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Functional Optimization 
Properties of Median Filtering 

Guoping Qiu, Member, IEEE 

Absh-act-In this letter, we use a new approach for studying 
the properties of median filtering. Specifically, using threshold 
decomposition, it is shown that median filtering operation mini- 
mizes a two-term cost function of the output state of the median 
filter. The first term of the cost function measures the smoothness 
between the median filter output and its neighbor points within 
the operation window, and the second term measures the discrep- 
ancy between the tilter output and its original signal. The results 
from this study have provided us with a new tool to analyze 
and understand some of the properties of the median filtering 
operation, including weighted median filtering. 

I. MEDIANFILTERING 

EDIAN FnTERING is a discrete time process in which M a 2N+1 points wide window is stepped across an input 
signal. At each step, the points inside the window are ranked 
according to their values, and the median value of the ranked 
set is taken as the output value of the filter for each window po- 
sition. Consider a real, discrete-time sequence {~(n)}, where 
a is a M-level signal. The output of the median filter y(n) is 
given by y(n) = median [a(n - N), . . . , a(n), . . . , a(n + N)]. 
One of the properties of the median operation is that it 
commutes with a thresholding operation [ 13. Thus, multilevel 
running median can be equivalently obtained by thresholding 
the input signal at all possible levels, filtering each of the 
binary thresholded signals by a median filter, and adding these 
binary outputs to produce the final result [l]. Define {ai(n)}, 
i = 1 , 2  ,. . . , M - 1 as the ith level binary signal sequence of 
{a(n)} ,  where ai(.) = 0 if a(.) < i ,  and ai(.) = 1 if a(n) 2 
i. The output of the median filter at the ith level is given 
by yi(n) = median [ai(n - N), . . . ,ai(n), . . . ,a i (n + N)]. 
According to [l], we have 

M-1 

Y(n) = Yi(n). (1) 
i=l 

a. MEDIAN FIL.TEFUNG IS AN OF'TIMJZATION PROCESS 

It has been shown in [ 11 that median filtering of an arbitrary 
level signal is equivalent to decomposing the signal into binary 
signals, filtering each binary signal with a binary median 
filter, and then reversing the decomposition. In this section, 
we analyze the functional minimization property of the binary 
median filtering operation. For analysis purposes, we transfer 
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the {0,1} binary of {ai(n)} into {-1,1} binary of {bi(n)) by 
the operation: b;(n) = 2a;(n) - 1. Define K(n)  as the output 
of median filter of { bi (n) } , which is given by Vi (n) = median 

For median filtering of the binary sequence {bi(n)},  we can 
[b i (n-N) ,  . . . , b;(n), . . . ,b ; (n+N)] ,  and F(n)  = 2yi(n)-l. 

write the output of the median filter as follows: 

+1 i fS (n )  2 0  
-1 otherwise K ( n )  = 

where 
j=N 

S(n)  = b;(n + j )  + bi(n). (3) 
J = - N  

J#o 

We define a cost function of the output state of the median 
filter as follows: 

j = N  

J%(K(n)) = - K(n)b;(n + j )  - K(n)h(n). (4) 
J = - N  

J#o 

It is straightforward to show that the median filter operation 
of (2) always forces (4) into its minimum: &(+I) = -S(n) 
and Ei(-l) = S(n). If K(n) = +1, S(n) 2 0, Ei(+l) < 
Iq-1). If K(n)  = -1, S(n)  < 0, E;(-l) < E;(+l). 
We called this property of the median filtering the functional 
optimization property. In each level of the thresholded space, 
this functional optimization property holds. Thus, we can state 
that median filtering is an optimization operation in which 
the output of the filter is always set to the minimum of a 
cost function of the output state of the filter. We call the cost 
function of (4) the median cost function. 

Now, we are going to explain the meaning of (4). It may 
seem strange at first glance that we write the equation into 
two terms, instead of a single sum. As will become clear in 
the following analysis, these two terms each has a different 
meaning. The first term measures the smoothness between the 
filter output and its neighbor points within the filtering win- 
dow, and the second term measures the discrepancy between 
the filter output and the original signal. 

If the output of the filter is identical to its input neighbor 
(x(n) = bi(n + j ) , j  # 0), the median cost function is 
reduced, m d  if the filter output is different from its neighbor 
(K(n)  # bi(n + j ) , j  # 0), the median cost function is 
increased. Because the median filtering operation (2) always 
minimizes the cost function, it will encourage the output to 
have the same value as its neighbors. Therefore, the median 
filtering has the tendency of smoothing the signal. The second 
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term of (4) encourages the filter output to take the same 
value as its original signal. If the filter output is identical 
to its original signal (K(n) = b;(n)), the value of the cost 
function is reduced. Conversely, if the filter output differs 
from its original signal (vi(.) # b;(n)), the cost function 
is increased. Again, because the median filtering operation (2) 
always minimizes the median cost function, it will encourage 
the output of the median filter to take the same value as its 
original signal. 

It is clear from the above analysis that the function of 
median filtering is a combination of two aspects: The me- 
dian filtering favors the filtered signal to be smooth, and it 
encourages the filtered signal to be the same as the original 
signal. This may explain why median filters has the essential 
characteristics of removing noise without extensive blurring 
and edge destruction. 

This functional optimization property can be easily extended 
to analyze other forms of median filtering operations, such as 
weighted median filter [2], including center-weighted median 
filters [3]. 

m. CENTER-WEIGHTED MEDIAN FILTERING 

Center-weighted median filters [3] are a special case of 
weighted medim filters [2] and are given by the median over 
a modified set of observations containing multiple k center 
samples. Specifically, center-weighted median are defined by 

K(n) = median b;(n - N), . . . ,bi(n)bi(n), . . .b;(n), - [ k 

b;(n + l), . . . , b;(n + N )  ] . ( 5 )  

For center-weighted median filtering of a binary sequence 
{bi(n)}, we can write the output of the median filter as 
follows: 

+1 ifS(n) 20 
-1 otherwise K(n)  = 

where 
j = N  

S(n )  = b;(n + j )  + kb;(n).  (7) 
j = - N  

3 2 0  

The median cost function of the center-weighted median filter 
is defined as follows: 

j = N  

Ei(V,(n)) = - K(n)b;(n + j )  - kK(n)b;(n) .  (8) 
j = - N  

j # O  

It was shown in [3] that for center-weighted median filters, 
there exist a tradeoff between detail preservation and noise 

suppression properties. By observing the median cost function 
of this filter (see (8)), these properties can be easily understood. 
It was statistically shown in [3] that center-weighted median 
filter with a larger center weight (a larger k) performs better 
in detail preservation than one with a smaller centre weight (a 
smaller k). From (8), this property can be readily understood. 
For a larger k, the discrepancy term in the equation takes 
more weight, and thus, the median filter output will be more 
likely to take the value of the original signal than it would 
be for a smaller value of k. For example, if the filter output 
is different from its original signal (K(n)  # b;(n)) ,  the 
discrepancy term of the cost function is increased by k, the 
larger k is, the more it is increased, and therefore, the larger 
k is, the more likely K(n)  # b;(n) will not be the minimum 
of the cost function. Recall that the median filtering operation 
always minimizes the cost function; therefore, the larger k 
is, the more likely K(n)  # b;(n) will not be the output of 
the filter. Conversely, if the filter output is identical to its 
original signal ( K ( n )  = bi(n)), the discrepancy term of cost 
function is decreased by k, and the larger k is, the more it is 
decreased, and the more likely K ( n )  = b;(n) would be the 
minimum of the cost function. Again, due to the functional 
minimization property of the median operation, the more likely 
K(n) = bi(n) would be the output of the filter. It can also 
be understood from another point of view; for a larger value 
of k, the smooth term in (8) takes a relatively less weight 
than it would be for a smaller value of k, and thus, the filter 
output will tend to take the value that is less smooth between 
it and its neighbor points within the operation window than it 
would be otherwise. Therefore, for larger value of k, the noise 
suppression capability of the center-weighted median filter is 
reduced while its detail preservation capability is increased. 

IV. CONCLUSION 
In this letter, we have shown that the median filtering 

operation is an optimization process in which a cost function 
of the states of the filter output is minimized. The introduction 
of a cost function associated with median filtering has provided 
use with a new tool for analyzing and intuitively understanding 
some of the properties of median filters. 
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