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An Improved Recursive Median 
Filtering Scheme for Image Processing 

Guoping Qiu 

Abstract-In a recent publication, it was shown that median filtering is 
an optimization process in which a two-term cost function is minimized. 
Based on this functional optimization property of the median filtering 
process, a new approach for designing the recursive median filter for 
image processing applications is introduced in this paper. We prove that 
the new approach is guaranteed to converge to root within a finite number 
of iterations. The new method is applied to process a real image corrupted 
by pseudorandom impulsive noise, and the results show that the new 
scheme provides improved mean square error (MSE) performance over 
the standard recursive median filters. 

I. INTRODUCTION 
Median filtering is a nonlinear filtering technique that is known for 

preserving sharp changes in signal and for being particularly effective 
in removing impulsive noise. One effective use of median filters has 
been the reduction of high-frequency and impulsive noise in digital 
images without the extensive blumng and edge destruction associated 
with linear filters. Because the median filter is nonlinear, spectral 
analysis gives little insight into the filtering process. Deterministic and 
statistical properties of median filters are therefore used to describe 
the filter's effect on noisy signals. In a recent publication, the author 
has studied the functional optimization properties of median-related 
filters. By associating the nonlinear operation of median filtering 
with a linear cost function, it is shown that median filtering is an 
optimization process that minimizes a two-term cost function, where 
one component measures the smoothness between the filter output 
and its neighborhood points within the filtering window and the other 
measures the discrepancy between the filter output and the original 
signal at that particular point. It has been shown that this functional 
optimization property of the median filtering process can be used to 
explain why median-related filters have the essential properties of 
smoothing without extensive blurring of the signal [I]. 

The 1-D median filter is realized by passing a window over the 
data, ranking the values in the window, and taking the median as 
output. Consider a real, discrete-time sequence {a(.)}, where a 
is a M-level signal. The output of the median filter y(n) is given 
by y(n)  = median[a(n - N ) ,  . . . , a ( n ) ,  . . . , a ( n  + N ) ] ,  where the 
window contains 2N + 1 points. This is known as a nonrecursive 
median filter. If we first replace the point a ( n )  with the output of the 
median filter before shifting the window to the next position, we have 
the recursive median filter. The output of the recursive filter is given 
by y ( n )  = median[y(n - N); . . ,y (n  - l),a(n),...,a(n + N)]. 
Recursive median filters have stronger noise attenuating capability 
than their nonrecursive counterparts and a faster convergence of 
signals to roots. In fact, any 1-D signal will be reduced to a root 
after one pass of a recursive median filter [2]. 
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There are a number of ways to extend the median operation to two 
dimensions. One way is to pass a 2-D window, such as a square or 
cross-shaped window, over the 2-D signal. As with the 1-D medmn 
filter, the points within the window are ranked and the median values 
taken as the output. Other methods such as the separable median filter 
scheme proposed in [3] can also be used. 

Two-dimensional median filters have been used with some success 
in image processing applications. Although noise suppression is 
obtained, too much signal distortion is introduced, and many features 
such as thin lines and sharp corners are lost. To overcome these 
problems, researchers have recently developed several variations of 
median filters, such as madmedian 141 and multistage median [5] 
filters. In this paper, we introduce a new recursive medmn filtering 
scheme for image processing application. This scheme is inspired 
by the functional optimization properties of median-related filters 
introduced by the author in [l]. We prove that the new scheme is 
guaranteed to converge within a finite number of passes and show that 
it provides improved MSE performance over the standard recursive 
median filtering schemes. 

11. FUNCTIONAL OPTIMIZATION PROPERTY 
OF THE RECURSIVE MEDIAN FILTER 

It has been shown in [6] that if a discrete M-level signal {a(.)} 
is thresholded by 

to produce M - 1 binary sequences, then the output of the 
recursive median filter y(n)  = median[y(n - N),...,y(n - 
l),a(n),...,a(n + N)], is equivalent to 

M-1 

2 = 1  

where 

To avoid the difficulty of using confusing notations and for 
convenience of analysis, in the rest of this paper we assume that 
the recursive median filter is sequentially applied to each point of 
the signal, and we first replace each point with the output of the 
recursive median filter on that particular point before shifting the 
window to the next position. For example, if we write y(n) = 
median[a(n - iV), . . . , a(n), . . . , a(n + N ) ] ,  it is understood that 
a ( n  - N), . . . , a(n - 1) are the outputs of the recursive filter applied 
to those points. 

Recursive median filtering of an arbitrary level signal is equivalent 
to decomposing the signal into binary signals, filtering each binary 
signal with a binary recursive median filter, and then reversing the 
decomposition. Therefore, we can show the functional optimization 
property of the recursive median filtering on multilevel signal by 
describing such property of the filter on the binary signal. 

As in [l], we transfer the ( 0 ,  l} binary of { a , ( n ) }  into {-1, I} 
binary of {b,(n)} by the following operations: b,(n) = 2a, (n)  - 1. 
Define K(n) as the output of recursive median filter of {bz(n)} ,  
which is given by K(n) = median[b,(n-N), . .  . , b,(n), . . . , b,(n+ 
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have already seen that the function of recursive median filtering is 
composed of two elements: First, it smoothes the signal; second, it 
encourages the filtered signal to resemble the signal to be filtered. So 
during the process (repeated recursive median filtering), V, (n)  will 
be smooth and at the same time it will be encouraged to resemble the 
result of the previous pass. Because the output of the filter is distorted 
by noise, the noise influence on the output of the filtering process will 
be accumulated. To alleviate such undesirable effects and to preserve 
such features as edges, it may be desirable to encourage the filter 
output to resemble the original signal. By observing the functional 
optimization property, we propose the following repeated recursive 
median filtering scheme 

v,'t' (n)  = median [V,(t-l) (n  - N ) ,  . . . , b, (n ) ,  . . . , V,(t-l) (n  + N ) ]  

where the superscript t is the iteration index and Y(O)(n) = b, (n) .  

follows. 

(6) 

This new algorithm can also be expressed by pseudo-C code as 

N ) ]  and V ,  (n)  = 2y, (n)  - 1. For recursive median filtering of binary 
sequence { b t ( n ) } ,  we can write the output of the filter as follows: 

v, (n)  
J=N 

where S(n )  = b l ( n  + j )  + h ( n ) .  
$1 if S(n )  2 0 
-1 otherwise 

3=-N 
3 f O  

(3)  

It is straightforward to show that the filtering operation of (3) always 
forces the following function into its minimum: 

3=N 

E,(V,(n)) = - V,(n)b,(n + j )  - V,(n)b,(n). (4) 
3 z - N  

3 5 0  

To confirm the above statement, we observe the following: 

E,(+l) = -S(n)  and E % ( - l )  = S ( n )  
If K(n) = $1, S(n )  2 0 ,  E,(+1)  5 EZ(-l)  
If K(n) = - 1 ,  S(n )  < 0 ,  a - 1 )  < E,(+l). 

We call this property of the recursive median filtering the functional 
optimization property. In each level of the thresholded space, this 
functional optimization property holds. Thus, we can state that 
recursive median filtering is an optimization operation in which the 
output of the filter is always set to the minimum of a cost function 
of the output state of the filter. 

The first term of (4) measures the smoothness between the filter 
output and its neighborhood points within the filtering window, and 
the second term measures the discrepancy between the filter output 
and the original signal. So it is clear that the function of recursive 
median filtering is a combination of two aspects: The recursive 
median filtering favors the filtered signal to be smooth and encourages 
the filtered signal to be the same as the original (noisy) signal. 

111. A NEW RECURSIVE MEDIAN FILTERING SCHEME 
Although any 1-D signal will be reduced to a root after one pass 

of a recursive median filter, this is not the case for 2-D signal such as 
image [2]. In image processing applications, it is necessary to apply 
the recursive median filter iteratively. 

The process of repeated applications of recursive median filtering 
can be expressed as follows: 

V,(t)(n) = median[V,(t-l)(n - N ) , . . .  , V,(t-l) (n) ,  . . . , 
V,(t-l)(n + N ) ]  ( 5 )  

where the superscript t is the iteration index and V,(O)(n) = b , (n ) .  
This process can also be described by the following pseudo-C 

code. Here, we assume that the total number of signal points is L 
and at both ends of the signal, N points are appended to allow the 
filter to reach the edges of the signal. 

Algorithm 1 
Recursive-Median-Filter () { 

for ( n  = 1;n  5 L;n++){V,(n) = b, (n) ;}  
do { success = 0; 

for (n  = 1; n 5 L;  n++){ 
m = median ((V,(n - N ) ,  . . . , V,(n), . . . , V,(n + N ) )  
if (m  == V,(n))  success++ 
K(n) = m ; } }  

while (success # L);  } 
That is, the output of the tth pass of the filter is obtained by 

filtering the result of the ( t  - 1)th pass. From the above section, we 

Algorithm 2 
New Recursive-Median-Filter () { 

for (n  = l ; n  5 L;n++){V,(n) = b , ( n ) ; }  
do { success = 0; 

for (n  = I; n 5 L; n++){ 
m = median ( (V, (n  - N )  , . . . , b, (n )  , . . . , V ,  (n  + N )  ) 
if (m == V,(n)) success++ 
K(n) = m; >} 

while (success # L) ;  } 
That is, we use the original signal in the middle of the operation 

window throughout the whole process, instead of using the output 
of the previous pass. From the functional optimization properties 
of recursive median filtering, it can be easily understood that this 
operation has the properties of smoothing the signal and at the same 
time encourages the outputs of each pass to resemble the original 
(noisy) signal, instead of resembling the output of the previous pass 
that has been corrupted by the noise. Hopefully, in this way, such 
features as thin lines and sharp edges can be better preserved. 

Property: Algorithm 2 converges within a finite number of iter- 
ations. 

Proof: By induction, at each step of the algorithm, the following 
function is minimized: 

3=N 

E(v,(n)j = - V,(n)V,(n+j) - V,(n)b,(n). (7) 
3=-N 

3 1 0  

Because each point of the signal is sequentially visited by the 
recursive median filter and the output is updated before moving to 
the next position, we can easily show that the following function will 
be minimized by the process 

L 

J f O  

where L is the total number of points of the signal. Because the 
output V,(n) is updated sequentially and only one output changes 
value at any time constant, the changes of the cost function in (6) 
caused by the changes of V,(n) are as follows: 

A E  = AV,(n)S(n) (9) 

From (3), it is straightforward to show that A E  is always less than 
or equal to zero. So after a finite number of iterations, E will reach 
its minimum, any further passes will not change the values of V ,  (n) ,  
and the process has converged, i.e., the signal has been reduced to 
root. 0 

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on November 26, 2009 at 12:18 from IEEE Xplore.  Restrictions apply. 



648 

ALGORITHMONE 

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5,  NO. 4, APRIL 1996 

41.4 

Fig. 1 Original image (upper left); noisy image (upper right); smoothed 
image using Algorithm 1 (lower left); smoothed image using Algorithm 2 
(lower right). 

TABLE I 
COMPUTED MSE FOR FLTERED IMAGES CORRUPTED BY IMPULSIVE NOISE 

NOISY IMAGE 

the filtered image. Table I lists the empirical MSE for the filtered 
image using Algorithms 1 and 2, respectively. It is seen that the new 
method (Algorithm 2) provides better performance giving a MSE 
value reduced by 15.3%. 

V. CONCLUDING REMARKS 

In this paper, a new recursive median filtering scheme for image 
processing has been introduced. We prove that the new method 
converges in a finite number of iterations. Simulation results showed 
that the new scheme improves the MSE performance over the 
traditional method. 
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Adaptive Restoration of Textured 
Images with Mixed Spectra 

Ravi Krishnamurthy, John W. Woods, and Joseph M. Francos 

IV. SIMULATION RESULTS 

To assess the performance of the new median filtering scheme, 
we applied it to a real image corrupted by pseudorandom computer- 
generated impulsive noise. The image considered contained 256 x 256 
pixel values with eight bits resolution per pixel. The original image 
(uncorrupted) is shown in Fig. 1 (upper left). The noisy image is 
shown in Fig. 1 (upper right). Fig. 1 (lower left) shows the filtered 
image by using Algorithm 1. Fig. 1 (lower right) shows the filtered 
image by using Algorithm 2. In both cases, a 3 x 3 window was 
used and the threshold decomposition technique [6] was used in the 
simulation. 

As can been seen, the differences in visual quality of the filtered 
images are slight. A useful quantitative comparison of the perfor- 
mance of the filtering schemes is the empirical mean square error, 
given by 

(10) 

where L is the total number of pixels in the image, a ( j )  are the 
pixel values in the original image, y ( j )  are the pixel values in 

l L  
”3 = z; C ( a ( j )  - Y W Y  

3=1 

Absb-uct- We consider the adaptive restoration of inhomogeneous 
textured images, where the individual regions are modeled using a 
Wold-like decomposition. A generalized Wiener filter is developed to 
accommodate mixed spectra, and unsupervised restoration is achieved 
by using the expectation-maximization (EM) algorithm to estimate the 
degradation parameters. This algorithm yields superior results when 
compared with supervised Wiener filtering using autoregressive (AR) 
image models. 

I. INTRODUCTION 
Many natural images can be described as a collection of patches 

of fairly uniform textures. In this correspondence, we consider the 
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