decision regions created by the perceptron network

for two-dimensional input vectors. In this case, the hyperplane is a line. These

decision regions classify the input patterns as belonging to one of the two classes. In

Fig. 2, inputs above the boundary line lead to a class 1 (y >= 0) response, and input

patterns below the boundary line lead to a class 2 (y < 0) response.

4

+ = 0w1x1 w2x2

x

x1

2

Class1

Class2

Figure 2. Decision regions formed by the perceptron network

2.1 The Perceptron Training Algorithm

The training algorithm for the perceptron network of Fig. 1 is a simple scheme for the

iterative determination of the weight vector W. This scheme, known as the perceptron

convergence procedure, can be summarised as follows.

The initial connection weights are set to small random non-zero values. A new input

pattern is then applied and the output is computed as








= ∑
=

=

Ni

i
ii nxnwfny

1

)()()((3)

where






 ≥+

<−

=

01

01

)(

xif

xif

xf is the hard limiting non-linearity and n is

the iteration index.

Connection weights are updated according to

())()()()()1(nxnyndnwnw iii −+=+ η , i = 1,2, ..., N (4)

5

where η is a positive gain factor less than 1







+

−

=

1 classfromisinput if1

2 classfromisinput if1

)(nd

The perceptron convergence procedure does not adapt the weights if the output

decision is correct.

If the output decision disagrees with the binary desired response ()nd , however,

adaptation is effected by adding the weighted input vector to the weight vector when

the error is positive, or subtracting the weighted input vector from the weight vector

when the error is negative.

The perceptron convergence procedure is terminated when the training patterns are

correctly separated.

Figure 3 shows an example of the use of the perceptron convergence procedure.

Samples from class 1 are represented by circles in the figure, and samples from class 2

are represented by crosses. Samples from class 1 and class 2 were presented

alternately. The four lines show the four decision boundaries after the weights had

been adapted following errors on iterations 0, 2, 4, and 80. In this example it can be

seen that the classes were well separated after only four iterations.

6

n=0

n=2

n=4

n=80

Figure 3 An example of the perceptron convergence process

Rosenblatt proved that if the inputs presented are separable into two classes, the

perceptron convergence procedure converges and positions the decision hyperplane

between those two classes. One problem with the perceptron convergence procedure is

that the decision boundaries may oscillate continuously when inputs are not separable

and distributions overlap.

3 The ADLINE and Widrow-Hoff Algorithm

The adaptive linear element (ADLINE) is a simple type of processing element that has

a real vector X as its input and a real number y as its output (Fig. 4) and uses the

Widrow-Hoff training algorithm.

7

x0

w1

w3

y

x3

x2

x1

xN

w2

wN

w0

Figure 4 Adaptive Linear Element (ADLINE)

The input to the ADLINE is X x x x
N

= (, ,...,)
0 1

, where x0 is the bias input, set to a

constant value (usually x0 =1). The output of the ADLINE is the inner product of the

input vector X and the weight vector W w w w wN= (, , , ,)0 1 2 L , that is

y x w x w x wn N= + + +0 0 1 1 L

The weight vector W defines a hyperplane in the N-dimensional space of input

vectors X , as shown in Fig. 5.

0 x0w

x

x1

+w1x1 w2x2 = C+

Figure 5 ADLINE decision boundary in the input space.For all input vectors X

that fall in the area above the decision hyperplane, the ADLINE output y > C. For

all input vectors X that fall in the area below the hyperplane, the ADLINE output

y < C.

8

The hyperplane is given by

C1100 =+++ Nnwxwxwx L

where C is a constant number.

Cost Function of the ADLINE

For each input vector X n() to the ADLINE, there exists a corresponding target output

(desired output) d n(). The cost function of the ADLINE is defined as

()∑
=

−=
P

n

nyndE
1

2)()(
2
1

 (5)

where P is the number of training vectors, and y n() is the actual output of ADLINE

for the nth training vector X n()

The objective of training is to find a weight vector W * that minimises the cost

function

3.1 The Widrow-Hoff Training Algorithm

In 1959, Bernard Widrow, along with his student Macron E. Hoff, developed an

algorithm for finding the weight vector W *. This algorithm is the well known

Widrow-Hoff algorithm, also known as the LMS law and the delta rule.

The method for finding W* is to start from an initial value of W and then 'slide down'

the ADLINE cost function surface until the bottom of the surface is reached. Since the

cost function is a quadratic function of the weights, the surface is convex and has a

unique (global) minimum.

9

The basic principle of the Widrow-Hoff algorithm is a gradient descent technique and

has the form of

w n w n
E

wi i

i

() ()+ = −1 η ∂
∂

 (6)

we have

()

()()

∑

∑

∑

=

=

=

−=

−−=









−−=

P

n
i

P

n
i

P

n ii

nxn

nxnynd

w

ny
nynd

w

E

1

1

1

)()(

)()()(

)(
)()(2

2
1

δ

∂
∂

∂
∂

 (7)

where δ() () ()n d n y n= − .

Instead of computing the true gradient using equation (7), the Widrow-Hoff algorithm

uses the instantaneous gradient which is readily available from a single input data

sample, and the Widrow-Hoff training algorithm is given by

w n w n n x n
i i i
() () () ()+ = +1 ηδ (8)

where η is the training constant.

The training constant η determines the stability and convergence rate, and is usually

chosen by trial and error. If η is too large, the weight vector will not converge; if η is

too small, the rate of convergence will be slow.

10

4 Multi-layer Feed-forward Networks and the Backpropagation Training

 Algorithm

In the previous two sections, networks with only input and output units were

described. These networks have proved useful in a wide variety of applications. The

essential character of such networks is that they map similar input patterns to similar

output patterns. This is why such networks can do a relatively good job in dealing

with patterns that have never been presented to the networks. However the constraint

that similar input patterns lead to similar outputs is also a limitation of such networks.

For many practical problems, very similar input patterns may have very different

output requirements. In such cases, the networks described in sections 2.2 and 2.3

may not be able to perform the necessary mappings.

Minsky and Papert pointed out that such networks cannot even solve the exclusive-or

(XOR) problem illustrated in the table below.

XOR TRUTH TABLE

Input patterns outputs

0 0 0

0 1 1

1 0 1

1 1 0

11

x2

(0,1)

(0,0)

(1,1)

(1,0)

y=1 y=0

y=0 y=1

Decision boundary

x1

Figure 6 Single layer feed-forward network is incapable of solving the XOR problem

To see this in a more straightforward way, we recall from the above sections that

single layer networks form a hyperplane that separates the N-dimensional Euclidean

space of input vectors. In the case of the XOR problem, the input vectors are two-

dimensional and the hyperplane (which is determined by the weights of the network)

is a straight line. As can be seen from Fig. 6, this line should divide the space such

that the points (0,0) and (1,1) lie on one side and the points (0,1) and (1,0) lie on the

other side of the line. This is clearly impossible for a single layer network.

To overcome the limitations of single layer networks, multi-layer feed-forward

networks can be used, which not only have input and output units, but also have

hidden units that are neither input nor output units. A three layer feed-forward

network with one hidden layer is shown in Fig. 7.

12

11

x

x

x

y

y

y

1

2

N

1

2

M

Figure 7 A three layer feed-forward network

Multi-layer networks overcome many of the limitations of single layer networks, but

were generally not used in the past (before mid 1980s) because an effective training

algorithm was not available. With the publication of the backpropagation training

algorithm by Rumelhart, Hinton and Williams in the mid-1980's, multi-layer feed-

forward networks, some times called multi-layer perceptron (MLP) networks have

become a mainstay of neural network research. In September 1992, Professor B.

Widrow from Stanford University told the delegates of the 1992 European Neural

Network Conference that "three quarters of the neural network researchers in the USA

work on backpropagation networks".

The capabilities of multi-layer networks stem from the non-linearities used with the

units. Each neuron in the network receives inputs from other neurons in the network,

or receives inputs from the outside world. The outputs of the neurons are connected to

other neurons or to the outside world. Each input is connected to the neurons by a

13

weight. The neuron calculates the weighted sum of the inputs (called the activation),

which is passed through a non-linear transfer function to produce the actual output for

the neuron. The most popular non-linear transfer function is of the sigmoidal type.

A typical sigmoid function has the form:

f x
e gx() =

+ −

1
1

 (4.1)

When g become large, the sigmoid function become a signum function as shown in

Fig. 8

0

0.5

1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

g=0.5
g=1
g=5

x

f(x)

Figure 8 Sigmoid function used in multi-layer feed-forward networks

The introduction of one hidden layer allows the network to represent an arbitrary

Boolean function, and the use of two hidden layers allows the network to represent an

arbitrary decision space. The hidden units also enable networks to automatically

represent geometrical invariance such as translation invariance.

A theorem which states that the backpropagation network is able to implement any

function of practical interest to any desired degree of accuracy was proven by Hecht-

Nielsen and is expressed below.

14

Backpropagation Network Function Approximation Theorem: Given any ε > 0

and any L2 function f RN M: ,0 1 → , there exists a three-layer (with two hidden

layers) backpropagation network that can approximate f to within ε mean squared

error accuracy.

The above theorem guarantees the ability of a multi-layer network with the correct

weights to accurately implement an arbitrary L2 function. It does not state how the

weights should be selected or even whether these weights can be found using existing

network learning algorithms.

Notwithstanding the fact that the backpropagation networks are not guaranteed to be

able to find the correct weights for any given task, they have found numerous

applications in a variety of problems. Sejnowski and Rosenberg have demonstrated

that backpropagation networks can learn to convert text to realistic speech. Burr has

shown that backpropagation networks can be used for recognition of spoken digits

and hand-written characters with excellent performance. Backpropagation networks

can also be used for data compression by forcing the output to reproduce the input for

a network with a lower-dimensional hidden layer, and many many more …

4.1 Backpropagation Training Algorithm

The backpropagation training algorithm is an extension of the Widrow-Hoff

algorithm. It uses a gradient descent technique to minimise a cost function equal to

the mean squared difference between the desired and the actual network outputs. The

backpropagation training algorithm proposed by Rumelhart et al. involves the

presentation of a set of pairs of input and output patterns. The network first uses the

input vector to produce its own output vector (actual network output) and then

compares this actual output with the desired output, or target vector. If there is no

15

difference, no training takes place, otherwise the weights of the network are changed

to reduce the difference between actual and desired outputs.

Cost Function of Backpropagation Network: The cost function that the

backpropagation network tries to minimise is the squared difference between the

actual and desired output value summed over the output units and all pairs of input

and output vectors.

Let () () ()∑
=

−=
M

j
jj nondnE

1

2)(
2
1

 (4.2)

be a measure of error on input/output pattern n

where ()nd j is the desired output for the jth component of the output vector for input

pattern n, M is the number of output units,and ()no j is the jth element of the actual

output vector produced by the presentation of input pattern n.

Let () ()∑=
=

N

i
ihjihj nxwns

1
 (4.3)

be the weighted sum input to unit j in the hidden layer produced by the presentation of

input pattern n,

where w
hji

 is the weight connecting input unit i and hidden unit j, and N is the number

of input units.

Similarly, let () ()∑
=

=
H

i
hiojioj nowns

1

 (4.4)

be the weighted sum input to unit j in the output layer produced by the presentation of

input pattern n, where H is the number of hidden units, o
hi

(n) is the output of hidden

16

unit i produced by the presentation of input pattern n,and woji is the weight

connecting hidden unit i and output unit j.

The outputs of the hidden units and output units are, respectively,

 () ()()nsfno hjhj = (4.5)

 () ()()nsfno ojj = (4.6)

where f is a differentiable and non-decreasing non-linear transfer function.

Let ()∑
=

=
P

n

nEE
1

 (4.7)

be the overall measure of error, where P is the total number of the training samples.

E is called the Cost Function of the backpropagation network. The backpropagation

algorithm is the technique which finds the weights that minimise the cost function E .

Gradient Descent Technique: The computational method used with the

backpropagation training algorithm in attempting to find the correct weight values is

a gradient descent technique. Common to all gradient search techniques is the use of

the gradient, in this case, the gradient of the cost function






=∇

Lw
E

w
E

w
EE ∂

∂
∂

∂
∂

∂ ,,,
21
L , where L is the total number of weights in the

network. In the process of training the network, only the discrete approximation to the

true gradient of E can be obtained and used.

Following the presentation of each pattern to the network, the weights can be updated

according to

17

() () ()
ij

ijij w
nE

nwnw
∂

∂η−=+1 (4.8)

Alternatively, following the presentation of a complete cycle of patterns the weights

can be updated according to

() ()
ij

ijij w

E
nwnw

∂
∂η−=+1 (4.9)

where w n
ij
() is the value of wij before updating, w n

ij
()+1 is the value of wij after

updating, and η is the learning rate which determines the convergence rate and

stability of the training process.

The above two Equations are is called the on-line training mode and batch training

mode. In training the networks, either equation may be used to achieve almost the

same results.

The Chain Rule for Calculating
() ()

hjioji w

nE

w

nE

∂
∂

∂
∂

 and

First we compute
()
ojiw
nE

∂
∂

We can write

() ()

()
()
oji

oj

ojoji w

ns

ns
nE

w
nE

∂
∂

∂
∂

∂
∂ = (4.10)

According to equation(4.4) we have

 ()no
w

ow

w

s
hi

oji

H

i
hioji

oji

oj =









=
∑

=

∂

∂

∂
∂ 1 (4.11)

18

Now let us define

 () ()
()ns
nE

n
oj

oj ∂
∂δ −= (4.12)

To compute ()nojδ , we apply the chain rule to write the partial derivative as the

product of two factors. Thus

 () ()
()

()
()

()
()




















−=−=

ns

no

no
nE

ns
nE

n
oj

j

joj
oj ∂

∂
∂
∂

∂
∂δ (4.13)

From equation (4.6) we have

()
() ()()nsf
ns

no
oj

oj

j ′=
∂
∂

 (4.14)

To compute the first factor in equation (4.13), following the definition of ()nE in

equation (4.2), we have

()
() () ()()nond
no
nE

jj
j

−−=
∂
∂

 (4.15)

Substituting for the two factors in equation (4.13), we have

 () () () ()()nsfnondn ojjjoj ′−=)(δ (4.16)

combining equations (4.10), (4.11) and (4.16), we have

() () () ()() ()()nsfnondno

w
nE

ojjjj
oji

′−−=
∂
∂

 (4.17)

19

Now to compute
()
hjiw
nE

∂
∂

, we can write

() ()

()
()
hji

hj

hjhji w

ns

ns
nW

w
nE

∂
∂

∂
∂

∂
∂ = (4.18)

According to equation (4.5) we have

() ()

()nx
w

nxw

w

ns
i

hji

N

i
ihji

hji

hj =









=
∑

=

∂

∂

∂
∂ 1 (4.19)

Define () ()
()ns
nE

n
hj

hj ∂
∂δ −= (4.20)

Using the chain rule, we have

 () ()() () okj

M

k
okhjhj wnnsfn ∑

=

′=
1

δδ (4.21)

From equations (4.19), (4.20) and (4.21), we have

() () ()() ()∑

=

′−=
M

k
okjokhji

hji

wnnsfnx
w

nE

1

δ
∂
∂

 (4.22)

From equation (4.7), we have

()∑

=

=
P

n oijoij w
nE

w
E

1 ∂
∂

∂
∂

 (4.23)

and

()∑

=

=
P

n hijhij w
nE

w
E

1 ∂
∂

∂
∂

 (4.24)

20

Depending on whether the units are in the output layer or the hidden layer, the partial

derivative is calculated according to equations (4.17) and (4.24), or equations (4.22)

and (4.23), respectively. The backpropagation training can be summarised in the

following steps, which are executed iteratively until the cost function E has decreased

to an acceptable value:

1. Initialise weights to small random values

2. Present input and desired output

3. Calculated the partial derivative of the weights

4. Adapt weights according to equation (4.8) or (4.9)

5. Repeat by going to 2

21

BACKPROPAGATION TRAINING ALGORITHM

Backpro_proc() Begin

///
//Define Input, output, error, gradient, bias, and weight vectors //

float w[2][64][64],e[64],eh[64],h[64],o[64],y[64],
H[64],b[2][64], input[64];

// w[0][[i][j] ith inpu to jth hidden neuron
// w[1][i][j] ith hidden to jth output neuron
// b[0][i] Bias of ith hidden neuron
// b[1][i] Bias of the ith output neuron
// e[i] Error information for ith output neuron
// eh[i] Error information for ith hidden neuron
// h[i] weighted sum of ith hidden neuron
// H[i] Output of the ith hidden neuron
// o[i] weighted sum of the ith output neuron
// y[i] Output of the ith output neuron
// input[i] ith component of the input vector

///

//Step 1//
//Initial wights//

 srand(seed);
 for(l=0;l<2;l++)
 {
 for(i=0;i<64;i++)
 {
 for(j=0;j<64;j++)
 {

w[l][i][j]=(float)(random(2400)-1200.0)/5000;
 }
 }
 }

 for(l=0;l<2;l++)
 {
 for(i=0;i<64;i++)
 {

b[l][i]=(float)(random(2400)-1200.0)/10000.0;
 }
 }

///

//Step 2
//hidden layer output//

 for(k=0;k<h_node;k++) //h_node = #of hidden nodes//
 {
 h[k]=0;
 for(i=0;i<INPUT_VECTOR_SIZE;i++)

//INPUT_VECTOR_SIZE #input nodes
 {
 h[k]+=input[i]*w[0][i][k];
 }
 h[k]+=b[0][k];
 H[k]=sigmoid(h[k]);
 }

22

//output layer output//

 for(k=0;k<OUTPUT_VECTOR_SIZE;k++)

//OUTPUT_VECTOR_SIZE # of output nodes
 {
 o[k]=0;
 for(i=0;i<h_node;i++)
 {
 o[k]+=H[i]*w[1][i][k];
 }
 o[k]+=b[1][k];
 y[k]=sigmoid(o[k]);
 }

///

Step 3

//error information//

//output layer//

 for(i=0;i<OUTPUT_VECTOR_SIZE;i++)
 {
 e[i]=grad(o[i])*(output[i]-y[i]);
 }

//hidden layer//

 for(i=0;i<h_node;i++)
 {
 eh[i]=0;
 for(k=0;k<OUTPUT_VECTOR_SIZE;k++)
 {
 eh[i]+=e[k]*w[1][i][k];
 }
 eh[i]=grad1(h[i])*eh[i];
 }

///

Step 4
//update weights//

//output layer//

 for(i=0;i<h_node;i++)
 {
 for(j=0;j<OUTPUT_VECTOR_SIZE;j++)
 {
 w[1][i][j]=w[1][i][j]+A*H[i]*e[j]; //A = training rate, η
 }
 }

 for(j=0;j<OUTPUT_VECTOR_SIZE;j++)
 {
 b[1][j]=b[1][j]+A*e[j];
 }

23

//hidden layer//

 for(i=0;i<INPUT_VECTOR_SIZE;i++)
 {
 for(j=0;j<h_node;j++)
 {
 }
 }

 for(j=0;j<h_node;j++)
 {
 b[0][j]=b[0][j]+A*eh[j];
 }
///

//Repeat By going to Step 2//

Backpro_proc() End

//First order derivertive of the Sigmoid function//

 float grad(x)
 float x;
 {
 float h;
 h=2*exp(-x)/pow((1+exp(-x)),2.0);
 return(h);
 }

//Sigmoid Function//

 float sigmoid(x)
 float x;
 {
 float h;
 h=(1-exp(-x))/(1+exp(-x));
 return(h);
 }

//First order derivertive of liner transfer function//

 float grad(x)
 float x;
 {
 float h;
 h=1;
 return(h);
 }

//Sigmoid Function//

 float sigmoid(x)
 float x;
 {
 float h;
 h=x;
 return(h);
 }

Some traning examples

24

1. Exclusive-Or (XOR) Task

The network consists of two input units, two hidden units, and one output unit.

2. 8-3-8 Encoder Task :

The network consists of eight input units, three hidden units, and eight output units.

3 10-5-10 Encoder Task:

The network consists of ten input units, five hidden units, and ten output units.

4 10-5-10 Complement Encoder Task :

8-3-8 ENCODER
input output

10000000 10000000
01000000 01000000
00100000 00100000
00010000 00010000
00001000 00001000
00000100 00000100
00000010 00000010
00000001 00000001

10-5-10 ENCODER
input output

1000000000 1000000000
0100000000 0100000000
0010000000 0010000000
0001000000 0001000000
0000100000 0000100000
0000010000 0000010000
0000001000 0000001000
0000000100 0000000100
0000000010 0000000010
0000000001 0000000001

10-5-10 COMPLEMENT ENCODER

25

input output
0111111111 0111111111
1011111111 1011111111
1101111111 1101111111
1110111111 1110111111
1111011111 1111011111
1111101111 1111101111
1111110111 1111110111
1111111011 1111111011
1111111101 1111111101
1111111110 1111111110

Iterations

C

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400

Training of 10-5-10 complement encoder task

Iterations

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

Training of 10-5-10 complement encoder task

26

Iterations

C

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Training of 10-5-10 complement encoder task

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 10 20 30 40 50 60 70 80 90 100 110120

Training time, seconds

C
os

t f
un

ct
io

n

Training history for 10-5-10 complement encoder benchmark task

