Machine Learning

Lecture 8

Data Processing and Representation
Principal Component Analysis (PCA)

G53MLE Machine Learning Dr
Guoping Qiu



Problems

* Object Detection

G53MLE Machine Learning Dr
Guoping Qiu



Problems

ObjECt Detection: many detection windows

G53MLE Machine Learning Dr
Guoping Qiu



Problems

° ObjECt Detection: many detection windows

G53MLE Machine Learning Dr
Guoping Qiu



Problems

° ObjECt Detection: many detection windows

2 > e -
\g - . s
AR -7 o)
RN ...
~ o
=3¢ -
| . - — == J
R

G53MLE Machine Learning Dr
Guoping Qiu



Problems

¢ Object Detection: each window is very high dimension data

256x256

65536-d
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Processing Methods

e General framework
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Feature extraction/Dimensionality reduction

* |tisimpossible to processing raw image data
(pixels) directly

— Too many of them (or data dimensionality too high)
— Curse of dimensionality problem

* Process the raw pixel to produce a smaller set of
numbers which will capture most information
contained in the original data — this is often called

a feature vector



Feature extraction/Dimensionality reduction

* Basic Principle

— From a raw data (vector) X of N-dimension to a
new vector Y of n-dimensional (n << N) via a
transformation matrix A such that Y will capture
most information in X - -

X
_Y1_ _a11 alN_ X
Y - AY — y:2 _
_yn_ _anl a‘nN_
R




PCA

* Principal Component Analysis (PCA) is one of
the most often used dimensionality reduction
technique.



Principal Components

e All principal components
(PCs) start at the origin of
the ordinate axes.

* First PCis direction of
maximum variance from
origin

* Subsequent PCs are
orthogonal to 1st PC and
describe maximum residual
variance
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PCA Goal

We wish to explain/summarize the underlying
variance-covariance structure of a large set of
variables through a few linear combinations of
these variables.



Applications

— Data Visualization
— Data Reduction

— Data Classification
— Trend Analysis

— Factor Analysis

— Noise Reduction



An example

* Atoy example: The movement of an ideal
spring, the underlying dynamics can be
expressed as a function of a single variable x.

F'y
camera B ‘
' camera C

-
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An example \g%b\

But, pretend that we are ignorant of that and

Using 3 cameras, each records 2d projection of the ball’s
position. We record the data for 2 minutes at 200Hz

We have 12,000, 6-d data
How can we work out the dynamic is only along the x-axis

Thus determining that only the dynamics along x are
important and the rest are redundant.



An example
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1st Eigenvector of the
Covariance matrix

2"d Eigenvector of the
Covariance matrix

s alﬁ%N

6th Eigenvector of the
Covariance matrix
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1st Principal Component—

2nd Principal Component—

1st Eigenvector of the
Covariance matrix

2"d Eigenvector of the
Covariance matrix

s alﬁ%N

6th Eigenvector of the
Covariance matrix
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PC

1st Eigenvector of the
Covariance matrix

2"d Eigenvector of the
Covariance matrix

Dynamic of the spring @ _a11 d g %N
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PC

1st Eigenvector of the
Covariance matrix

2"d Eigenvector of the
Covariance matrix

Dynamic of the spring N

camera B ‘

——m /4.
SN

They contain no useful
information and can be
discarded!

6th Eigenvector of the
Covariance matrix
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Dynamic of the spring

camera B ‘

——m /4.
SN

PCA
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We only need ONE number

Instead of
SIX

Numbers!
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PCA

Linear
combination
(scaling) of ONE
variable

Ye | [

Capture the
data patterns
of SIX

Numbers!
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Noise
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Figure 2: A simulated plot of (z 4,y4) for camera A.
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rl and r2 entirely rl and r2 strongly

uncorrelated, Re d u n d a n Cy correlated,

] high redundancy in the
No redundancy in two recordings

the two recordings

(E‘) (C) t\"u
r2 : r2
Fq
-
low redundancy high redundancy

Figure 3: A spectrum of possible redundancies in
data from the two separate recordings r; and r, (e.g.
r4.yp). The best-fit line ro = kry is indicated by
the dashed line.



Covariance matrix

One of the
' . measurements
X1 [ %12 Xin of ALL samples
n samples
‘ Xo1 | X2z Xon ( ples)
_Xml Xm2 an_

One sample (m-d)



Covariance matrix

X — One of the
1 measurements

SX e XX T of ALL samples
n _1 X

<+—— One sample

is the covariance
matrix of the data



Covariance matrix

1
Sy =—— XXT
n-1
* S isan m x m square matrix, m is the dimensionality of
the measures (feature vectors)

* The diagonal terms of S, are the variance of particular
measurement type

* The off-diagonal terms of S, are the covariance
between measurement types



Covariance matrix

S, == XX
n-—1

* S isspecial.

* It describes all relationships between pairs of
measurements in our data set.

* Alarger covariance indicates large correlation (more
redundancy), zero covariance indicates entirely
uncorrelated data.



Covariance matrix

* Diagonalise the covariance matrix

* |f our goal is to reduce redundancy, then we
want each variable co-vary a little as possible

* Precisely, we want the covariance between
separate measurements to be zero



Feature extraction/Dimensionality reduction

* Remove redundancy

Yi G A || X

oo X

Y = AX = yf — 2
_ym_ _aml amm__Xm_

* Optimal covariance matrix S, - off-diagonal terms set zero
* Therefore removing redundancy, diagonalises S,



How to find the “nality reduction
transformation matrix

* Removerteuvurie .

Yi G A || X

oo X

Y = AX = yf = 2
_ym_ _aml amm__Xm_

* Optimal covariance matrix S, - off-diagonal terms set zero
* Therefore removing redundancy, diagonalises S,



Solving PCA: Diagonalising the Covariance Matrix

* There are many ways to diagonalizing S,, PCA choose the
simplest method.

e PCA assumes all basis vectors are orthonormal. Pis an
orthonormal matrix

pi:[pil Pi - pim]
(1 if Q=]
Pip; =9; Oy =+

0 if i#]
 PCA assumes the directions with the largest variances are the
most important or most principal.



Solving PCA: Diagonalising the Covariance Matrix

e PCA works as follows

— PCA first selects a normalised direction in m-dimensional space
along which the variance of X is maximised — it saves the
direction as p,

— It then finds another direction, along which variance is
maximised subject to the orthonormal condition — it restricts its
search to all directions perpendicular to all previous selected
directions.

— The process could continue until m directions are found. The
resulting ORDERED set of p’s are the principal components

— The variances associated with each direction p, quantify how
principal (important) each direction is — thus rank-ordering each
basis according to the corresponding variance



2nd Principal

Component, v,

1st Principal
Component, v,

Pus

pml

Pim

Prm_




Solving PCA Eigenvectors of Covariance

Y =PX Sy :LYYT
n-1

* Find some orthonormal matrix P such that S,
Is diagonalized.

 The row of P are the principal components of
X



Solving PCA Eigenvectors of Covariance

1 1 T
S, = —YY =——(PX)PX
= L= L (exex)
S, = —PXXTPT

n-1

1
S, = —PIXXT)PT
¢ = = P(XX7)
S, = —T PpAPT

n-1
where A=XX'

* Ais asymmetric matrix, which can be diagonalised by
an orthonormal matrix of its eigenvectors.



Solving PCA Eigenvectors of Covariance

A = EDE'

* Dis adiagonal matrix, E is a matrix of
eigenvectors of A arranged as columns

* The matrix A has r < =m orthonormal
eigenvectors, where r is the rank of A.

* risless than m when A is degenerate or all data
occupy a subspace of dimension r <m



Solving PCA Eigenvectors of Covariance

A=EDE' P E' A=P'DP

* Select the matrix P to be a matrix where each row p; is an
eigenvector of XX'.

1

S, = - PAPT
S, = ni_lp(PTDP)PT
1
S, = ——PP'DPP' :ﬁ(PPT)D(PPT)
s, - Lo

n-1



Solving PCA Eigenvectors of Covariance

1
S, = —D
! n—1
* The principal component of X are the
eigenvectors of XX'; or the rows of P

* The ith diagonal value of S, is the variance of X
along p



PCA Procedures

Get data (example)

Step 1

— Subtract the mean (example)

Step 2

— Calculate the covariance matrix

Step 3

— Calculate the eigenvectors and eigenvalues of the covariance matrix



A 2D Numerical Example



PCA Example — Data

* Original data

X Y
2.5 2.4
0.5 0.7
2.2 2.9
1.9 2.2
3.1 3
2.3 2.7
2 1.6
1 1.1
1.5 1.6

1.1 0.9



STEP 1

e Subtract the mean

* from each of the data dimensions. All the x values have average (x)
subtracted and y values have average (y) subtracted from them. This
produces a data set whose mean is zero.

* Subtracting the mean makes variance and covariance calculation easier by
simplifying their equations. The variance and co-variance values are not
affected by the mean value.



STEP 1

e /ero-mean data

0.69 0.49
-1.31 -1.21
0.39 0.99
0.09 0.29
1.29 1.09
0.49 0.79
0.19 -0.31
-0.81 -0.81
-0.31 -0.31

-0.71 -1.01



3.5

2.5

1.5

0.5

STEP 1

Original

25

15 -

D

-1.5 -

Zero-mean

1.5



STEP 2

e (Calculate the covariance matrix

cov= | .616555556 .615444444
615444444 716555556

* since the non-diagonal elements in this covariance
matrix are positive, we should expect that both the x
and y variable increase together.



STEP 3

e Calculate the eigenvectors and eigenvalues of
the covariance matrix

eigenvalues =|.0490833989
1.28402771
eigenvectors =|-.735178656 -.677873399

\'677873399 -.735178656 )




STEP 3

Mean adjusied data with eigenveciors overlayed

~h‘\\ ?;Jaagaédfﬁﬂgﬁagmw .. eeigenvectors are plotted as
15| N FeTiRssaz TaneEREE o | diagonal dotted lines on the
N plot.
1| ‘“\‘ + * | eNote they are perpendicular to
h v each other.
05 \'x ,,-""Fi 1 eNote one of the eigenvectors
“x\x b goes through the middle of the
0 e points, like drawing a line of
e ‘\# best fit.
05 | \ 1 eThe second eigenvector gives
e ™ us the other, less important,
aL N \\x\ | pattern in the data, that all the
A N points follow the main line, but
a5l ™ | are off to the side of the main
| \\“~ line by some amount.
2 . . . . . AN
-2 -1.5 -1 0.5 0 0.5 1 1.5 2

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of
the covariance matrix overlayed on top.



Feature Extraction

 Reduce dimensionality and form feature vector

— the eigenvector with the highest eigenvalue is the principal
component of the data set.

— In our example, the eigenvector with the larges eigenvalue
was the one that pointed down the middle of the data.

— Once eigenvectors are found from the covariance matrix,
the next step is to order them by eigenvalue, highest to
lowest. This gives you the components in order of
significance.



Feature Extraction

* Eigen Feature Vector
FeatureVector = (eig, eig, eig; ... eig,)

We can either form a feature vector with both of the
eigenvectors:

-.677873399 -.735178656
-.735178656 .677873399

or, we can choose to leave out the smaller, less
significant component and only have a single
column:

-.677873399
-.735178656



Eigen-analysis/ Karhunen Loeve Transform

yl pl 1
Y2

ym_ pml pmm_ Xm



Eigen-analysis/ Karhunen Loeve Transform

Back to our example: Transform data to eigen-space (x’,y’)

x’ =-0.68x - 0.74y y’ =-0.74x + 0.68y } ,
0.69 0.49
-.827970186 -.175115307 a3 oam
1.77758033 142857227 35 0
-.992197494 384374989 _ o o
-.274210416 130417207 | X'|_| =068 —=0.74px) 0 "
-1.67580142 -.209498461 | y' " 1-074 068 y 0:49 0:79
-.912949103 175282444
.0991094375 -.349824698 _ 19 03
1.14457216 0464172582 081 081
438046137 0177646297 031 031

1.22382056 -.162675287 071 -1.01



Eigen-analysis/ Karhunen Loeve Transform

Nk x1 [-0.68 —0.74Tx
y'| |-074 068 |y
| | .” .’O N ." | L 4 -X,

17 15 - y
15 - 1- * ¢
2
0.5 L g
4
X
15 1 05 ¢ ) o 05 1 15
0.5
4
TS 1
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Reconstruction of original Data/Inverse
Transformation

* Forward Transform

o o]

* Inverse Transform

Xconstructon . -0.68 —-0.74| X
Yconstructon B —-0.74 0.68 y'



Reconstruction of original Data/Inverse
Transformation

* |If we reduced the dimensionality, obviously, when
reconstructing the data we would lose those dimensions we

chose to discard.

 Thrown away the less important one, throw away y’ and only

keep x’
Xreconstrud:ion O 68 [ ]
yreconstruction 0 74



Reconstruction of original Data/Inverse
Transformation

4

X
'.827970 186 YFeCOHStrLiiti_On
1.77758033 ¢

1 -

-.992197494 o
-.274210416 7.

-1.67580142 54 as, 0 e 15 Xeeconstruction
-.912949103 o
.0991094375 . X eerugion 0.68
1.14457216 e {yreconsmmj { 074}[]
438046137

1.22382056




Reconstruction of original Data

Reconstructed
Oricinal dat from 1 eigen
riginal data
& feature
1.5 -
L .
.
0.5
o , X, Y reconstruction
15 1 05 o 0.5 15 151
-0.5 2
* 11
L 1 7S
. R
0.5 -
1.5 -
. :
~ Xreconstructlon
U‘ T T 1
-1, -1 -0. 0 0.5 1 1.5
5 0.5 .
-0.5 A
®
2 1
.

-15 -



Feature Extraction/Eigen-features

Eigen
Feature
vector
_Y1_ _p11 plm__xl_

ym pml o pmm Xm



PCA Applications —General
1st eigenvector \ ___________________________________ _

Ya P Pr P!

Y2 p21 p22 p2m
P | V1 ]
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B Yol [Pm Pmz o P
i i Yi
Xo | L'Pm! Pom P Y
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Data compression/dimensionality reduction




PCA Applications -General

* Data compression/dimensionality reduction

pi:[pil Pi - pim]
_Xl_
X,

X=| = [y} + Y]+ v, pp ]
| Xm_




PCA Applications -General

Data compression/dimensionality reduction

Reduce the number of features needed for effective data representation
by discarding those features having small variances

The most interesting dynamics occur only in the first / dimensions (/ << m).

i Al_ P11 P2 Pie |- -
Ya
A )22 P2 Py P2 y
X=|:|= 2=yl +y, Pl +-+ v, Py ]
; y
—Xm - | plm p2m plm_ -7l
i =[P By - pim] X:[y1p1T+Y2p;+"'+ymp;]



PCA Applications -General

Data compression/dimensionality reducti We know what

can be thrown

Reduce the number of features needed
away; or do we?

by discarding those features having smallX

The most interesting dynamics occur only iy first / dimensions (/ << m).

i Al_ Pir Py P |-,
Ya
A )A(2 P P P, y
X=|:]= 2 1=[ypl +y,p5 44y
N y
—Xm— | plm p2m plm_ -7l
Pi=1P1 Bz - pim] X:[y1p1T+y2p;+"'+ymp;]



Eigenface Example

A 256x256 face image, 65536 dimensional vector, X, representing the face
images with much lower dimensional vectors for analysis and recognition

— Compute the covariance matrix, find its eigenvector and eigenvalue

— Throw away eigenvectors corresponding to small eigenvalues, and keep the
first I (/ << m) principal components (eigenvectors)

G53MLE Machine Learning Dr
Guoping Qiu 63



Eigenface Example

A 256x256 face image, 65536 dimensional vector, X, representing the face
images with much lower dimensional vectors for analysis and recognition

Instead of
— — 65536
Numbers!

We now only use
FIVE
Numbers!
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Eigen Analysis - General

— The same principle can be applied to the analysis of many other data types

Reduce the
dimensionality of
biomarkers for
analysis and
classification

Raw data
representation

Y1 Ay A
Y, |
_yn_ _anl anN_
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Processing Methods

e General framework

PCA/Eigen
Analysis
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PCA

e Some remarks about PCA

— PCA computes projection directions in which
variances of the data can be ranked

— The first few principal components capture the most
“energy” or largest variance of the data

— In classification/recognition tasks, which principal
component is more discriminative is unknown



PCA

e Some remarks about PCA

— Traditional popular practice is to use the first few
principal components to represent the original data.

— However, the subspace spanned by the first few
principal components is not necessarily the most
discriminative.

— Therefore, throwing away the principal components
with small variances may not be a good ideal!



