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Abstract. Interactive image segmentation is important and has widespread ap-
plications in computer vision, computer graphics and medical imaging. A re-
cent work has shown that interactive figure ground segmentation can be 
achieved by computing a transparency image using an optimization framework, 
where user interactions are used to supply constraints for solving a quadratic 
cost function with a unique global minimum, which can be efficiently obtained 
using standard methods. In this paper, we introduce statistical priors as con-
straints to solve the optimization problem. We show that for some images, the 
statistical priors can provide good enough constraints to automatically obtain 
satisfactory figure ground segmentation results. For more difficult cases, we 
use the segmentation result of the statistical priors as a starting point for inter-
active figure ground segmentation. We show that segmentation results obtained 
based on statistical priors can be effectively employed to guide user interaction 
thus helping to reduce users labor in the interaction process. We also present a 
new effective adaptive thresholding method for making binary (hard) segmen-
tation based on the computed continuous transparency image. Another contri-
bution of this paper is the extension of the optimization based interactive figure 
ground segmentation framework to interactive multi-class segmentation, where 
user can provide multi-class seed pixels instead of just foreground background 
2-class seeds, for segmenting the given image into the desired number of re-
gions by performing a one-shot optimization operation, which again has a 
unique global minimum and can be obtained by solving a large system of linear 
equations. We present various experimental results, including segmentation er-
ror rates on an online image database with human labeled ground truth, to show 
that our method works well and has direct applications in areas such as interac-
tive image editing.  

1   Introduction 

Foreground background segmentation has wide applications in computer vision (e.g. 
scene analysis), computer graphics (e.g. image editing) and medical imaging (e.g. 
organ segmentation). Fully automatic image segmentation has many intrinsic difficul-
ties and is still a very hard problem. In many applications, such as image editing in 
computer graphics and organ segmentation in medical imaging, semi-automatic and 
interactive approaches, where human operators provide strong priors for the computa-
tional algorithms to perform segmentation, can not only overcome the inherent tech-



 

nical difficulties of fully automatic image segmentation, but may also be desirable 
because the operators in many of these applications may want to be able to control the 
segmentation process and results.  

There have been increasing activities in the research community to develop inter-
active semi-automatic image segmentation techniques [2, 3, 9, 11, 12]. In [2], the 
authors presented an interactive image segmentation technique based on graph cut. 
Users labeled seed pixels which indicating definite background and foreground were 
used as strong priors for segmenting images into figure and ground. In [3], the au-
thors showed that graph cut based segmentation algorithms could be implemented 
very fast. In [12], the authors presented a segmentation given partial grouping con-
straints method. User inputs were used as bias to a natural grouping process, and the 
authors formulated such biased grouping problem as a constrained optimization prob-
lem that propagates sparse partial grouping information to the unlabelled data by 
enforcing grouping smoothness and fairness on the labeled data points. They used the 
normalized cut criterion and solved the optimization problem by eigen-
decomposition. In [9], the authors presented an interactive image foreground extrac-
tion method that was computationally based on graph cut of [1] but the authors intro-
duced a simpler user interaction technique to reduce user efforts in the interaction 
process and an iterative model updating procedure to improve accuracy. In [11], an 
interactive foreground background segmentation method was introduced in the con-
text of image matting. The authors used Belief Propagation to iteratively propagate 
user labeled pixels to the unlabeled pixels.  

A recent work [13] has developed an optimization based figure ground segmenta-
tion technique, where a transparency image was computed by optimizing a quadratic 
cost function with user supplied linear constraints. The optimization problem has a 
unique global minimum and can be solved efficiently by standard numerical methods. 
In this paper, we introduce statistical priors as constraints to solve the optimization 
problem. For some images, the statistical priors can provide good enough constraints 
to automatically obtain satisfactory figure ground segmentation results. For more 
difficult cases, user interaction is necessary. In such cases, we use the segmentation 
result based on the statistical priors as a starting point for interactive figure ground 
segmentation, and as a guide to help users to place the constraints in the correct loca-
tions to generate the desired results. In this way, the statistical priors not only guide 
the user but also help reducing users’ labors in the interaction process. We have also 
developed a new method to make binary (hard) segmentation based on the computed 
continuous transparency image. Another contribution of this paper is the extension of 
the optimization based interactive figure ground segmentation framework to interac-
tive multi-class segmentation, where user can provide multi-class seed pixels instead 
of just foreground background 2-class seeds, for segmenting the given image into the 
desired number of regions by performing a one shot optimization operation, which 
again has a unique global minimum and can be obtained by solving a large system of 
linear equations.  

The organization of the paper is as follows. In Section 2, we present the framework 
of optimization based figure ground segmentation and describe solutions based on 
statistical priors and user interaction. In section 3, we present experimental results and 
demonstrate the possible applications of our method. In section 4, we extend the op-



 

timization based figure ground segmentation framework to interactive multi-class 
image segmentation and present preliminary results.  

2   Interactive Figure Ground Segmentation using Optimization 

For a given color image I(z), where z∈(x, y) is the co-ordinate vector, there is a corre-
sponding (hidden) transparency image α(z), where 0≤α(z)≤1 is called the alpha matte 
in computer graphics [4]. We consider each pixel as being generated as an additive 
combination of a proportion α(z) of foreground color with a proportion 1-α(z) of 
background color. For a definite background pixel, we have α(z) = 0 and for a defi-
nite foreground pixel, we have α(z) = 1. For pixels that are between foreground and 
background, we have 0<α(z)<1. In figure ground segmentation, we have to decide 
whether a pixel with 0<α(z)<1 belongs to foreground or background. It is in these 
areas, the task of segmentation becomes hard. In many situations, even human ob-
servers will have difficulty in deciding whether some particular pixels should belong 
to background or foreground. There exist a large amount of uncertainty and, if a crisp 
decision has to be made, it is unlikely that a unique answer is possible. Therefore, 
instead of making a binary decision in the modeling stage, we wish to compute a 
continuous transparency image α(z) and then making hard segmentation based on 
α(z). This approach may offer more flexibility in making the binary decision (Section 
3.1 presents a possible approach) and may also be conveniently used for applications 
such as image composition (Section 3.5). 

If two pixels both belong to the foreground (or background), it is reasonable to as-
sume that they will have similar colors and other photometric properties. In other 
words, pixels with similar photometric properties should have similar α values. 
Within the background or foreground, it is also reasonable to assume that the image is 
smooth, i.e., neighboring pixels will have similar photometric properties hence α 
values. If two pixels one belongs to the background, the other belongs to the fore-
ground, it is also reasonable to assume that they will have very different photometric 
properties, that is, two pixels with different photometric properties should have dif-
ferent α values.  

Based on such reasoning, we can formulate a cost function for the transparency 
image α(z) such that an α(z) that satisfies the above assumptions will correspond to a 
minimum of the cost function. We will follow a similar approach developed in a 
recent work [13] to formulate the cost function but will introduce statistical priors as a 
new means to set the constraints for initially solving the optimization problem. For 
cases where statistical priors are inadequate, user interactions can build on the result 
of the statistical priors to produce desired results quickly.  

2.1   The Cost Function 

This sub section essentially follows that of [13]. Let G(z) = Φ(I(z)) be image features 
(such as color, texture, etc), computed around the pixel at location z, where Φ is the 
feature extraction operator. We call G(z) the photometric features. Let Ng(z) be the set 



 

that contains the geometric neighbors of z, t∈Ng(z) if |t – z|<Rg, let Np(z) be the set 
that contains the photometric neighbors of z, t∈Np(z) if |G(t) - G(z)|<Rp, where Rg and 
Rp are some preset constants determining the size of the neighborhoods. Let Nm(z) = 
Ng(z) ∪ Np(z) which includes all pixels that are either the geometric neighbors or the 
photometric neighbors of z.  

Based on some reasonable assumptions about the transparency image and assum-
ing that two spatially adjacent pixels should have similar α values, two photometri-
cally similar pixels should also have similar α values, and the difference in α values 
between two pixels should be proportional to the pixels’ photometric distance, the α 
image may be obtained by minimizing the cost function defined as  
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where wg(z, t) is the geometric neighbor similarity weighting function between two 
pixels z and t, wp(z, t) is the photometric neighbor similarity weighting function be-
tween two pixels z and t, and λ is a constant that measures the relative importance of 
the geometric neighbor similarity and the photometric neighbor similarity, all similar-
ity weightings inside the neighborhood sum to one. 
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To reflect the assumptions that geometrically close pixels are likely to have similar 
α values and geometrically far apart pixels are likely to have different α values, and 
photometrically similar pixels are likely to have similar α values and photometrically 
different pixels are likely to have different α values, the neighbor similarity functions 
wp(z, t) and wg(z, t) should be small if |z - t| is large and small if |z - t| is large, and they 
should be small if G(z) and G(t) are different and large if G(z) and G(t) are similar. 
We use following functions 
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where σgg and σgp, σpg and σpp are the variances of the geometric co-ordinates and 
photometric features inside Np(z) and Ng(z) respectively.  

A similar cost function of the form, αT(I-W)T(I-W)α, also appeared in the literature 
in the context of image segmentation using normalized cut [10], nonlinear dimen-
sionality reduction [8], and coloring black and white images [6]. 

Note that one of the purposes of using photometric neighbors is to bring spatially 
far away but photometrically very similar pixels to have influence on each other’s α 
values. In theory can be achieved by making the geometric neighborhood larger (at 
the extreme to include the whole image). However, this will have two problems. 
Firstly, a larger neighborhood will make the problem less sparse thus making the 
problem computationally much more demanding. Secondly, making a pixel influ-
enced by too many pixels (with unknown status), it may also risk introducing inaccu-
racy and uncertainty into the model. 



 

2.2   Optimize the Cost Function with Statistical Priors 

To solve (1), we need to constrain the problem. One possible solution is to linearly 
constrain the problem by finding statistically almost definite background pixel loca-
tions zi and set α(zi) = 0; and statistically almost definite foreground locations zj and 
set α(zj) = 1. Using these linear constraints, the quadratic function in (1) has a unique 
global minimum. This optimization problem yields a large, sparse system of linear 
equations, which may be solved efficiently using a number of standard tools [1, 7].  

There are many possible ways for finding the statistical priors. Here we present a 
possible (not necessarily the optimal) approach. We first classify the pixels into two 
classes, and then within each class, we find the pixels that are most likely to belong to 
the foreground or the background. There are numeral methods in the literature that 
can be used to achieve this purpose. Note that accurate foreground background sepa-
ration is not the goal here but instead the purpose is to be able to identify some fore-
ground and some background pixels with reasonably high confidence and use these 
pixels as constraints for solving the optimization problem of (1). Although any previ-
ous automatic image segmentation and data clustering algorithms can be used, for 
simplicity, we have developed our implementation based on k-means clustering algo-
rithm. The procedure is described as follows: 

Step 1: Using the pixels photometric features G(z) and the k-means algorithm to classify the 
pixels into 2 classes, C1 and C2.  

Step 2: Again use k-means to classify ∀ z ∈ C1 into k sub classes, c11, c12, c13, …, c1k and clas-
sify ∀ z ∈ C2 into k sub classes, c21, c22, c23, …, c2k 

Step 3: Compute the probabilities p11 = p[z∈c11], p12 = p[z∈c12], …,  
p1k = p[z∈c1k]; p21 = p[z∈c21], p22 = p[z∈c22], …, p2k = p[z∈c2k] 

Step 4: Set c1max = c1i, if p1i ≥ p1j ∀ j; set c2max = c2i, if p2i ≥ p2j ∀ j 
Step 5: Find the set Ω1 = {z | z∈c1max}; and the set Ω2 = {z | z∈c2max} 
Step 6: For the set Ω1, find the connected pixel regions s11, s12, …, s1m; and for the set Ω2, find 

the connected pixel regions s21, s22, …, s2n 

Step 7: If z ∈ s1i and s1i > S; set α(z) = 0; if z ∈ s2j and s2j > S set α(z) = 1; ∀ i, j; where S is 
the preset connected region size (area). 

In words, we first classify the pixels into two classes. Within each class, we find 
the pixels that occur with the highest probability. We then perform connected region 
labeling on these most frequently occurred pixels. Only those pixels that form a con-
nected region that is larger than a preset size will be used as priors for solving the 
optimization problem of (1). Once these constraints are identified, then solving the 
optimization problem become straightforward, i.e., solving a large, sparse linear sys-
tem of equations.  

2.3   Human Interaction for Result Refinement 

As we shall demonstrate in section 3 that using the statistical priors can achieve satis-
factory results for some images, see Fig. 1. However, as any automatic image seg-
mentation algorithms, the results are image dependent. Fortunately, in our current 
framework, we can build on the result of the statistical priors and manually add extra 



 

constraints or remove inappropriate constraints to solve the optimization problem 
again to achieve the desired result. 

Often in interactive image segmentation, the users do not know exactly where to 
start unless they are very experienced. The initial results obtained using the statistical 
priors can serve as a guide to help users to place the constraints in the strategically 
correct locations, which can not only increase the chance for success but also can help 
reducing the user effort. Please see Fig. 2 in Section 3 for examples of such interac-
tion.  

3   Experimental Results 

The implementation of the algorithm consists of several straightforward steps. First 
we need to decide the types of photometric features to use and find the geometric and 
photometric neighbors for each pixel, and then we compute α(z) by optimizing 
E(α(z)) using the statistical priors. If the results are not satisfactory, then extra con-
straints are added on by the user until satisfactory results are obtained.  

The selection of geometric neighbors is straightforward and in all our experiments 
we use the 8 spatially connected pixels as geometric neighbors. We then need to se-
lect the photometric features for finding the photometric neighbors and for computing 
the similarity weighting measures (3) in the feature space. In all our experiments, we 
convert the color image into La*b* color space and use all pixels from the 3x3 win-
dow that center on a pixel to form the photometric feature for that pixel. We use a 
very simple method to efficiently search the photometric neighbors. For each pixel, 
we randomly sample Κ (Κ ≈ 150 in all our experiments) pixels from an M x N win-
dow (17 x 17 in all our results) center on the pixel. From these Κ pixels, we find 4 
that are the most similar to the pixel as its photometric neighbors (It is neither desir-
able nor it turns out necessary to have large numbers of photometric neighbors). Each 
pixel will have 8 geometric neighbors and 4 photometric neighbors. Therefore each α 
pixel is linked to 12 (or fewer) neighbors via their similarity weightings. The relative 
geometric and photometric weighting constant λ  is determined by experiment, which 
may vary from image to image. We found that results are not sensitive to λ and set-
ting λ = 1 works well for most images. 

Solving the minimization problem of (1) using the linear constraints yields a large, 
sparse system of linear equations. In our current implementation, we use Matlab’s 
build-in least squares solver for sparse linear system to directly solve for α(z). On a 
Pentium 4 PC with 1.8GHz CPU, our current implementation takes about 6 minutes 
to compute an α image for a 500x300 image. However, fast methods and even dedi-
cated hardware are available to solve this problem much faster [1, 5, 7]. 

3.1   Adaptive Thresholding α 

The optimization process of (1) produces a continuous image α(z)∈[0, 1]. If α(z) =0 , 
it is a background and if α(z) = 1, it is a foreground pixel. In order to make a binary 
decision, i.e., segmenting figure and ground, we need to make pixels where 0<α(z)<1 



 

either belong to the foreground or the background. Although there are many possible 
ways to make such binary decision, we have developed a simple yet extremely effec-
tive method. For 0<α(z)<1, we place a rectangular window W(z) around the pixel z 
and choose the smallest possible window size which will also include at least one α = 
0 pixel and one α = 1 pixel. We then calculate the average of all α's≠0 and α's≠1 
inside the window as the threshold T(z). That is, we select the window size adaptively 
by specifying that a window have to include at least one definite background and one 
definite foreground pixels. In computing the threshold value, we exclude the definite 
foreground and definite background pixels in the window. Hard (binary) segmenta-
tion is achieved as: If α(z) ≥ T(z) then α(z)=1 (foreground); and if α(z) < T(z) then 
α(z)=0 (background). 

   

   

Fig. 1. Results of foreground background segmentation using statistical priors only. Left col-
umn shows the original image with statistical priors (red and blue pixels). Middle column 
shows the segmented foreground images. Right column shows the segmentation errors as 
compared with the ground truth. Original and ground truth images used in [14] and are avail-
able online [15]. Note that most of the error pixels are labeled as mixed pixels in the ground 
truth. 

3.2   Segmentation using Statistical Priors 

In this experiment, we use the statistical priors only as the linear constraints to solve 
the optimization problem in (1). The statistical priors are obtained as described in 
Section 2.2 and the computed continuous α is binarized (hard segmented) using the 
procedure of Section 3.1. Fig.1 (previous page) shows examples of segmentation 
results. It is seen that statistical priors alone can produce very good results in these 
cases. Note that everything is automatic in this mode. 



 

3.3   Human Interaction for Result Refinement  

 

 

Fig. 2. Human interaction build on statistical priors result to produce good segmentation result. 
1st column: original image with statistical priors (yellow and light blue pixels). 2nd column: α 
images based on statistical priors only. 3rd column: User interaction based on statistical priors 
results, red and blue scribbles are put on by the user to be used as extra constraints. Note that in 
the Mushroom image, the white squares indicate the statistical priors should be removed from 
these regions. 4th column: segmented images after human interaction. 5th column: the errors of 
the segmentation as compared with the ground truth. Original and ground truth images used in 
[14] and are available online [15].  

Even though our method can do a reasonable job in segmenting non-complicated 
scenes by using statistical priors alone, for more challenging scenes, as any automatic 
segmentation scheme, our method can also fail. The advantage of our method is that 
it allows user interaction. Users can build on the results of the statistical priors and 
manually place extra constraints in the correct locations to guide the optimization 
process to achieve good segmentation results. Fig. 2 shows examples of such interac-
tion process. It is seen that statistical priors alone did not work very well. However, 
the results of the statistical priors indicated to the user where he/she should place the 
background and foreground constraints in order to achieve a good segmentation. It 
also allows the user to remove inappropriate priors which have caused the optimiza-
tion process to fail to produce a good result. Therefore, the statistical priors can be 
used as a guide for user interaction which is helpful in reducing user labor. 

3.4   Segmentation Results for a Dataset with Ground Truth 
 
In this section, we present results performed on a database used in [9, 14] and which 
is available online [15]. The data set consists of 50 color images, each has a “trimap” 



 

and a ground truth image. The trimap specifies definite background and definite fore-
ground pixels and the pixels between the foreground and background are unknown, 
see Fig. 3.  

We use the trimap to set the constraints for our optimization based image segmen-
tation to compute the α in those unknown areas. We then use the adaptive threshold-
ing procedure of section 3.1 to make hard (binary) segmentation. We also computed 
the segmentation error rate as defined in [14] which measures the ratio of misclassi-
fied pixels over unknown pixels. We also excluded the possible mixed pixels on ob-
ject boundaries for error rate calculation. The average error rate on all 50 images was 
4.65% with a standard deviation of 3.26%.  

 

   

   

Fig. 3. Example of segmentation results using trimap. Left column: original images. Middle 
column: the trimap images with user defined foreground (white) background (dark grey) and 
unknown (light grey). Right column: foreground results. The error rate for the top image is 
4.43% and the error rate for the bottom image is 0.89%.  

These are excellent results that are comparable to those presented in [14]. Note that 
in our technique, we do not have to train the segmentation model whilst the method 
of [14] used 15 images to train the segmentation model and tested the model on 35 
images. Our result is obtained using default parameter settings and everything is done 
automatically. Also our results are for all 50 images rather than a subset. Fig. 3 shows 
examples of the segmentation results performed on this data set. 



 

3.5   Image Composition/Matting 

Lets consider a situation where we have pixels that are near the boundary u between 
the foreground and background objects as shown in Fig. 4. Assuming that the back-
ground signal B(t) and the foreground signal F(t)are smooth surfaces, these pixels can 
be approximately modeled as  
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Fig. 4. Background and foreground contribute to the pixels near the boundary between fore-
ground and background objects, h(t) is the point spread function of the camera system. 

If the pixel is near the boundary but is on the foreground side at zf, then α(zf) > (1-
 α(zf)), i.e., α(zf) > 0.5. The farther way it is from the boundary, the value of α(zf) will 
be closer to 1. If the pixel is near the boundary but on the background side at zb, then 
α(zb) < (1- α(zb)), i.e., α(zb) < 0.5. The farther way it is from the boundary, the value 
of α(zb) will be closer to 0. Note that for definite background pixels we have a(z) = 0 
and for definite foreground pixels we have a(z) = 1.  

This shows that in image formation, in the areas that are near the boundary be-
tween the background and the foreground, if a pixel is closer to the foreground, then 
its α value should be more similar to that of the foreground; and if it is closer to the 
background, its α should be more similar to that of the background. The α image 
computed based on (1) has exactly this property because one of the assumptions of 
(1) is that two spatially close pixels should have similar α’s. Therefore the computed 
α image using (1) can be seen as the alpha matte [4] and may be directly used for 
image composition using following image composition equation: 

( ) ( ) ( ) ( )( ) ( )zBzzFzzI αα −+= 1  (5) 



 

Fig. 5 shows examples of using the computed α as the transparency layer for extract-
ing the alpha matte and for image composition.  

 

   

   

   

Fig. 5. Image composition using the computed α image as the transparency layer. Left column: 
images containing the foreground objects. Middle column: the α images computed by our 
optimization framework. Right column: composition image based on equation (5).  

4   Interactive Multiple Class Segmentation using Optimization  

Interactive image segmentation methods such as those in [2, 9, 11] can only segment 
images into 2 classes in their energy formulation. If multiple regions segmentation is 
desired, then these methods have to be applied recursively. We can extend the 
interactive optimization foreground background segmentation framework to 
interactive multiple class segmentation. Assuming we would like to segment the im-
age into n classes, c1, c2, …, cn, then we construct n α images, αi(z), i =1, 2, …, n, 
each correspond to a class. We have, if z∈ci  then αi(z) = 1, and αj(z) =0 for ∀j ≠i. To 
construct the n α images, we can formulate the problem as a constrained optimization 



 

the n α images, we can formulate the problem as a constrained optimization problem 
as: 

Minimizing: ( ) ( ) ( )( ) ( )
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This optimization problem is a straightforward extension from (1). Within each class, 
we assume that if two pixels have similar photometric properties or are close spa-
tially, then they should have similar α values. Conversely, they should have different 
α. The weighting functions between the same geometric neighbors and the same 
photometric neighbors are the same for different α images. However, the second 
constraint in (6) ensures that a single pixel will not be classified into 2 classes simul-
taneously (all α values at a given co-ordinate sum to 1). Another interpretation of this 
second condition is that αi(z) = p(z∈ci), the probability of the pixel at z belongs to 
class ci.  

To solve the optimization problem in (6) the conditions are insufficient, we can 
also employ user input to provide more constraints to make the problem well condi-
tioned. Assuming at locations z1, z2, …zn, user have specified pixels as belonging to 
c1, c2, …cn respectively, then the constraints are: αi(zj) = δ(i, j), for i =1, 2, …, n and j 
=1, 2, …, n, where δ is the Dirac delta function. With these constraints, then the op-
timization problem again yields a large, sparse system of linear equations. Now the 
system is n times as large as the foreground background segmentation problem. A 
straightforward solution using standard methods will require large amount of mem-
ory. Although the system is still sparse, fast solution may require special program-
ming considerations. Once the α images are computed, then segmentation can be 
achieved as z∈ci if αi(z) = max{α1(z), α2(z), …, αn(z)}.  

We have implemented the interactive multiple class image segmentation algorithm 
in Matlab using its build in linear system solver. Fig. 6 shows examples of interac-
tively segmenting the images into 3 classes simultaneously. It is seen that the method 
clearly works which demonstrates the potential of the new extension. However, com-
putationally, we found that straightforward solution requires a huge amount of mem-
ory space and is computationally expensive. We are currently working on more effi-
cient implementations.  



 

  

    

    

Fig. 6. Examples of interactive multiple class image segmentation using optimization. The 
figures shows the original images with user indicated 3 classes of seed pixels (red, green and 
blue color scribbles), and the segmentation results in red, green and blue regions.  

5   Concluding Remarks and Future Work 

In this paper, we have presented a method that introduces statistical priors to an opti-
mization based interactive image foreground background segmentation framework. 
We have shown that for simple cases, the statistical priors will be sufficient to pro-
duce satisfactory results automatically. We have shown segmentation results obtained 



 

based on statistical priors can be effectively employed to guide user interaction thus 
helping to reduce users labor in the interaction process. We have also successfully 
extended the foreground background two-class segmentation framework to interac-
tive multiple class segmentation.  

Preliminary results have demonstrated that the interactive multiple class segmenta-
tion works well. But we also encountered problems in solving the multiple class seg-
mentation problems for large images and for large number of classes, chiefly caused 
by the memory problems in the process of solving the large system of linear equa-
tions. In our future work, we will investigate better and more efficiency ways to solv-
ing the computational problems. Our goal is to achieve real time interactive image 
segmentation of arbitrary number of classes using the optimization framework. 
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