
AN EFFICIENT EXAMPLE-BASED APPROACH FOR IMAGE  
SUPER-RESOLUTION 

 
 

Xiaoguang Li1,2, Kin Man Lam2, Guoping Qiu3, Lansun Shen1 and Suyu Wang1 
1. Signal & Information Processing Lab. Beijing University of Technology, Beijing, China, 100124 

2. Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong 
Polytechnic University, Hong Kong  

3. Department of Computer Science, Nottingham University, UK 
lxg@emails.bjut.edu.cn, enkmlam@polyu.edu.hk 

 
 

ABSTRACT 
 
A novel algorithm for image super-resolution with 
class-specific predictors is proposed in this paper. In 
our algorithm, the training example images are 
classified into several classes, and each patch of a low-
resolution image is classified into one of these classes. 
Each class has its high-frequency information inferred 
using a class-specific predictor, which is trained via 
the training samples from the same class. In this paper, 
two different types of training sets are employed to 
investigate the impact of the training database to be 
used. Experimental results have shown the superior 
performance of our method.  
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1. INTRODUCTION 
 
Image super-resolution plays an important role in 
many multimedia applications. This term refers to the 
reconstruction of a high-resolution (HR) image from a 
single or a set of low-resolution (LR) images [1]. In 
this paper, we consider image super-resolution based 
on a single image. This is also called image 
magnification or image interpolation. A number of 
super-resolution algorithms [2-5] have employed 
regularization terms to solve the ill-posed image up-
sampling problem. However, using smoothness priors 
that are defined artificially has been found to lead to 
overly smoothed results [6,7]. Example-based or 
learning-based super-resolution algorithms [6-16] have 
been proposed recently as a very attractive approach 
for image super-resolution. Instead of defining a prior 
intuitively, this approach exploits the prior knowledge 
between the high-resolution and the corresponding 
low-resolution examples by learning algorithms. 

Most example-based super-resolution algorithms 
[8-12] involve a training set, which is usually 
composed of a large number of HR patches and their 
corresponding LR patches. The input LR image is split 
into either overlapping or non-overlapping patches. 
Then, for each LR patch from the input image, either 
one best-matched patch or a set of the best-matched 
LR patches is selected from the training set. The 
corresponding HR patches are used to reconstruct the 
output HR image. Freeman et al. [8, 9] embedded two 
matching conditions into a Markov network. One is 
that the LR patch from the training set should be 
similar to the input observed patch, while the other 
condition is that the contents of the corresponding HR 
patch should be consistent with its neighbors. Wang et 
al. [10] extended the Markov network to handle the 
estimation of PSF parameters. Stephenson and Chen 
[11] presented a method in which the symmetry of a 
cropped human face is considered in the Markov 
network. Qiu [12] proposed an alternative method, 
based on vector quantization, to organize example 
patches. A survey of example-based super-resolution 
methods is available in [13].  

The above-mentioned work has made significant 
contributions to the way we now exploit learning-
based image super-resolution. However, most of these 
existing algorithms are only a kind of “searching and 
pasting” approach, and are therefore computationally 
intensive when searching for a LR-HR patch from a 
huge training set. Furthermore, best-matched but 
incorrect patches will seriously degrade the 
reconstruction results.  

In this paper, we propose a new example-based 
super-resolution algorithm with a class-specific 
predictor so as to solve the above-mentioned problems 
in the existing algorithms. The main contributions of 
this paper are: (1) a class-specific predictor is designed 
for each class in our example-based super-resolution 
algorithm – this can improve the performance in terms 
of visual quality and computational cost; and (2) 
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different types of training set are investigated so that a 
more effective training set can be obtained. 

 
2. OUR PROPOSED ALGORITHM 

 
Although a scene from the real world contains an 
abundance of varied content, a small local block in an 
image can be classified into just a few categories, such 
as flat, edge, corner, and so on. In our algorithm, the 
classification is performed based on vector 
quantization (VQ), and then a simple and accurate 
predictor for each category, i.e. a class-specific 
predictor, can be trained easily using the example 
patch-pairs of that particular category. These class-
specific predictors are used to estimate, and then to 
reconstruct, the high-frequency components of a HR 
image. Hence, having classified a LR patch into one of 
the categories, the high-frequency content can be 
predicted without searching a large set of LR-HR 
patch-pairs. The details of our algorithm are described 
in the following.  

 
2.1. Generation of Training Databases  
 
The training set selected for use is important to the 
performance of the example-based super-resolution 
methods. Each record in the training set is an example 
patch-pair, viz. a HR image block and the 
corresponding LR block. Similar to the method 
proposed by Qiu [12], a multi-resolution representation 
of an input image is formed using a three-level 
Laplacian Pyramid. Let I0 represent a HR example 
image, which is blurred and down-sampled to produce 
I1 by a zooming factor of z. Similarly, I2 is generated 
from I1 using the same zooming factor z. The up-
sampled images from I1 and I2 are generated using 
bilinear interpolation with a factor z, and then 
subtracted from I0 and I1, respectively, to compute the 
difference images L0 and L1. The example patch-pairs 
are extracted from L0 and L1, which will then be used 
to train up the corresponding class-specific predictor. 

For each block in L0, there is a corresponding small 
block in the LR difference image L1. If z = 2, each 4×4 
HR block in L0 has a corresponding 2×2 LR block in 
L1. In order to maintain the continuity of a HR block 
with its neighbors, we extend the boundary of its 
corresponding LR block by 1 pixel to form a LR 
sampling block. This HR block and the corresponding 
LR sampling block thus form a patch-pair. By 
considering all the possible HR blocks in L0 and the 
corresponding LR sampling blocks in L1, a training set 
of patch-pairs is generated. 

In this paper, we will consider two types of training 
set for example-based image super-resolution: 

(A) Self-example training set (Set A): An input LR 
image is taken as the training image in the extraction 
of examples. The contents obtained from self-
examples should be more relevant to the input image 
itself, and so the number of required training 
examples should be much smaller than that based on 
other images.  
(B) Domain-specific training set (Set B): Images 
from a specific domain can be used to construct the 
training set. In this paper, we particularly consider 
facial images. Hence, the super-resolution of facial 
images based on our proposed algorithm will be 
evaluated. The training can be done off-line. 

 
2.2. Content-Based Encoding/Classification  
 
To infer the high-frequency information of an 
estimated HR image effectively, the original LR image 
is divided into patches, which are classified into 
different categories. Those patches belonging to the 
same category have similar texture characteristics. A 
predictor can be designed for each category in order to 
estimate the high-frequency content of the patches. 

In our algorithm, VQ is used to encode an input 
patch. The number of levels or codevectors in the 
codebook is the number of categories to be used. In 
other words, each category is represented by a 
codevector. Hence, a codebook must first be trained 
based on either the input image for self-example 
training or a number of training images. Each training 
image I0 is converted into images I1 and I2 by means of 
Laplacian decomposition, as follows: 

 I1= sz(g(I0)) and I2= sz(g(I1)), (1) 
where g( ) and sz( ) represent the Guassian operation 
and the sub-sampling operation with a factor of z, 
respectively. Then, the difference image L1, which is 
the difference between I1 and I2, is constructed. This 
difference image is divided into a number of 
overlapping or non-overlapping blocks, and the 
corresponding HR blocks are then predicted. 
Following the work in [14], the block size is set at 4×4 
in our implementation. The 16 elements of a block in 
L1 are denoted as a vector, b=[b0 b1 … b15]T, which is 
transformed to have zero mean and unit variance, as 
follows: 

x = [x0 x1 … x15]T, (2) 
where xi=(bi−μ)/σ2. μ and σ2 are the mean and the 
variance, respectively, of the 16 elements bi. With this 
normalization, the encoding or the classification of the 
blocks will become more efficient. Assume that all of 
the training vectors are classified into N different 
categories. Then, a codebook containing N codevectors 
has to be constructed. The codebook is denoted as 
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{ }.1 , 1, ,0 ,| 16 −=∈= NiRCB ii …cc  (3) 
Vector quantization is employed for implementing 

content-based encoding, whereby the LBG algorithm 
[17] can be used for constructing the codebook. This 
codebook can be determined in advance or off-line, 
except in the case of training based on self-examples. 
In the encoding process, the best-matched codevector 
cj to an input LR block is determined, and the index j 
represents the category of the input block. The 
corresponding j-th class-specific predictor will then be 
used to infer the high-frequency information. 

All the training examples are encoded using the 
codebook. With the codebook for content-based 
encoding, each example patch-pair can be classified 
into one of the N categories. In other words, given a 
LR block of an example patch-pair after demeaning 
and normalization by (2), the closest vector is searched 
in the codebook. Then, the corresponding codevector 
is assigned to this patch-pair, where each codevector 
represents a category. Consequently, the training set is 
well structured with example pairs.  

 
2.3. The Class-Specific Predictors  
As described in Section 2.1, different training sets are 
generated, which are in the form of HR-LR patch pairs. 
Based on the LR part of the patch pairs, a codebook is 
trained so that each patch from a LR image can be 
encoded, and hence identified to belong to one of the N 
categories. In other words, with a given training set, 
the LR part of each training patch is classified by 
content-based encoding. Hence, each category contains 
a number of HR-LR training patches. Now, the 
remaining question is how to learn from these training 
patches to help the reconstruction of high-frequency 
information? In our algorithm, a class-specific 
predictor will be trained for each category. Upon 
training up the predictor for a category, the prior 
knowledge of HR-LR relations is stored in the weights 
of the predictor. This scheme achieves the goal of 
“learning” from the training examples, rather than just 
performing “search and pasting”.  
Figure 1 shows the implementation of our algorithm, 
which is composed of a content-based encoder to 
classify the input LR patches, and a set of N class-
specific predictors. The well-known least-mean-
squares (LMS) algorithm is used [18] to train up the 
predictors. The input to a predictor is the 4×4 blocks of 
the difference images L1, while the output is the 
corresponding predicted HR blocks of the central 2×2 
patches of the input blocks, as described in Section 2.1. 

Note that the N class-specific predictors can be 
trained simultaneously. In the case of using the self-
example training set, the training must be performed 

on-line. Using the multi-threading programming 
technique can improve the efficiency of the training.  

 

 
Figure 1 A block diagram of our example-based image 

super-resolution algorithm, which is composed of a 
content-based encoder in the form of a vector quantizer, 
and a group of class-specific predictors to infer the high-

frequency details. 
 
2.4. High-Resolution Image Reconstruction 

Having trained the content-based encoder and the 
class-specific predictors, the HR version of a LR image 
can be constructed. The input LR image is first 
magnified using the bilinear interpolation to form an 
initial estimation of its HR version, denoted as 

0I
� . The 

high-frequency layer L0 is estimated using one of the N 
class-specific predictors, and is then added to the 
initial estimated image to construct a HR image with 
high visual quality, i.e. 

.000 LII +=
�

 (4) 
Each 4×4 block Bh in the HR image has a 

corresponding 4×4 LR block Bl in the difference image 
L1 of the input LR image. The central 2×2 patch of Bl 
is the low-resolution version of Bh. In our 
implementation, in order to handle those blocks at the 
boundary of L1, all of the pixels at the boundary are 
extended and duplicated by one pixel. The block Bl is 
then encoded and classified to one of the categories, 
and the corresponding class-specific classifier is 
employed to infer the high-frequency information 
about Bh. Note that the reconstructed HR blocks are 
demeaned and have unit variance, so they are 
transformed to have the original means and variances. 
In our algorithm, the HR block Bh is shifted by a step 
of 2 in the horizontal and vertical directions, and the 
corresponding LR block Bl is shifted by a step of 1 
accordingly. At each position of the blocks, the high-
frequency information is predicted using an 
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appropriate class-specific predictor. Then, the 
overlapped high-frequency information is averaged to 
produce an estimation of the high-frequency layer. 

Finally, the high-frequency layer is added to the 
initial estimated image, as in (4), and a LR constraint is 
also applied to the resulting image. We assume that the 
reconstructed HR image can produce the input LR 
image by smoothing and sub-sampling. The image I0 is 
blurred and down-sampled to form the LR image I1.  
The average of a z × z block in I0 will correspond to a 
single pixel in I1. Suppose that the average value in I0 
and the corresponding single pixel values in I1 are pi 
and qi, respectively.  Then, the error is computed as 
follows: 

i i ie q p= − . (5)  
This error value is added to each pixel in the z × z 
block to reconstruct the final HR image. 

 
3. EXPERIMENTS AND DISCUSSIONS 

 
We will evaluate the performance of our proposed 
algorithm with the use of two different training sets 
that mentioned in Section 2.1. Two different types of 
images will be considered in our experiments: face 
images and natural-scene images. For each type of 
training set, the optimal number of categories for 
content-based encoding determined based on 
experiments is used, viz. 28 for face images and 68 for 
natural images. The visual qualities and the 
computational complexities of our algorithm in 
combination with each of the different training sets 
will be measured.  

For the self-example training set, the images 
themselves are used for training as well as for testing. 
For domain-specific applications, we consider the 
super-resolution of face images. Therefore, a number 
of face images and natural-scene images are used in 
the experiments. For the face images, the ORL 
database [19] is employed, which contains 40 distinct 
subjects, and each subject has 10 different images of 
size 92×112 pixels. In addition, to evaluate the 
performance of our algorithm for different types of 
images, a set of natural-scene images is used. The 
images have very different appearances to each other. 
Concerning the domain-specific training set and the 
general-purpose training set, 50 % of the face images 
and the natural-scene images, respectively, is selected 
for training, while the remainder will be used for 
testing. Figure 2 shows some training images in the 
ORL database. 

Figure 3 and Figure 4 illustrate some of the 
images using different image super-resolution 
algorithms. The first one, i.e. Fig. 2(a) and Fig. 3(a) 

show the input LR images of size 46×56 for the face 
images and 128×128 for the natural-scene images, 
which are down-sampled from the original HR images 
shown in Fig. 2(b) and Fig. 3(b). The images in Fig 2(c) 
and Fig. 3(c) are the results generated by bilinear (#1) 
interpolation. The results shown in Fig. 2(d) and Fig. 
3(d) are based on Chen [14] (#2), which is a 
“searching and pasting” method. We can see that the 
visual quality of these images is improved to a certain 
extent when compared to those achieved by bilinear 
interpolation. The mouth region and the eye regions 
contain more high-frequency details. However, the 
unmatched patches for these regions will greatly 
degrade the reconstruction quality. The last images, i.e. 
Fig. 2 (e) and Fig. 3(e), are produced using our 
algorithm (#3) with the self-example training set. 
Because of the use of class-specific predictors in our 
algorithm, the unmatched problem can be avoided, and 
the image quality is improved.  

The PSNR and MSE are objective measurements of 
image quality, and they need not be consistent with 
subjective human visual perception. Table 1 tabulates 
the average PSNR, MSE, and runtime of the different 
algorithms. The results obtained using our algorithms 
are based on the use of the optimal number of levels. 
We can see that, with the self-example training set, our 
algorithm can achieve a smaller MSE, and therefore, a 
higher PSNR as compared to the other two algorithms. 
The average PSNR, MSE, and runtime of our 
algorithm using the Set B for face images is also 
tabulated in the Table 1. 

The experiments were executed on an Inter® 
Core™ 2 CPU 6600 @2.40GHz with 2 GB RAM 
system. Our algorithm can achieve a shorter runtime 
than other example-based algorithms for two reasons: 
the self-example training set is of a small size, with its 
content correlated; and the class-specific predictors can 
be designed in parallel by using multi-thread 
programming. As for the “searching and pasting” 
method, it requires searching a huge training set for 
each block of an input image, so it is more 
computationally intensive. 

 

 
Figure 2  Some training images in the ORL database 
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(a) An Input LR image 

  
            (b) Original HR image        (c) Bilinear 

 

  
       (d) Chen05                  (e) Our algorithm 

Figure 3 Experimental results based on the ORL 
database. 

 
(a) An Input LR image 

   
(b) Original HR image               (c) Bilinear 

  
  (d) Chen05                  (e) Our algorithm 

Figure 4 Experimental results based on a natural-scene 
image. 

 
Table. 1 Performance of different algorithms. 

#3 
Images/Algori. #1 #2 

Set A Set B 

PSNR
(dB) 27.75 26.92 29.78 30.00 

MSE 118.17 140.7 73.69 70.34 
Face
Image

TIME
(s) 0.01 12.59 0.35 5.752 

PSNR
(dB) 30.70 28.61 32.25 —— 

MSE 64.64 90.18 39.84 —— Natural
Image

TIME
(s) 0.015 82.02 7.203 —— 

 
4. CONCLUTIONS 

 
The example-based approach is a promising way to 

solve the image super-resolution problem, which can 
provide the high-frequency contents of a reconstructed 
HR image by learning. However, most of the existing 
algorithms interpret the “learning” as just a kind of 
“searching” the best-matched LR patch, and then 
“pasting” the corresponding HR component. In our 
algorithm, we improve the learning by using a set of 
class-specific predictors, where the prior high-
resolution information is stored as the weights of the 
predictors. The content of a training set is more 
important than its size. In order to exploit the 
efficiency and effectiveness of training sets, a self-
example set, a domain-specific training set, and a 
combined set have each been investigated in 
experiments. Experimental results show that our 
algorithm can achieve an excellent performance in 
terms of both quality and computational complexity.  

 
5. ACKNOWLEDGEMENT 

 
This work was supported by a grant from the Research 
Grants Council of the Hong Kong Special 
Administrative Region, China (Project No. PolyU 
5199/06E), and by the National Nature Science 
Foundation of China (60472036, 60431020, 60402036, 
60772069, 60532040), the Natural Science Foundation 
of Beijing (No. 4062006), and the Beijing Novel 
Program (2005B08).  
 

6. REFERENCES 
 
[1] S. C. Park, M. K. Park and M. G. Kang, “Super-

resolution image reconstruction: A technical overview,” 

579

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on January 29, 2010 at 09:03 from IEEE Xplore.  Restrictions apply. 



IEEE Signal Processing Magazine,  vol. 5, pp.21-36, 
2003. 

[2] H. A. Aly, E. Dubois, “Image up-sampling using total-
variation regularization with a new observation mode,” 
IEEE Trans. on Image Processing, vol.14 no.10, pp. 
1647-1659, 2005. 

[3] S. Farsiu, M. D. Robinson. and M. Elad, et al. “Fast and 
robust multiframe super resolution,” IEEE Trans. on 
Image Processing,  vol. 14, no. 10, pp. 1327-1343, 2004.  

[4] H. He, L. P. Kondi, “An image super-resolution 
algorithm for different error levels per frames,” IEEE 
Trans. on Image Processing,  vol. 15, no. 3, pp. 592-603, 
2006. 

[5] G. K. Chantas, N. P. Galatsanos and N. A. Woods, 
“Super-resolution based on fast registration and 
maximum a posteriori reconstruction,” IEEE Trans. on 
Image Processing, vol. 16, no. 7, pp. 1821-1830, 2007. 

[6] S. Baker, T. Kanade, “Limits on super-resolution and 
how to break them,” IEEE Conf. on Computer Vision 
and Pattern Recognition, vol. 2, pp. 372-379, 2000. 

[7] S. Baker, T. Kanade, “Limits on super-resolution and 
how to break them,” IEEE Trans. on Pattern Analysis 
and Machine Intelligence, vol. 24, no. 9, pp. 1167-1183, 
2002. 

[8] W. T. Freeman, E. C. Pasztor, “Learning low-level 
vision,” International Journal of Computer Vision, vol. 
40, no. 1, pp. 25-47, 2000. 

[9] W. T. Freeman, T. R. Jones and E. C. Pasztor, 
“Example-based super-resolution. IEEE Computer 
Graphics and Applications,” vol. 22. no. 2, pp. 56-65, 
2002. 

[10] Q. Wang, X. Tang and H. Shum, “Patch based blind 
image super resolution,” In: Proc. of the Tenth IEEE 
International Conf. on Computer Vision, Beijing, China, 
2005, Oct.  

[11] T. A. Stephenson, T. Chen, “Adaptive markov random 
fields for example-based super-resolution of faces,” 
Journal on Applied Signal Processing, vol. 2006, pp. 1-
11, 2006.  

[12] G. Qiu, “Interresolution look-up table for improved 
spatial magnification of image,” Journal of Visual 
Communication and Image Representation, vol. 11, pp. 
360-373, 2000.  

[13] M. Elad, D. Datsenko, “Example-based regularization 
deployed to super-resolution reconstruction of single 
image,” The Computer Journal Advance Access 
published online on April, 20, 2007.  

[14] M. Chen, G. Qiu and K. M. Lam, “Example selective 
and order independent learning-based image super-
resolution,” In: Proc. of 2005 International Symposium 
on Intelligent Signal Processing and Communication 
Systems, pp. 77-80, 2005.  

[15] X. Zhang, K. M. Lam and L. Shen, “Image 
magnification based on adaptive MRF model parameter 
estimation,” In Proceedings of 2005 International 
Symposium on Intelligent Signal Processing and 
Communication Systems, Hong Kong, 2005.  

[16] M. Ebrahimi, E. R. Vrscay, „Solving the inverse 
problem of image zooming using ‘self-examples’,” In: 
M. S. Kamel, A. C. Campilho (Eds), ICIAR Lecture 
Notes in Computer Science, Springer, vol. 4633, pp. 
117-130, 2007.  

[17] Y. Linde, A. Buzo and R. M. Gray, “An algorithm for 
vector quantizer design,” IEEE Trans. on 
Communications, vol. 28, no. 1, pp. 84-95, 1980.  

[18] G. Qiu, “A progressively predictive image pyramid for 
efficient lossless for coding,” IEEE Trans. on Image 
Processing, vol. 8, no. 1, pp. 109-115, 1999.  

[19] F. Samaria, A. Harter, “Parameterisation of  a stochastic 
model for human face identification,” In: 2nd IEEE 
Workshop on Applications of Computer Vision, 
Sarasota, Florida. Dec. 1994. 

 

580

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on January 29, 2010 at 09:03 from IEEE Xplore.  Restrictions apply. 


