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Example-based super-resolution is a promising approach to solving the image super-resolution problem.
However, the learning process can be slow and prediction can be inaccurate. In this paper, we present a
novel learning-based algorithm for image super-resolution to improve the computational speed and pre-
diction accuracy. Our new method classifies image patches into several classes, for each class, a class-spe-
cific predictor is designed. A class-specific predictor takes a low-resolution image patch as input and
predicts a corresponding high-resolution patch as output. The performances of the class-specific predic-
tors are evaluated using different datasets formed by face images and natural-scene images. We present
experimental results which demonstrate that the new method provides improved performances over
existing methods.

� 2009 Published by Elsevier Inc.
1. Introduction vides less and less useful information as the zooming factor
Image super-resolution plays an important role in many multi-
media applications. This term refers to the reconstruction of a
high-resolution (HR) image from a single or a set of low-resolution
images [1]. In this paper, we consider image super-resolution
based on a single image; this is also called image magnification
or image interpolation. The simplest method to enhance image res-
olution is by direct interpolation. However, this approach does not
include any additional information for compensating the high-fre-
quency content of the HR images to be constructed, which has
been lost in the low-resolution (LR) images. A number of super-res-
olution algorithms [2–5] have employed regularization terms to
solve the ill-posed image up-sampling problem. These algorithms
usually incorporate smoothness priors as a constraint in recon-
structing the HR images. However, using smoothness priors that
are defined artificially has been found to lead to overly smoothed
results [6,7]. Example-based or learning-based super-resolution
algorithms [6–16] have been proposed recently as a very attractive
approach for image super-resolution. Instead of defining a prior
intuitively, this approach exploits the prior knowledge between
the high-resolution and the corresponding low-resolution exam-
ples by learning algorithms.

Baker and Kanade [6,7] have demonstrated that the reconstruc-
tion constraint used in many regularization-based methods pro-
Elsevier Inc.
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increases. They proposed a ‘‘hallucination algorithm” to break the
limit of the reconstruction constraint. To estimate the high-fre-
quency components for a HR image, a multi-scale feature vector
from a training set, which is composed of both LR details and the
corresponding HR details, is searched as the best match, based
on the LR patches from a LR image and the LR pixel values of the
feature vector. Most example-based super-resolution algorithms
[8–12] also involve a training set, which is usually composed of a
large number of HR patches and their corresponding LR patches.
The input LR image is split into either overlapping or non-overlap-
ping patches. Then, for each LR patch from the input image, either
one best-matched patch or a set of the best-matched LR patches is
selected from the training set. The corresponding HR patches are
used to reconstruct the output HR image. Freeman et al. [8,9]
embedded two matching conditions into a Markov network. One
is that the LR patch from the training set should be similar to the
input observed patch, while the other condition is that the con-
tents of the corresponding HR patch should be consistent with its
neighbors. Wang et al. [10] extended the Markov network to han-
dle the estimation of PSF parameters. Stephenson and Chen [11]
presented a method in which the symmetry of a cropped human
face is considered in the Markov network. Qiu [12] proposed an
alternative method, based on vector quantization, to organize
example patches. A survey of example-based super-resolution
methods is available in [13].

The above-mentioned work has made significant contributions to
the way we now exploit learning-based image super-resolution.
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Fig. 1. Generation of the HR difference image L0 and the LR difference image L1 for
the construction of HR–LR patches, and (b) a 4 � 4 HR block in L0 and its
corresponding 2 � 2 LR block in L1.
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However, most of these existing algorithms involve only a kind of
‘‘searching and pasting” approach, and are therefore computation-
ally intensive when searching for a LR–HR patch from a huge training
set. Furthermore, best-matched but incorrect patches will seriously
degrade the reconstruction results. To deal with these problems,
usually the algorithms simply adopt the average of a set of the
‘‘best-matched” patches; the averaged high-frequency component
is then pasted into the magnified image. For example, Qiu [12] em-
ployed the ‘‘classifying and averaging” scheme. However, the aver-
aging will result in over-smoothing in the output HR image.

In this paper, we propose a new example-based super-resolu-
tion algorithm with a class-specific predictor so as to solve the
above-mentioned problems in the existing algorithms. Inspired
by Qiu’s approach [12], we propose the class-specific predictor,
which is a novel scheme to further improve the performance of
the example-based super-resolution algorithms. In our algorithm,
three questions are addressed: (1) How to generate a correlated
and compact training set? Obviously, the training set is not simply
a case of ‘‘the larger the better”. Only those related training
samples can provide useful information for high-frequency recon-
struction. A large number of irrelevant examples will not only cost
more searching time, but also disturb the search for the correct
‘‘best-matched” patches. In this paper, we will investigate the use
of the self-example training set, a domain-specific training set, a
general-purpose training set, and the combination of these two
sets. (2) How to organize the set of training samples? A well-orga-
nized training set can speed up the searching or the training pro-
cess, and therefore improve the efficiency of the algorithm.
Inspired by the work of Qiu [12], a content-based encoding scheme
is developed, which divides the space of training samples into sev-
eral classes. (3) How to learn from the training set? We believe that
‘‘learning” should be more than just ‘‘searching and pasting”.
Therefore, a class-specific predictor is proposed for the reconstruc-
tion of high-frequency content for each class of LR patches.

In summary, the main contributions of this paper are: (1) a
class-specific predictor is designed for each class in our example-
based super-resolution algorithm – this can improve the perfor-
mance in terms of visual quality and computational cost; and (2)
different types of training set are investigated so that a more effec-
tive training set can be obtained.

2. Design and generation of training databases

The training set selected for use is important to the performance
of the example-based super-resolution methods. Each record in the
training set is an example patch-pair, viz. a HR image block and the
corresponding LR block. Similar to the method proposed by Qiu [12],
a multi-resolution representation of an input image is formed using
a three-level Laplacian pyramid. As shown in Fig. 1(a), let I0 represent
a HR example image, which is blurred and down-sampled to produce
I1 by a zooming factor of z. Similarly, I2 is generated from I1 using the
same zooming factor z. The up-sampled images from I1 and I2 are
generated using bilinear interpolation with a factor z, and are then
subtracted from I0 and I1, respectively, to compute the difference
images L0 and L1. The example patch-pairs are then extracted from
L0 and L1, which are then used to train up the corresponding class-
specific predictors. For each block in L0, there is a corresponding
small block in the LR difference image L1.

Fig. 1 (b) shows a HR difference image L0 and its corresponding LR
difference image L1. If z = 2, each 4 � 4 HR block in L0, e.g. the gray
block, has a corresponding 2 � 2 LR block in L1, viz. the black block.
In order to maintain the continuity of a HR block with its neighbors,
we extend the boundary of the corresponding LR block by 1 pixel to
form a LR sampling block, i.e. the LR block in black and the neighbor-
ing pixels in gray in L1, as shown in Fig. 1(b). This HR block and the
corresponding LR sampling block thus form a patch-pair. By consid-
ering all the possible HR blocks in L0 and the corresponding LR sam-
pling blocks, a training set of patch-pairs is generated.

In this paper, we will consider four types of training set for
example-based image super-resolution:

(A) Self-example training set (Set A): An input LR image is taken as
the image I0 in Fig. 1(a), which is down-sampled to form images I1

and I2, so as to extract the training examples to be used. The con-
tents obtained from self-examples should be more relevant to the
input image itself, and so the number of required training exam-
ples should be much smaller than that based on other images.
However, the generation of the training set and the training of spe-
cific-class predictors have to be performed on-line.

(B) Domain-specific training set (Set B): Images from a specific
domain can be used to construct the training set. In this paper, we
particularly consider facial images. Hence, the super-resolution of
facial images based on our proposed algorithm will be evaluated. A
face database is used for training, which can be performed off-line.

(C) General-purpose training set (Set C): Images of different types
will be used to form a general-purpose database, which will be
employed for training and used for super-resolution imaging. The
training can be done off-line.

(D) A combined training set (Set D): This training set contains the
examples from both Set A and either Set B or Set C.

3. Our proposed algorithm

Although a scene from the real world contains an abundance of
varied content, a small local block in an image can be classified into
just a few categories, such as flat, edge, corner, and so on. In our
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Fig. 2. A block diagram of our example-based image super-resolution algorithm,
which is composed of a content-based encoder in the form of a vector quantizer,
and a group of class-specific predictors to infer the high-frequency details.
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algorithm, the classification is performed based on vector quanti-
zation (VQ), and then a simple and accurate predictor for each cat-
egory, i.e. a class-specific predictor, can be trained easily using the
example patch-pairs of that particular category. These class-spe-
cific predictors are used to estimate, and then to reconstruct, the
high-frequency components of a HR image. Hence, having
classified a LR patch into one of the categories, the high-frequency con-
tent can be predicted without searching a large set of LR–HR patch-
pairs. The details of our algorithm are described in the following.

3.1. Content-based encoding/classification

To infer the high-frequency information of an estimated HR im-
age effectively, the original LR image is divided into patches, which
are classified into different categories. Those patches belonging to
the same category have similar texture characteristics. A predictor
can be designed for each category in order to estimate the high-fre-
quency content of the patches.

In our algorithm, VQ is used to encode an input patch. The num-
ber of levels or codevectors in the codebook is the number of cat-
egories to be used. In other words, each category is represented by
a codevector. Hence, a codebook must first be trained based on
either the input image for self-example training or a number of
images. Each training image is taken as I0 in Fig. 1(a), which is con-
verted into images I1 and I2 by means of Laplacian decomposition,
as follows:

I1 ¼ szðgðI0ÞÞ and I2 ¼ szðgðI1ÞÞ ð1Þ

where g() and sz() represent the Gaussian operation and the sub-
sampling operation with a factor of z, respectively. Then, the differ-
ence image L1 is the difference between I1 and I2. This difference im-
age is divided into a number of overlapping or non-overlapping
blocks, and the corresponding HR blocks are then predicted. Follow-
ing the work in [14], the block size is set at 4 � 4 in our implemen-
tation. The 16 elements of a block in L1 are denoted as a vector,
b ¼ ½b0 b1 � � � b15�T , which is transformed to have zero mean and
unit variance, as follows:

x ¼ ½x0 x1 � � � x15�T ; where xi ¼
bi � l
r2 : ð2Þ

l and r2 are the mean and the variance, respectively, of the 16 ele-
ments bi. With this normalization, the encoding or the classification
of the blocks will become more efficient. In our experiments, we will
implement and evaluate our algorithms with and without perform-
ing the transformation (2). Assume that all of the training vectors
are classified into N different categories. Then, a codebook containing
N codevectors has to be constructed. The codebook is denoted as

CB ¼ fcijci 2 R16; i ¼ 0;1; . . . ;N � 1g: ð3Þ

Vector quantization is employed for implementing content-
based encoding, whereby the LBG algorithm [17] can be used for
constructing the codebook. This codebook can be determined in
advance or off-line, except in the case of training based on self-
examples. In the encoding process, the best-matched codevector
cj to an input LR block is determined, and the index j represents
the category of the input block. The corresponding jth class-specific
predictor will then be used to infer the high-frequency
information.

All the training examples are encoded using the codebook. With
the codebook for content-based encoding, each example patch-pair
can be classified into one of the N categories. In other words, given
a LR block of an example patch-pair after demeaning and normal-
ization by (2), the closest vector is searched in the codebook. Then,
the corresponding codevector is assigned to this patch-pair, where
each codevector represents a category. Consequently, the training
set is well structured with example pairs.
3.2. The class-specific predictors

As described in Section 2, different training sets are generated,
which are in the form of HR–LR patch-pairs. Based on the LR part
of the patch-pairs, a codebook is trained so that each patch from
a LR image can be encoded, and hence identified to belong to one
of the N categories. In other words, with a given training set, the
LR part of each training patch is classified by content-based encod-
ing. Hence, each category contains a number of HR–LR training
patches. Now, the remaining question is how to learn from these
training patches to help the reconstruction of high-frequency
information? In our algorithm, a class-specific predictor will be
trained for each category. Upon training up the predictor for a cat-
egory, the prior knowledge of HR–LR relations is stored in the
weights of the predictor. This scheme achieves the goal of ‘‘learn-
ing” from the training examples, rather than just performing
‘‘searching and pasting”.

Fig. 2 shows the implementation of our algorithm, which is
composed of a content-based encoder to classify the input LR
patches, and a set of N class-specific predictors. The well-known
least-mean-squares (LMS) algorithm is used [18] to train up the
predictors. The input to a predictor is the 4 � 4 blocks of the differ-
ence images L1, while the output is the corresponding predicted HR
blocks of the central 2 � 2 patches of the input blocks, as described
in Section 2. Therefore, the predictor output is given as follows:

yi ¼
X

x0jwi;j; i ¼ 0;1; . . . ;15; ð4Þ

where wi,j represents the weights for the ith predictor output value,
and x0 is an augmented representation of the input, as shown below:

x0 ¼ ½x0 x1 � � � x151�T : ð5Þ

The weights are updated as follows:

wi;jðt þ 1Þ ¼ wi;jðtÞ þ gx0jðdi � yiÞ; i ¼ 0;1; . . . ;15; j

¼ 0;1; . . . ;16; ð6Þ

where d is the vector of the targeted HR block, which comprises the
corresponding HR patches of the patch-pairs in the training set, and
g is the training rate (0 < g < 1). The training rate should be a small
positive number, to ensure the convergence of the training of the
weights in (6). The value of g will only affect the training speed,
rather than predict quality, if the training converges. There is no
systematic method for choosing g. In our experiments, we set
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g = 0.005. At the beginning of the training, all the weights are set at
0. Note that the N class-specific predictors can be trained simulta-
neously. In the case of using the self-example training set, the train-
ing must be performed online. Using the multi-threading
programming technique can improve the efficiency of the training.

3.3. High-resolution image reconstruction

Having trained the content-based encoder and the class-specific
predictors, the HR version of a LR image can be constructed. The in-
put LR image is first magnified using the bilinear interpolation to
form an initial estimation of its HR version, denoted as I

_

0. The
high-frequency layer L0 is estimated using one of the N class-spe-
cific predictors, and is then added to the initial estimated image
to construct a HR image with high visual quality, i.e.

I0 ¼ I
_

0 þ L0: ð7Þ

Each 4 � 4 block Bh in the HR image has a corresponding 4 � 4
LR block Bl in the difference image L1 of the input LR image. The
central 2 � 2 patch of Bl is the low-resolution version of Bh. In
our implementation, in order to handle those blocks at the bound-
ary of L1, all of the pixels at the boundary are extended and dupli-
cated by one pixel. The block Bl is then encoded and classified to
one of the categories, and the corresponding class-specific classi-
fier is employed to infer the high-frequency information about
Bh. Note that the reconstructed HR blocks have zero mean and unit
variance, so they are transformed to have the original means and
variances. In our algorithm, the HR block Bh is shifted by a step
of 2 in the horizontal and vertical directions, and the corresponding
LR block Bl is shifted by a step of 1 accordingly. At each position of
the blocks, the high-frequency information is predicted using an
appropriate class-specific predictor. Then, the overlapped high-fre-
quency information is averaged to produce an estimation of the
high-frequency layer.

Finally, the high-frequency layer is added to the initial esti-
mated image, as in (7), and a LR constraint is also applied to the
Output HR Pat
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Fig. 3. An example showing the differen
resulting image. We assume that the reconstructed HR image can
produce the input LR image by smoothing and sub-sampling. The
image I0 is blurred and down-sampled to form the LR image I1,
as shown in Fig. 1(a). The average of a z � z block in I0 will corre-
spond to a single pixel in I1. Suppose that the average value in I0

and the corresponding single pixel values in I1 are pi and qi, respec-
tively. Then, the error is computed as follows:

ei ¼ qi � pi: ð8Þ

This error value is added to each pixel in the z � z block to recon-
struct the final HR image.

To illustrate our proposed algorithm, Fig. 3 shows an example of
the steps involved. In this example, all the training patch-pairs are
clustered into four categories. Therefore, there are four codevectors,
and four predictors are trained in the training stage, as described in
Sections 3.1 and 3.2. The four codevectors, c0–c3, are also shown in
Fig. 3. On the left of each codevector, a typical patch-pair of that class
is provided. Given an input LR patch, the vector x is extracted using
Eqs. (1) and (2). Then, x is encoded using the 4-level codebook, and
the codevector c0 is the closest to x in this example. Therefore, the
corresponding predictor P0 is selected to predict the high-frequency
layer. Finally, the high-frequency layer is added to the interpolated
LR image to produce a good-quality HR patch.
4. Experiments and discussions

We will evaluate the performance of our proposed algorithm via
the use of different training sets. Two different types of images will
be considered in our experiments: face images and natural-scene
images. For each type of training set, the optimal number of cate-
gories for content-based encoding will be determined, and both the
visual qualities and the computational complexities of our algo-
rithm, in combination with each of the different training sets, will
be measured. The effect of the number of training samples used
will also be investigated in relation to the domain-specific data-
base and the general-purpose database. Furthermore, to evaluate
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316 X. Li et al. / J. Vis. Commun. Image R. 20 (2009) 312–322
the performance of the class-specific predictors, we will also com-
pare our proposed algorithm to Qiu’s algorithm [12].

4.1. Training and testing images

For domain-specific applications, we consider the super-resolu-
tion of face images. Therefore, a number of face images and natu-
ral-scene images are used in the experiments. For the face images,
the ORL database [19] is employed, which contains 40 distinct sub-
jects, and each subject has 10 different images of size 92 � 112 pix-
els. Fig. 4 shows some of the face images from this database. In
addition, to evaluate the performance of our algorithm for different
Fig. 4. Some face images

Fig. 5. PSNR and MSE with respect to different numb
types of images, a set of natural-scene images is used. The images
have very different appearances to each other. For the self-example
training set, the images themselves are used for training as well as
for testing. Concerning the domain-specific training set and the
general-purpose training set, a certain percentage of the face
images and the natural-scene images, respectively, is selected for
training, while the remainder will be used for testing. With differ-
ent percentages of the images being selected for training, we can
evaluate the effect of the number of training samples on the do-
main-specific training set and the general-purpose training set. In
order to obtain a reliable measure of these performances, fivefold
cross-validation will be employed.
in the ORL database.

ers of levels using the self-example training set.
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4.2. Image super-resolution using self-example training set

In this section, we will measure the performance of our algo-
rithm when applied to both face images and natural-scene images
using the self-example training set, i.e. Set A, with different num-
bers of levels for content-based encoding. In the experiments, the
original images are down-sampled horizontally and vertically by
a factor of 2 to produce the LR images. These LR images are then
processed using our algorithm to reconstruct the HR images. The
PSNR (peak signal-to-noise ratio) and MSE (mean squared error)
between the original images and the reconstructed HR images
are measured.

Fig. 5 shows the PSNR and the MSE obtained by applying our
algorithm to face images and natural-scene images, with different
numbers of levels used in the content-based encoding. From the
Fig. 6. Experimental results ba
results, we can observe that our algorithm achieves the best per-
formance with the face images when the number of levels used
is about 28, while the natural-scene images require a greater num-
ber of levels, about 68. Figs. 6 and 7 illustrate some face images and
natural-scene images, respectively, using different image super-
resolution algorithms. Figs. 6 and 7(a) show the input LR images
of size 46 � 56 for the face images, and 256 � 256 for the natu-
ral-scene images, which are down-sampled from the original HR
images, shown in Figs. 6 and 7(b), respectively. The images in Figs.
6 and 7(c) are the results generated by bilinear interpolation. The
results shown in Figs. 6 and 7(d) are based on Chen [14], and the
results shown in Figs. 6 and 7(e) are based on Freeman [9], which
uses the ‘‘searching and pasting” approach. We can see that the vi-
sual quality of these images is improved, to a certain extent, as
compared to those achieved by bilinear interpolation. The mouth
sed on the ORL database.



Fig. 7. Experimental results based on a natural-scene image.
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region and the eye regions contain more high-frequency details.
However, the unmatched patches for these regions will greatly de-
grade the reconstruction quality. The images in Figs. 6 and 7(f) are
produced using our algorithm with the self-example training set.
Because of the use of class-specific predictors in our algorithm,
the unmatched problem can be avoided, and the image quality is
improved. We have also noticed that the results based on our pro-
posed method are blurrier than those shown in Figs. 6(e). This is
due to the facts that the linear predictors may impose smoothing
in the training patch space, and that the reconstructed high-fre-
quency blocks which overlap are averaged. Therefore, more ad-
vanced predictors and post-processing techniques should be
employed to overcome this drawback.

The PSNR and MSE are objective measurements of image qual-
ity, and they need not be consistent with subjective human visual
perception. Table 1 tabulates the average PSNR, MSE, and runtime



Table 1
Performance of different algorithms.

Test images Bilinear Chen Freeman Our algorithm

Set A Set B/C Set D

Without Pre-processing With Pre-processing

Face images
PSNR(dB) 27.751 26.92 27.161 29.65 29.78 30.00 29.70
MSE 118.168 140.71 133.43 76.07 73.69 70.34 77.11
Runtime(s) 0.01 12.591 145 0.215 0.35 5.752 6.164

Natural images
PSNR(dB) 30.70 28.61 30.35 31.96 32.25 32.34 32.02
MSE 64.64 90.18 61.212 42.45 39.84 39.14 41.83
Runtime(s) 0.015 82.021 439.943 5.693 7.203 6.146 6.614
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of the different algorithms. The results obtained using our algo-
rithms are based on the use of the optimal number of levels, i.e.
28 for face images and 68 for natural-scene images. The reason
for this discrepancy is that the appearances of natural-scene
images are quite different from each other, so a greater number
of categories is needed to represent the variations. We can see that,
with the self-example training set, our algorithm can achieve a
smaller MSE, and therefore, a higher PSNR as compared to the
other algorithms. The experiments were executed on an Inter�
CoreTM 2 CPU 6600 @2.40 GHz with 2 GB RAM system. Our algo-
rithm can achieve a shorter runtime than other example-based
algorithms for two reasons: the self-example training set is of a
small size, with its content correlated; and the class-specific pre-
dictors can be designed in parallel by using multi-thread program-
ming. As for the ‘‘searching and pasting” method, it requires
searching a huge training set for each block of an input image, so
it is more computationally intensive.

In order to show the improvement in performance when the
image blocks are pre-processed by demeaning and unit-variance
transformation before content-based encoding, our algorithm is
also applied to the testing images – both with and without per-
forming the pre-processing. These results are shown in Table 1.
Fig. 8. PSNR and MSE with respect to different numbers of levels using th
We can see that when demeaning and variance normalization is
employed, the performance is improved. However, the runtime
time will then increase slightly.

4.3. Image super-resolution using domain-specific training set (Set B)
and general-purpose training set (Set C)

In this section, we will evaluate the performances of our algo-
rithm with the use of a domain-specific training set and a gen-
eral-purpose training set. In the experiments, we will change the
number of levels for content-based encoding, and select different
numbers of training images for the training of the codebook and
the respective class-specific predictors.

Fig. 8 shows the PSNR and MSE of our algorithm with different
numbers of levels for the codebooks. Half of the images are used
for training, while the remaining half is for testing. Similar to the
self-example case, the optimal number of levels for the face images
is smaller than that for the natural-scene images. The optimal
number of levels for face images is 32, and the optimal number
of levels for natural-scene images is 68. These optimal numbers
are very similar to or the same as the self-example cases. Although
the runtimes required to train up the codebooks and the
e domain-specific training set and the general-purpose training set.



Fig. 9. PSNR performances of our algorithm with different numbers of training samples for (a) face images, and (b) natural-scene images.
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class-specific predictors increase with the size of the training set,
the training can be performed off-line.

Fig. 9 shows the effect of the size of the training sets on the per-
formance of our algorithm. The percentage of images selected for
Fig. 10. Other reconstructed HR images using o
training is changed from 10% to 90%. The respective remaining
images are used for testing. When using the domain-specific train-
ing set, selecting 20% of the face images can produce a better result.
For the general-purpose training set, selecting 50% of the images
ur algorithm with combined training sets.



Table 2
Comparison of Qiu’s algorithm and the proposed method using image ‘‘Lena”.

Bilinear Qiu Our algorithm

PSNR(dB) 26.5 27.4 33.77
MSE 39.8 32.4 27.28

Table 3
Performance of Qiu’s algorithm and the proposed method under the same conditions.

Test images Qiu Our algorithm

Face images PSNR(dB) 27.52 30.00
MSE 123.90 70.34

Natural images PSNR(dB) 30.02 32.34
MSE 65.40 39.14
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can achieve the best result. Once again, our proposed algorithm can
produce the best visual quality. In Table 1, the average PSNR, MSE,
and runtime of our algorithm using the two training sets – with the
optimal number of levels for the codebook and the optimal per-
centages of the training sets employed – are tabulated.

4.4. Image super-resolution using combined training sets

In this section, we will evaluate the respective performances of
our algorithm when the self-example training set is combined with
the domain-specific training set and the general-purpose training
set. The optimal number of levels for the codebooks and the opti-
mal number of training samples obtained in Sections 3.1 and 3.2,
respectively, are also employed in our experiments. Table 1 also
tabulates the PSNR, the MSE, and the runtimes for using the com-
bined training sets. Fig. 10 illustrates some of the HR images
generated.

4.5. Comparison of our class-specific predictor and the interresolution
look-up table

To further evaluate our proposed algorithm using class-specific
predictors, its performance is compared to that of the interresolu-
tion look-up table algorithm proposed by Qiu [12]. Like our algo-
Fig. 11. Some reconstructed HR images using (a) Qiu’s inter
rithm, Qiu’s algorithm classifies all the patch-pairs in the training
set into several categories by means of vector quantization. Then,
a codebook for the LR patches is produced. For each LR codevector,
a corresponding HR codevector is computed by averaging all the
HR patches belonging to the same category. This forms an interres-
olution look-up table for reconstructing HR images. The major dif-
ference between these two methods is mainly in the method of
predicting high-frequency contents: one uses the class-specific
predictor, and the other uses the interresolution look-up table.

Table 2 tabulates the PSNR and the MSE of the two algorithms.
The image ‘‘Lena”, of resolution 256 � 256, is magnified to
512 � 512 using different methods. The results based on bilinear
interpolation and Qiu’s method were reported in [12]. Form the re-
sults we can see the superior performance of our algorithm. Using
the same training set and the same number of codevectors (32 for
face images and 68 for natural images), we evaluate the PSNR and
MSE performances of the two algorithms. The testing images are
those used in Sections 4.1–4.3. The average PSNR and MSE are tab-
ulated in Table 3. Some reconstructed HR images are illustrated in
Fig. 11. The images in Fig. 11(a) are blurrier than those shown in
Fig. 11(b), which may be due to the use of the averaging scheme
in the construction of the interresolution look-up table. However,
the class-specific predictor can alleviate this effect.

5. Conclusion

The example-based approach is a promising way to solve the
image super-resolution problem, which can provide the high-
frequency contents of a reconstructed HR image by learning. How-
ever, most of the existing algorithms interpret the ‘‘learning” as
just a kind of ‘‘searching” the best-matched LR patch, and then
‘‘pasting” the corresponding HR component. In our algorithm, we
improve the learning by using a set of class-specific predictors,
where the prior high-resolution information is stored as the
weights of the predictors. The content of a training set is more
important than its size. In order to exploit the efficiency and effec-
tiveness of training sets, a self-example set, a domain-specific
training set, and a combined set have each been investigated in
experiments. Experimental results show that our algorithm can
achieve an excellent performance in terms of both quality and
computational complexity.
resolution look-up table, and (b) our proposed method.



322 X. Li et al. / J. Vis. Commun. Image R. 20 (2009) 312–322
Acknowledgments

This work was supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China
(Project No. PolyU 5199/06E), and by the National Nature Science
Foundation of China (60472036, 60431020, 60402036), Ph.D.
Foundation of Ministry of Education (20040005015).

References

[1] S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a
technical overview, IEEE Signal Processing Magazine 5 (2003) 21–36.

[2] H.A. Aly, E. Dubois, Image up-sampling using total-variation regularization
with a new observation model, IEEE Transactions on Image Processing 14 (10)
(2005) 1647–1659.

[3] S. Farsiu, M.D. Robinson, M. Elad, et al., Fast and robust multiframe super
resolution, IEEE Transactions on Image Processing 14 (10) (2004) 1327–1343.

[4] H. He, L.P. Kondi, An image super-resolution algorithm for different error levels
per frames, IEEE Transactions on Image Processing 15 (3) (2006) 592–603.

[5] K. Chantas, N.P. Galatsanos, N.A. Woods, Super-resolution based on fast
registration and maximum a posteriori reconstruction, IEEE Transactions on
Image Processing 16 (7) (2007) 1821–1830.

[6] S. Baker, T. Kanade, Limits on super-resolution and how to break them, in:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
vol. 2, 2000, pp. 372–379.

[7] S. Baker, T. Kanade, Limits on super-resolution and how to break them, IEEE
Trans. on Pattern Analysis and Machine Intelligence 24 (9) (2002) 1167–1183.

[8] W.T. Freeman, E.C. Pasztor, Learning low-level vision, International Journal of
Computer Vision 40 (1) (2000) 25–47.
[9] W.T. Freeman, T.R. Jones, E.C. Pasztor, Example-based super-resolution, IEEE
Computer Graphics and Applications 22 (2) (2002) 56–65.

[10] Q. Wang, X. Tang, H. Shum, Patch based blind image super resolution, In:
Proceedings of the Tenth IEEE International Conf. on Computer Vision, Beijing,
China, Oct. 2005.

[11] T.A. Stephenson, T. Chen, Adaptive Markov random fields for example-based
super-resolution of faces, Journal on Applied Signal Processing 2006 (2006) 1–
11.

[12] G. Qiu, Interresolution look-up table for improved spatial magnification of
image, Journal of Visual Communication and Image Representation 11 (2000)
360–373.

[13] M. Elad, D. Datsenko, Example-based regularization deployed to super-
resolution reconstruction of single image, The Computer Journal Advance
Access 20 (2007) (published online on April).

[14] M. Chen, G. Qiu, K.M. Lam, Example selective and order independent learning-
based image super-resolution, in: Proceedings of 2005 International
Symposium on Intelligent Signal Processing and Communication Systems,
pp. 77–80.

[15] X. Zhang, K.M. Lam, L. Shen, Image magnification based on a blockwise
adaptive Markov random field model, Image and Vision Computing 26 (9)
(2008) 1277–1284.

[16] M. Ebrahimi, E.R. Vrscay, Solving the inverse problem of image zooming using
self-examples, in: M.S. Kamel, A.C. Campilho (Eds.), International Conference
on Image Analysis and Recognition Lecture Notes in Computer Science, 4633,
Springer, Berlin, 2007, pp. 117–130.

[17] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design, IEEE
Transactions on Communications 28 (1) (1980) 84–95.

[18] G. Qiu, A progressively predictive image pyramid for efficient lossless for
coding, IEEE Transactions on Image Processing 8 (1) (1999) 109–115.

[19] F. Samaria, A. Harter, Parameterisation of a stochastic model for human face
identification, in: Proceedings of the 2nd IEEE Workshop on Applications of
Computer Vision, Sarasota, FL, Dec. 1994.


	Example-based image super-resolution with class-specific predictors
	Introduction
	Design and generation of training databases
	Our proposed algorithm
	Content-based encoding/classification
	The class-specific predictors
	High-resolution image reconstruction

	Experiments and discussions
	Training and testing images
	Image super-resolution using self-example training set
	Image super-resolution using domain-specific training set (Set B) and general-purpose training set (Set C)
	Image super-resolution using combined training sets
	Comparison of our class-specific predictor and the interresolution look-up table

	Conclusion
	Acknowledgments
	References


