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Fig. 1. Direct display of an HDR map in the logarithmic scale (left); the gain map image of the HDR map (middle); the sum of the left and 
middle images (right). Note the gain map image is only computed for the luminance hence it is shown as grayscale image. Radiance map 
courtesy of Raanan Fattal, Dani Lischinski and Michael Werman 
 
Abstract - In this paper, we present a novel method for the 
display of high dynamic range images. The new method first 
computes a gain map image using a computational approach 
inspired by a machine learning algorithm and sums the gain 
map and the original image together; it then linearly scales the 
sum image to fit the dynamic range of the display devices. 
Results are presented to demonstrate the effectiveness of this 
new method and it is also shown that the new approach is an 
effective method for enhancing standard (8bits/pixl) images.  
 
Index Terms – Tone mapping, high dynamic range imaging, 
display, machine learning 
 

I. INTRODUCTION 
 
Today, digital cameras are ubiquitous. However, when 
imaging scenes containing wide variations of illumination 
intensities, the picture quality often turns out to be less than 
satisfactory. In such cases, the main cause of the poor image 
quality is the mismatch between the dynamic range of 
irradiance of the real-world scene and the number of binary 
bits used to represent pixel values in the standard image 
formats. Whilst the real world irradiance can have dynamic 
ranges exceed four to five orders of magnitude, typical 
standard image formats using 8 bits per pixel can only 
represent part of the real world dynamic range. The situations 
can be remedied by using high dynamic range (HDR) 
imaging technology [1-4] where the so called HDR radiance 
maps (>32bits/pixel) can record the actual dynamic range of 
the real world scenes; however, there is still the problem of 
faithfully reproducing the image in conventional low dynamic 
range (LDR) reproduction media such as print paper and 
monitors which normally have a useful contrast about 2 
orders of magnitude.  

Processing HDR maps for reproduction in LDR media is 
often called tone mapping or dynamic range compression. 
Even though high dynamic range display devices have started 
to emerge, they are very expensive. In the foreseeable future, 

conventional LDR devices will still be the dominant 
reproduction media for HDR pictures and hence effective 
processing techniques for the display of HDR images in LDR 
devices are still important.  

In this paper, we present a novel method for the 
processing of HDR images for display in LDR media. Our 
idea is to “invent” a high dynamic range gain map image 
(GMI) the same size as the original image, which when 
summed with the original image will produce a contrast 
enhanced version of the original high dynamic range image. 
The enhancement is controlled in such a way that weak local 
contrasts are enhanced more whilst strong local contrasts are 
enhanced less. By linearly scaling down the new high 
dynamic range image to fit the dynamic range of the 
reproduction devices results in a LDR version of the HDR 
image in which low contrasts are boosted and high contrasts 
are suppressed thus achieving dynamic range reduction 
without causing heavy loss of visual details. We burrow ideas 
from a manifold learning technique [6] and formulate the 
problem of computing the GMI as a linearly constrained 
optimization problem and compute the GMI by solving a 
linear system of equations. Furthermore, we show that the 
GMI idea can be used to enhance standard (8 bits/pixel) 
images. 

 
II. DISPLAY HDR IMAGE USING A GAIN MAP 

 
The display pipeline of our new scheme is illustrated in Fig. 
2. From the HDR map, I, we compute a gain map image 
(GMI), G, and the sum of the two, I + G, is then linearly 
scaled to fit the dynamic range of the display device for 
display. Note that I is in logarithmic scale, G is derived from 
I, hence also in logarithmic scale, so is I + G. Unlike several 
other methods in the literature, e.g. [2, 3], we do not take the 
antilogarithm of the processed signal but display it directly 
because the HDR map data is linear and the display devices 
are nonlinear having an antilogarithmic-like curve. 
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HDR MAP, I Gain Map Image, G I + G Scaling+ = DisplayHDR MAP, I Gain Map Image, G I + G Scaling+ = Display  

Fig. 2: Schematic of HDR map using gain map image, where the HDR map is 
in logarithm scale. 
 

To compress the dynamic range of the HDR map to fit 
the dynamic range of the LDR reproduction media, linear 
scaling should have been the simplest and the correct way 
because linear scaling preserves the relation of the pixels, i.e., 
a relatively bright HDR pixel will be displayed as relatively 
bright and a relatively dark HDR pixel will be displayed as 
relatively dark, which ensures that the relative brightness of 
the display matches that of the original scene. However, when 
the dynamic range between the scene and that of the 
reproduction devices differ greatly, a large down scaling 
factor will have to be used to make the scene dynamic range 
fit within that of the display device. The consequence of 
which is that, for large contrasts, they would have been 
suppressed to within the display’s dynamic range and will 
still be visible in the display; however, for small contrasts, 
which would have been visible on the original scene, would 
become invisible because of too aggressive compression. The 
end effect is that the linearly scaled image appears blurry and 
lack of local details. See the left image in Fig. 1 for a visual 
example of such effect.  

The introduction of the gain map image in Fig.2 is to 
engineer a solution such that when we scale down the HDR 
map to fit the dynamic range of the reproduction device, not 
only the relative brightness of the pixels is well preserved, but 
local details will also be protected. To find such a gain map 
image, our idea is very simple: we find an image (the gain 
map) with the same edge directions as the original HDR map 
but with the edge strengths as a function of the edge 
magnitude of the corresponding edge in the original HDR 
map. We use Fig. 3 to illustrate how the idea works. 
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Fig. 3: Illustration of how the idea of using a gain map image 
will work in rendering a HDR map for display 
 

From the input HDR signal I, we find a signal which has 
the same edge directions, i.e., in the Figure, I changes from 
low to high and then to low, G follows I and changes from 
low to high and then to low at the same changing points. The 
edges in the display image D (sum of I and G) will have 
exactly the same direction as those in the original image I. In 
other words, the display image D will not have edge direction 
reversed thus is free from halo artifact. 

Only having the correct edge orientations in the display 
image is not enough, we also have to reduce the dynamic 
range of the display image. One way to achieve this is to 
boost relatively weak contrasts and compress high contrasts 
as suggested by several authors [2]. We adopt a similar 

approach and our task is to design the GMI such that when 
summing the original image and the GMI together to produce 
a display image in which, when compared with the original 
image, weak contrasts are enhanced and strong contrasts are 
suppressed. Such a GMI can be obtained by ensuring that, for 
a larger edge magnitude in I, the corresponding edge 
magnitude in G will be smaller; conversely, for a smaller edge 
magnitude in I, the edge magnitude in G will be larger. To see 
why such a GMI can achieve the goal of boosting weaker 
contrasts and suppressing strong contrasts in the display 
image, lets consider two edges at location u and v, in the 
original image I with magnitudes (u) and (v), and the 
corresponding edge magnitudes in the GMI are (u) and (v). 
Assuming that (u) > (v), we will have (u) < (v), thus 

(u) (v) > (v) (u). The edge magnitudes of the display 
signal at these locations are (u) + (u) and (v) + (v). We 
have  
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What equation (1) means is that the ratio of a larger 
magnitude over a smaller magnitude is reduced in the display 
image, which can only mean one of three things: (i) the larger 
edge is reduced: (u)> (u)+ (u), (ii) the smaller edge is 
boosted: (v) < (v) + (v) and (iii) the larger edge is reduced 
and the smaller edge is enhanced: (u)> (u)+ (u) and (v) < 

(v) + (v).  
Note that the sum signal D will have to be linearly scaled 

to fit the dynamic range of the display devices. However, 
linear scaling does not change the relative values of the pixels 
hence the display image will have weak contrasts relatively 
boosted and high contrasts relatively suppressed. From a 
human perception’s point of view, the visual system is 
sensitive to relative intensities rather than the absolute 
intensities. The task now is to compute such a GMI. 
 

III. COMPUTING THE GAIN MAP 
 
For a given image I(x, y), we seek a gain map image G(x, y) 
to produce a display image D(x, y) = I(x, y) + G(x, y). Based 
on the discussion in the previous Section, we know that the 
GMI should have the same edge orientations as the original 
image and should have edge magnitudes inversely 
proportional to those of the original image. To compute such 
GMI, our basic idea is illustrated in Fig. 4, which consists of 
two steps; we first compute a linear relation for each pixel 
and its local neighbors in the original image and then embed 
these linear relations in the gain map image. These local 
neighborhood relationships can be thought of as constraints to 
ensure that the GMI changes with the original image; in other 
words, to ensure that G to have the same edge orientations as 
the original image. We sparsely constrain the gain map image 
locally, i.e., seed some initial GMI pixel values such that the 
contrasts of these seeds follow the requirements of GMI as 
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discussed in previous section. These initial seeds are then 
propagated to the whole image by adhering to the local 
neighbor relations of the original image. Such propagation of 
the initial seeds is achieved by solving a constrained 
optimization problem. We compute the locally linear relations 

and solve the global embedding problem by borrowing the 
computational techniques of the “think globally, fit locally” 
manifold leaning framework [6]. Note all processing is done 
in logarithm scale. 
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Step 1: Compute the neighborhood pixel relations, W Step 2: Set initial seeds, G(xi,yi) = si and compute G  
Fig. 4: Schematic of linear neighborhood embedding (LNE) and its application to computing the gain map image. The process has two steps. 
First, we compute the local neighborhood pixel relations by solving a quadratic optimization problem. Secondly, we seed some initial GMI 
pixels and use the neighborhood pixel relations computed from step 1 to compute the GMI by solving a constrained optimization problem. 
 
To compute the local neighborhood pixel relations, we can 
perform following constrained optimization: 
 
Minimizing 
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where Nxy denotes a local neighborhood surrounds the pixel at 
location (x, y), wxy(u, v) is the weight which quantifies the 
contribution of the neighborhood pixel at location (u, v) to 
reconstructing the pixel at (x, y). Note that the relation is 
made local by setting the weights of pixels outside a local 
neighborhood of the pixel to zero. All weights summed to 1 
to be invariance to the absolute intensity of the image.  

The locally linear spatial relation at pixel location (x,y) in 
the original image is captured in the weight matrix Wxy = 
{wxy(u, v)}. These weight matrices should also capture the 
spatial variations of the gain map G because the gain map G 
should follow the variations of I as discussed before. 
Therefore, we can construct G by embedding Wxy’s in the 
gain map by solving following constrained optimization 
problem: 

 
Minimizing 

2
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Subject to  
G(xi, yi) = si, i = 1, 2, … 
 
where si’s are pre-se seed values of the gain map at location 
(xi, yi). The function is quadratic and the constraints are 
linear, and therefore the optimization problem leads to large, 

sparse linear system of equations which can be solved using a 
number of standard methods.  

Note that although the reconstruction weight matrix for 
each pixel is computed from a local neighborhood in the 
original image and is independent of the weights of other 
pixels, the embedding is a global operation that couples all 
gain map pixels. Therefore, G should follow I locally and 
globally as well. Informally, we can view (3) as fitting the 
local constraints G(xi, yi) to the whole image globally. 
Another way to view this solution is that G is a connected 
graph with each pixel corresponding to a vertex and the 
connection weights corresponding to the edges. Therefore the 
pixel values of G are affected by all the initial seeds and the 
connection weights.  

Implementation of the gain map computation is relatively 
straightforward. To solve the constrained least squares fit 
problem of (2), we follow the computational method of LLE 
[6] by solving a linear system of equations. However, since in 
our case, the data is 1-d and there will always be more 
neighbors than input dimensions, the least squares problem 
for finding the weights does not have a unique solution. We 
follow the method of [5, 6] by adding a regularization term to 
the reconstruction cost function to solve the problem. The 
computational complexity of this step scales as O(mn3) where 
m is the number of pixels and n is the neighborhood pixels (n 
= 8 in all our results). 

For the embedding problem of (3), since the cost function 
is quadratic and the constraints are linear, this optimization 
problem yields a large, sparse system of linear equations, 
which may be solved using a number of standard methods. 
The embedding step of LLE solve a similar optimization 
problem but under different constraints. Without special 
optimization, the complexity of this step scales as O(m3), 
where m is the number of pixels. To speed up the 
computation, there are several alternative methods for solving 
the embedding problem, such as multigrid solver which will 
lead to a complexity scales as O(m).  

To set the constraints, we divide the image into 17x17 

III - 523



(other sizes are also possible) blocks, and for each block we 
identify the largest and the smallest pixels and fix the gain 
map pixels at these two locations such that the difference 
between these two pixels in the sum image is enhanced if it is 
small and suppressed if it is large. For each block, the two 
constraint values are set as 

minmax
minmax

maxmin ,0 BBBBGG  

where Bmax and Bmin are the largest and the smallest pixel 
values in a 17x17 block, is set to 0.3 times the average 
local patch contrast of the image and  between 0.6 – 0.8. 
 

IV. EXAPERIMENTAL RESULTS 
 
High dynamic range image compression. We have applied 
our technique to compress high dynamic range radiance maps 
for display in low dynamic range device. Fig. 1 shows an 
example of applying our method. To inspect the effect of the 
method more closely, we extract one line of pixels from the 
images in Fig.1 and show the plot of this line of pixels in 
Fig.5. Fig. 6 shows more examples of our results and 
comparison with other methods in the literature. It is seen that 
our method is quite competitive. 
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G

D = I + G

 
Fig. 5. A scan line from the images in Fig. 1, all three signals are 
scaled to 0 ~ 255. It is seen that the gain map image (bottom line) 
strictly follows the changes of the original image (middle line). The 
result image (top line) and the original image (middle line) have 
exactly the same edge directions. It is also seen that the sum image 
D (top line) has more local details than the logarithm of the original 
radiance map (middle line). 
 

  

  
Fig. 6 Left column: our results. Top right result of [2] (note the halo 
artifacts in this image) and bottom right result of [3]. Images are 
courtesy of Raanan Fattal, Dani Lischinski and Michael Werman, F. 

Durand and J. Dorsey and P. Debevec.  
It is straightforward that our approach can also be applied 

to the enhancement of ordinary (8 bit/pixel) images. Fig. 7 
shows an example of applying our method to image 
enhancement.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 7 (a) Original image, (b) The gain map image (c) Our result (d) 
Result of gradient domain technique [2]. Image data and gradient 
domain result courtesy of Raanan Fattal, Dani Lischinski and 
Michael Werman. 
 

V. CONCLUDING REMARKS 
 
In this paper, we have presented a novel technique for the 
display of high dynamic range images. Our novel approach 
computes a gain map image using a computational method of 
machine learning and achieves effective dynamic range 
compression by suppress strong contrasts and boost weak 
contrasts. We have presented experimental results which 
demonstrate that our method is effective both for display 
HDR images and for image enhancement. 
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