
Machine Learning

Lecture 8

Data Processing and Representation
Principal Component Analysis (PCA)
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Problems

• Object Detection
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Problems

• Object Detection: Many detection windows
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Problems

• Object Detection: Each window is very high dimension data

256x256 

65536-d
10x10

100-d
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Processing Methods

• General framework

Very High 
dimensional 

Raw Data

Feature extraction

Dimensionality 
Reduction

Classifier
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Feature extraction/Dimensionality reduction

• It is impossible to processing raw image data 
(pixels) directly 

– Too many of them (or data dimensionality too high)

– Curse of dimensionality problem 

• Process the raw pixel to produce a smaller set of 
numbers which will capture most information 
contained in the original data – this is often called 
a feature vector
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Feature extraction/Dimensionality reduction

• Basic Principle

– From a raw data (vector) X of N-dimension to a 
new vector Y of n-dimensional (n < <  N) via a 
transformation matrix A such that Y will capture 
most information in X
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PCA

• Principal Component Analysis (PCA) is one of 
the most often used dimensionality reduction 
technique. 
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Principal Components

• All principal components 
(PCs) start at the origin of 
the ordinate axes.

• First PC is direction of 
maximum variance from 
origin

• Subsequent PCs are 
orthogonal to 1st PC and 
describe maximum residual 
variance
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PCA Goal

We wish to explain/summarize the underlying 
variance-covariance structure of a large set of 
variables through a few linear combinations of 
these variables. 



Applications

– Data Visualization

– Data Reduction

– Data Classification

– Trend Analysis

– Factor Analysis

– Noise Reduction



An example

• A toy example: The movement of an ideal 
spring, the underlying dynamics can be 
expressed as a function of a single variable x.
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An example

• But, pretend that we are ignorant of that and 

• Using 3 cameras, each records 2d projection of the ball’s 
position. We record the data for 2 minutes at 200Hz

• We have 12,000, 6-d data

• How can we work out the dynamic is only along the x-axis

• Thus determining that only the dynamics along x are 
important and the rest are redundant. 
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An example
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An example
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An example
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PCA
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PCA
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Dynamic of the spring

They contain no useful 
information and can be 

discarded!
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PCA
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We only need ONE number

Instead of 

SIX

Numbers!
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PCA
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Noise



Redundancy
r1 and r2 entirely 

uncorrelated,

No redundancy in 
the two recordings

r1 and r2 strongly 
correlated,

high redundancy in the 
two recordings



Covariance matrix
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Covariance matrix

• Sx is an m x m square matrix, m is the dimensionality of  
the measures (feature vectors)

• The diagonal terms of Sx are the variance of particular 
measurement type

• The off-diagonal terms of Sx are the covariance 
between measurement types
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Covariance matrix

• Sx is special. 

• It describes all relationships between pairs of 
measurements in our data set.

• A larger covariance indicates large correlation (more 
redundancy), zero covariance indicates entirely 
uncorrelated data.
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Covariance matrix

• Diagonalise the covariance matrix

• If our goal is to reduce redundancy, then we 
want each variable co-vary a little as possible

• Precisely, we want the covariance between 
separate measurements to be zero



Feature extraction/Dimensionality reduction

• Remove redundancy

• Optimal covariance matrix SY - off-diagonal terms set zero 

• Therefore removing redundancy, diagonalises SY
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Feature extraction/Dimensionality reduction

• Remove redundancy

• Optimal covariance matrix SY - off-diagonal terms set zero 

• Therefore removing redundancy, diagonalises SY

How to find the 
transformation matrix
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Solving PCA: Diagonalising the Covariance Matrix

• There are many ways to diagonalizing SY, PCA choose the 
simplest method.

• PCA assumes all basis vectors are orthonormal. P is an 
orthonormal matrix

• PCA assumes the directions with the largest variances are the 
most important or most principal.
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Solving PCA: Diagonalising the Covariance Matrix

• PCA works as follows

– PCA first selects a normalised direction in m-dimensional space 
along which the variance of X is maximised – it saves the 
direction as p1

– It then finds another direction, along which variance is 
maximised subject to the orthonormal condition – it restricts its 
search to all directions perpendicular to all previous selected 
directions.

– The process could continue until m directions are found. The 
resulting ORDERED set of p’s are the principal components

– The variances associated with each direction pi quantify how 
principal (important) each direction is – thus rank-ordering each 
basis according to the corresponding variance
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Solving PCA Eigenvectors of Covariance

• Find some orthonormal matrix P such that SY

is diagonalized. 

• The row of P are the principal components of 
X
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Solving PCA Eigenvectors of Covariance

• A is a symmetric matrix, which can be diagonalised by 
an orthonormal matrix of its eigenvectors.
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Solving PCA Eigenvectors of Covariance

• D is a diagonal matrix, E is a matrix of 
eigenvectors of A arranged as columns

• The matrix A has r < = m orthonormal
eigenvectors, where r is the rank of A. 

• r is less than m when A is degenerate or all data 
occupy a subspace of dimension r < m

TEDEA 



Solving PCA Eigenvectors of Covariance

• Select the matrix P to be a matrix where each row pi is an 
eigenvector of XXT. 
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Solving PCA Eigenvectors of Covariance

• The principal component  of X are the 
eigenvectors of XXT; or the rows of P

• The ith diagonal value of SY is the variance of X 
along pi
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PCA Procedures

• Get data (example)

• Step 1
– Subtract the mean (example)

• Step 2
– Calculate the covariance matrix

• Step 3
– Calculate the eigenvectors and eigenvalues of the covariance matrix



A 2D Numerical Example



PCA Example  – Data
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STEP 1

• Subtract the mean

• from each of the data dimensions. All the x values have average (x) 
subtracted and y values have average (y) subtracted from them. This 
produces a data set whose mean is zero.

• Subtracting the mean makes variance and covariance calculation easier by 
simplifying their equations. The variance and co-variance values are not 
affected by the mean value.



STEP 1

• Zero-mean data
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STEP 1
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STEP 2

• Calculate the covariance matrix

cov =       .616555556    .615444444

.615444444    .716555556

• since the non-diagonal elements in this covariance 
matrix are positive, we should expect that both the x 
and y variable increase together.



STEP 3

• Calculate the eigenvectors and eigenvalues of 
the covariance matrix

eigenvalues = .0490833989

1.28402771

eigenvectors = -.735178656   -.677873399

.677873399  -.735178656 



STEP 3

•eigenvectors are plotted as 
diagonal dotted lines on the 
plot. 

•Note they are perpendicular to 
each other. 

•Note one of the eigenvectors 
goes through the middle of the 
points, like drawing a line of 
best fit. 

•The second eigenvector gives 
us the other, less important, 
pattern in the data, that all the 
points follow the main line, but 
are off to the side of the main 
line by some amount.



Feature Extraction

• Reduce dimensionality and form feature vector

– the eigenvector with the highest eigenvalue is the principal 
component of the data set.

– In our example, the eigenvector with the larges eigenvalue
was the one that pointed down the middle of the data. 

– Once eigenvectors are found from the covariance matrix, 
the next step is to order them by eigenvalue, highest to 
lowest. This gives you the components in order of 
significance. 



Feature Extraction

• Eigen Feature Vector

FeatureVector = (eig1 eig2 eig3 … eign)

We can either form a feature vector with both of the 
eigenvectors:

-.677873399    -.735178656 

-.735178656     .677873399 

or, we can choose to leave out the smaller, less 
significant component and only have a single 
column:

- .677873399 

- .735178656



Eigen-analysis/ Karhunen Loeve Transform
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Eigen-analysis/ Karhunen Loeve Transform

Back to our example: Transform data to eigen-space  (x’ , y’)

x’ = -0.68x - 0.74y y’ = -0.74x + 0.68y

-.827970186 -.175115307
1.77758033 .142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 .175282444
.0991094375 -.349824698
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Eigen-analysis/ Karhunen Loeve Transform

x’

y’

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x

y

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2































y

x

y

x

68.074.0

74.068.0

'

'



Reconstruction of original Data/Inverse 
Transformation

• Forward Transform

• Inverse Transform
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Reconstruction of original Data/Inverse 
Transformation

• If we reduced the dimensionality, obviously, when 
reconstructing the data we would lose those dimensions we 
chose to discard. 

• Thrown away the less important one, throw away y’ and only 
keep x’
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Reconstruction of original Data/Inverse 
Transformation
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Reconstruction of original Data
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Feature Extraction/Eigen-features
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PCA Applications –General 

• Data compression/dimensionality reduction
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PCA Applications -General

• Data compression/dimensionality reduction
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PCA Applications -General

• Data compression/dimensionality reduction

• Reduce the number of features needed for effective data representation 
by discarding those features having small variances

• The most interesting dynamics occur only in the first l dimensions (l << m).
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PCA Applications -General

• Data compression/dimensionality reduction

• Reduce the number of features needed for effective data representation 
by discarding those features having small variances

• The most interesting dynamics occur only in the first l dimensions (l << m).
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Eigenface Example

• A 256x256 face image, 65536 dimensional vector, X, representing the face 
images with much lower dimensional vectors for analysis and recognition

– Compute the covariance matrix, find its eigenvector and eigenvalue

– Throw away eigenvectors corresponding to small eigenvalues, and keep the 
first l (l << m) principal components (eigenvectors)

p1 p2 p5p3 p4
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Eigenface Example

• A 256x256 face image, 65536 dimensional vector, X, representing the face 
images with much lower dimensional vectors for analysis and recognition
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Eigen Analysis - General

– The same principle can be applied to the analysis of many other data types
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Processing Methods

• General framework

Very High 
dimensional 

Raw Data

Feature extraction

Dimensionality 
Reduction

Classifier
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PCA

• Some remarks about PCA

– PCA computes projection directions in which 
variances of the data can be ranked

– The first few principal components capture the most 
“energy” or largest variance of the data

– In classification/recognition tasks, which principal 
component is more discriminative is unknown 

67

G53MLE Machine Learning Dr 
Guoping Qiu



PCA

• Some remarks about PCA

– Traditional popular practice is to use the first few 
principal components to represent the original data. 

– However, the subspace spanned by the first few 
principal components is not necessarily the most 
discriminative.

– Therefore, throwing away the principal components 
with small variances may not be a good idea!
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