Machine Learning

Lecture 9

Support Vector Machines
Based on slides from Prof. Ray Mooney

G53MLE | Machine Learning | Dr
Guoping Qiu



Perceptron Revisited: Linear Separators

 Binary classification can be viewed as the task of
separating classes In feature space:

wix+b=0

wix+hb<0

f(x) = sign(w™x + b)




Linear Separators

* Which of the linear separators is optimal?




Classification Margin

-
« Distance from example x; to the separator is r="" HXi \+b
W

« Examples closest to the hyperplane are support vectors.
« Margin p of the separator is the distance between support vectors.




Maximum Margin Classification

« Maximizing the margin is good according to intuition and
PAC theory.

« Implies that only support vectors matter; other training
examples are ignorable.




Linear SVM Mathematically

« Lettraining set {(x;, YD)}z . Xi€RY, y; € {-1, 1} be separated by a
hyperplane with margin p. Then for each training example (x;, y;):

Wix,+b<-p/2 ify,=-1

wWix. +b>pl2 ify=1 < yi(WTX; + b) > p/2

 For every support vector X, the above inequality is an equality.
After rescaling w and b by p/2 in the equality, we obtain that

distance between each x, and the hyperplane is r=7: (WHVz'(HS +b) _ | Vlv |

» Then the margin can be expressed through (rescaled) w and b as:

p=2r=—0
w



Linear SVMs Mathematically (cont.)

Then we can formulate the quadratic optimization problem:

Find w and b such that
2

vl

and for all (x;, y;), i=1..n:  y(w'™x +b)>1

p IS maximized

Which can be reformulated as:

Find w and b such that
®(w) = ||w|[>=wTw is minimized

and for all (x;, y;), i=1.n: y;(W'x;+b)>1




Solving the Optimization Problem

Find w and b such that
®d(w) =w'w is minimized
and for all (x;, y;), i=1..n:  y; (W'x;+b)>1

Need to optimize a quadratic function subject to linear constraints.

Quadratic optimization problems are a well-known class of mathematical
programming problems for which several (non-trivial) algorithms exist.

The solution involves constructing a dual problem where a Lagrange
multiplier o; Is associated with every inequality constraint in the primal
(original) problem:

Find a;...a, such that

Q@) =Xa; - VaXXaouyy;X; TX; is maximized and
(1) Zay;=0

(2) o; = 0 for all o;




The Optimization Problem Solution

Given a solution ¢ ...a,, to the dual problem, solution to the primal is:

Each non-zero o; indicates that corresponding x; is a support vector.
Then the classifying function is (note that we don’t need w explicitly):

f(X) = Ly XX + b

Notice that it relies on an inner product between the test point x and the
support vectors x; — we will return to this later.

Also keep in mind that solving the optimization problem involved
computing the inner products x;'x; between all training points.




Soft Margin Classification

What if the training set is not linearly separable?

Slack variables & can be added to allow misclassification of difficult or
noisy examples, resulting margin called soft.
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Soft Margin Classification Mathematically

The old formulation:

Find w and b such that

®d(w) =w'w is minimized

and for all (x;,y;), i=1..n: y,(wix;+b)>1

Modified formulation incorporates slack variables:

Find w and b such that
®(w) =w'w + CX¢& is minimized
and forall (x; ,y;), iI=1.n:  y;(Wix;+b)>1-¢& , &20

Parameter C can be viewed as a way to control overfitting: it “trades off”
the relative importance of maximizing the margin and fitting the training
data.
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Soft Margin Classification — Solution

« Dual problem is identical to separable case (would not be identical if the 2-
norm penalty for slack variables CX¢2 was used in primal objective, we
would need additional Lagrange multipliers for slack variables):

Find o ...0, such that

Q(0) =Xa; - VaXZaouyy;X;TX; is maximized and
(1) Zay;=0

(2) 0<g;<Cforall o

 Again, x; with non-zero «; will be support vectors.

» Solution to the dual problem is: Again, we don’t need to
B compute w explicitly for
W =XogyiX; classification:

b=y, (1- &) - Zay;x;"x, foranyks.t. >0

f(X) = Ly XX + b
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Theoretical Justification for Maximum Margins

Vapnik has proved the following:
The class of optimal linear separators has VC dimension h bounded from

above as D2
h<minq| — || my r+1
o,

where p is the margin, D is the diameter of the smallest sphere that can
enclose all of the training examples, and m, is the dimensionality.

Intuitively, this implies that regardless of dimensionality m,we can
minimize the VC dimension by maximizing the margin p.

Thus, complexity of the classifier is kept small regardless of
dimensionality.
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Theoretical Justification for Maximum Margins

Vapnik has proved the following:
The class of optimal linear separators has VC

above as D2
h<minq| — || my r+1
o,

where p is the margin, D is the diameter of the
enclose all of the training examples, and m, is t

Imension h bounded from

st sphere that can

Intuitively, this implies that regardless g
minimize the VC dimension by maxj~ VC dimension (for
Vapnik—Chervonenkis
dimension) Is a measure
of the capacity of a
statistical classification

algorithm

Thus, complexity of the classifier
dimensionality.



Linear SVMs: Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define the
hyperplane.

Quadratic optimization algorithms can identify which training points x; are
support vectors with non-zero Lagrangian multipliers a;.

Both in the dual formulation of the problem and in the solution training
points appear only inside inner products:

Find a;...ay such that f(x) = Zaiyi+ b
Q(a) =X¢; - 1/222aiajyiyjis maximized and

(1) Zay;=0

(2) 0<qg;<Cforall g
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Non-linear SVMSs

« Datasets that are Iinearly separable with some noise work out great:

® & |®—. :X

« But what are we going to do if the dataset is just too hard?

@ & o—0— o*-0—& o—o o—

0 X
« How about... mapping data to a higher-dimensional space:
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Non-linear SVMSs: Feature spaces

General idea: the original feature space can always be mapped to some

higher-dimensional feature space where the training set is separable:
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The “Kernel Trick”

The linear classifier relies on inner product between vectors K(x;,x;)=x;"X;

If every datapoint is mapped into high-dimensional space via some
transformation ®: x — ¢(x), the inner product becomes:

K(X;,X)= (X)) To(X;)
A kernel function is a function that is eqiuvalent to an inner product in
some feature space.

Example:

2-dimensional vectors X=[x; X,]; let K(x;x)=(1 + x;Tx;)*

Need to show that K(x;,X;)= @(X;) T@(X;):

KX %)=(L + %7%5)? = 1+ X421 + 2 X1 X3 XigXjp+ Xip™Xio” + 243 Xy + 2X5%j,=
=1 x;,? V2 Xy Xip X2 V23 V2%ip] T [1 %512 V2 X1 Xip X% V2X5; N2Xi5] =
= @(x) To(x), where (X) = [1 X, V2 XX, X2 V2X; V2X,]

Thus, a kernel function implicitly maps data to a high-dimensional space

(without the need to compute each ¢(x) explicitly).
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What Functions are Kernels?

For some functions K(x;,x;) checking that K(x;,x;)= ¢(x;) To(x;) can be
cumbersome.
Mercer’s theorem:

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-positive
definite symmetric Gram matrix:

KXy Xp) | K(Xp,Xp) | K(X,X3) K(X1:Xp)
KX2Xp) | K(X2:Xp) | K(X;,X3) K(X2:Xp)
K(Xn’xl) K(Xn’xz) K(Xn ’XS) K(Xn 1Xn)
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Examples of Kernel Functions

Linear: K(x;,X;)= X;X;
— Mapping @: x — @(Xx), where ¢(X) is X itself

Polynomial of power p: K(x;,x;)= (1+ X;"X;)P
— Mapping ®: x — ¢@(X), where ¢(x) has (d * Io)dimensions
p

2
i1

Gaussian (radial-basis function): K(x;,x;) = €
— Mapping @: x— o@(x), where ¢(x) is infinite-dimensional: every point is
mapped to a function (a Gaussian); combination of functions for support
vectors is the separator.

2572

Higher-dimensional space still has intrinsic dimensionality d (the mapping
IS not onto), but linear separators in it correspond to non-linear separators
in original space.

20



Non-linear SVMs Mathematically

Dual problem formulation:

Find a;...a, such that

Q(a) =Xa; - Yol Zayoiyy;K(X;, X;) is maximized and
(1) Zoy;=0

(2) a; = 0 for all o;

The solution is:

f(X) = ZayyiK(x;, X;)+ b

Optimization techniques for finding o;’s remain the same!
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Unique Features of SVM'’s and Kernel Methods

& Are explicitly based on a theoretical model of learning

@ Come with theoretical guarantees about their
performance

& Have a modular design that allows one to separately
implement and design their components

& Are not affected by local minima

& Do not suffer from the curse of dimensionality
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SVM Application Examples

w Face detection

G53MLE | Machine Learning | Dr
Guoping Qiu

23




SVM Software and Resources

& http://www.svms.org/tutorials/

w LIBSVM -- A Library for Support Vector Machines by
Chih-Chung Chang and Chih-Jen Lin

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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