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Abstract 

We have developed an Informative Sample Subspace (ISS) method that is suitable for projecting 

high dimensional data onto a low dimensional subspace for classification purposes. In this paper, 

we present an ISS algorithm that uses a maximal mutual information criterion to search a labelled 

training dataset directly for the subspace’s projection base vectors. We evaluate the usefulness of 

the ISS method using synthetic data as well as real world problems. Experimental results 

demonstrate that the ISS algorithm is effective and can be used as a general method for representing 

high dimensional data in a low-dimensional subspace for classification. 
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1. Introduction 

 

Representation plays a key role in the success of computer vision and pattern recognition 

algorithms. An effective representation method should be compact and discriminative. It is desired 

that the representation should have low dimensionality to combat the “curse of dimensionality” 

problem and to improve computational efficiency. The representation should also ideally be in a 

space where different classes of object/data are well separated.  

 

A popular class of object representation technology is the linear subspace methods where high 

dimensional inputs are projected onto a low dimensional subspace in which object recognition can 

be carried out more efficiently. Depending on the ways in which the subspace’s base vectors are 

chosen, the technology can be classified into supervised or unsupervised subspace methods. In 

unsupervised methods, the identity information of the inputs is not used in the derivation of the 

subspace base vectors, whilst in supervised methods, the identity information of the input is 

exploited in deriving the subspace base vectors. Examples of the formal approach include the well-

known classical technique of principal component analysis (PCA) whilst examples of the later 

include the linear discriminant analysis (LDA). In the context of pattern recognition/classification, 

PCA and LDA have been extensively studied in the past and there exists a huge body of literature, 

examples include [1 - 4].  

 

Although unsupervised methods such as PCA can produce compact representation and is optimal in 

the sense of reconstruction errors under the L2 norm, the eigen-subspace is not necessarily optimal 

in terms of discriminative power. In many classification applications, such as face or car detection 

[5, 6], it is necessary to have labelled data to derive classification models. Because the label 

(identity) information of each training sample is available anyway, it makes sense and may also be 
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advantageous to use the class label information to derive the base vectors of an input subspace. 

Using such supervised approaches to deriving object representations for classification has recently 

gained popularity and been demonstrated to be advantageous over unsupervised methods, see, e.g. 

[2, 3, 4, 6, 7]. Whilst supervised methods in the literature such as those in [6] and [7] uses “part-

based” representation, in this paper, we are interested in supervised “projection-based” approaches 

to object representation.  

 

Projection-based supervised methods exist in the literature, such as those in [2, 3] use Fisher’s 

linear discriminant analysis (LDA) to derive the projection subspace base vectors. However, LDA 

only makes use of the covariance of the inputs, it is only optimal for discriminating object classes 

having unimodal Gaussian density with well-separated means. Because most real world problems 

are not unimodal Gaussian nor well-separated, the discriminative power of LDA subspaces may 

also be limited. In deriving a linear subspace in which, not only can the inputs be represented in low 

dimensions, but also the projections of the inputs in the subspace are well separated, it may be 

beneficial to exploit higher than second order statistical information. One way to exploit higher 

order statistics is to use information theory [8], e.g., use mutual information between the inputs and 

object class labels. Theoretically, information theoretic methods may have a number of advantages. 

For example, mutual information measures general statistical dependence between variables rather 

than their linear correlations. The mutual information is also invariant to monotonic transformations 

performed on the variables. Mutual information has been successfully employed in deriving 

supervised but part-based representations for object classification [7], which has been demonstrated 

to be advantageous over non-supervised object representations. In this paper, we present a method 

that employs the maximal mutual information criterion to develop a supervised and projection-

based method for object representation for classification purposes.  
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The organization of the paper is as follows. Section 2 gives a brief background overview on the 

Shannon information theory and Fano’s inequality on the relationship between mutual information 

and a lower bound of misclassification error that motivates the use of mutual information for 

deriving projection-based object representation subspace methods. Section 3 describes a learning 

procedure for deriving a set of mutual information maximizing subspace base vectors. Section 4 

presents experiments and results of applying the method to artificial data and real world problems. 

Section 5 concludes the paper. 

 

 

2. Information Theory Background 

 

Let ensemble X be a random variable x with a set of possible outcomes, AX = {a1, a2, …. an}, having 

probabilities {P(x = ai)}, and ensemble Y be a random variable y with a set of possible outcomes, AY 

= {b1, b2, …. bm}, having probabilities {P(y = bj)}. Let p(x, y), x ∈ AX , y ∈ AY be the joint 

probability. The mutual information between X and Y can be defined as (other forms of definition 

also exist) 

( ) ( , )
; ( , ) log

( ) ( )
x yx A y A

P x y
I X Y P x y

P x P y∈ ∈

 
=  

 
∑ ∑  

(1) 

The mutual information measures the average reduction in uncertainty of x as a result of learning 

the value of y, or vice versa. Another interpretation of the mutual information measure is that it 

measures the amount of information x conveys about y [8]. 

 

In the context of object classification, Fano’s inequality [9] gives a lower bound for the probability 

of error (an upper bound for the probability of correct classification). Our present application uses 

Fano’s inequality in much the same way as it has been used by other authors [10, 11]. The 

classification process can be interpreted as a Markov chain as illustrated in Fig. 1.  
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Fig. 1. Interpreting the classification process as a Markov chain [10, 11], y is the object class random variable, x is the 

observation generated by the conditional probability density function P(x | y). The observation is subjected to a 

transform G, which produces a new feature f from input x. The classifier C then estimates the class identity of input x as 

y’ based on the transformed feature f. 

 

The probability of misclassification error in the setting of Fig. 1, Pe = P(y ≠ y’), has the following 

bound [9] 
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(2) 

where H(Y) is the entropy of Y, F is the ensemble of random variable f, and m is the number of 

outputs of y (number of object classes). The form of the classifier, C, has not been specified. 

Equation (2) quantifies at best how well we can classify the objects using the features f. However, 

an upper bound of the probability of misclassification error cannot be expressed in terms of 

Shannon’s entropy. The best one can do is to minimize the lower bound to ensure an appropriately 

designed classification algorithm does well. Since both m and H(Y) are constants in (2), we can 

maximize the mutual information I(Y; F) to minimize the lower bound of the probability of 

misclassification error. The task now becomes that of finding the transform function that minimizes 

this lower bound. In the next section, we propose a practical solution. 
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3. The Informative Sample Subspace Algorithm (ISSA) 

 

For the original d-dimensional input data x, we would like to find its low dimensional 

representation f, by projecting it onto a k-dimensional (k << d) subspace using a k x d matrix G  

Gxf =  (3) 

The representational quality of f is directly dependent on the k row vectors of G and different 

subspace methods differ in the ways in which these vectors are computed. For example, in PCA, the 

first k eigenvectors of the covariance matrix of the input data form the projection matrix G. In this 

paper, we are motivated by the relation between mutual information and classification errors, 

equation (2) in section 2, and we choose to use an information theoretic criterion to select the 

projection matrix G*: 

( )YGX;ImaxargG*
G∀

=  (4) 

where Y is the identity variable of input variable X, I(X ; Y) is the mutual information between X 

and Y.  

 

Although (4) provides an elegant motivation for selecting an informative transform, it also presents 

huge computational challenges. To estimate the mutual information, it is necessary to estimate the 

probability density functions of the variables and calculate integration functions of these density 

functions, which leads to exponential complexity. A closed form solution is not practical (if not 

impossible). On the other hand, it should be recognized that because (2) is only a lower bound of 

the misclassification error, and an optimal solution to (4) does not necessarily guarantee optimal 

classification performance. Nevertheless, (2) and (4) provide a motivation for developing a 

subspace in which data classification can be effectively carried out. 
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In many applications, we will have training samples available. Especially in the application 

domains we have in mind, image data, it is easy to obtain a large pool of data samples either by 

directly collecting from sensory input or by synthesis. At the core of our algorithm is a simplified 

assumption that the row vectors of the projection matrix G* in (4) can be directly selected from the 

pool of training samples. This is similar to dimensionality reduction using random projection [13, 

14] where the projection matrix is generated randomly using a very simple probability distribution. 

Instead of using random vectors, we use a maximal mutual information criterion to select 

appropriate training samples and use them directly as the row vectors of the projection matrix. To 

simplify the procedure further, we select one row vector at a time and we make the row vectors unit 

length and orthogonal to each other. The procedure of our algorithm is summarized in Fig. 2. 

 

The Informative Sample Subspace Algorithm (ISSA) 

Step 1: Set l = 0, G = 0 (empty) 

Step 2: Calculate the projections of all samples {xi} onto each of the samples, xj, one at a 
time: Zj = {<xi, xj> | ∀ xi}, ∀ xj  

Step 3: Calculate the mutual information I (Zj ; Y), ∀ Zj, according to (1). 

Step 4: Find the sample, E, that generates the largest I (Zj ; Y), i.e. 

arg max{ ( ; )}
j j

j
X Z

E I Z Y
∀

=  

Step 5: Set l = l + 1 

   l
Ee

E
=            and              1l l lG G e−= ∪ , i.e., el used as the lth row of G 

Step 6: If ( )l k≥ then stop, otherwise go to Step 7. 

Step 7: { xi } ← { xi } \ E, and for all xi do: 

lee,xxx liii −=  

Step 8: Go to Step 2 

Fig. 2: The informative sample subspace (ISS) algorithm.  

 
In words, the algorithm works as follows. To find the first transform base (the first row vector of 

G), we select one sample at a time, and project all other training samples onto that selected sample. 

The projections (a set of scalar numbers) and the samples’ identities can be used to estimate the 

joint probability, which in turn can be used to estimate the mutual information of the projections 
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and the class distribution. The sample with projection outputs that maximizes the mutual 

information is selected as the first transform base. This base is then removed from the training 

sample set. All remaining samples are then made orthogonal to the first base and used as training 

samples to find the second transform base. The process continues until all required k bases are 

found. From the procedure it is not difficult to see that all k bases are orthonormal.  

 

Since projecting the samples onto a selected sample will produce a set of scalar values, which can 

be discretized to estimate the joint probability to compute the mutual information according to (1). 

In practice, we use the joint histogram to approximate the joint probability and this makes the 

method practicable with modern computers.  

 

If we have a large enough pool of samples, it is reasonable to assume that it is possible to choose 

the representative ones which are most informative. In this scheme, the computational costs are 

proportional to the number of training samples. There may exist a trade-off between performance 

and computing costs. A larger pool of samples may enable us to find a better set of basis, but it will 

be computationally more costly. Using training pool sizes manageable by a modern PC, we will 

show that although such an approximated approach has no guarantee of finding the optimal 

solution, it is a practical solution and is effective.  

 

 

4. Experiments 

 

In this section, we evaluate the practical usefulness of the ISS algorithm. We have performed three 

experiments. In the first experiment, we use the method on simple synthetic data. In the second 

experiment, we apply the method to face detection. In the third experiment, we use the method in 

the detection of cars in photographs.  
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4.1 Synthetic Data 

 

In this experiment, we have generated artificial two class problems in two-dimensional feature 

space for easy analysis and visualization. We then project the 2-d features in 1-d subspace and use a 

naïve Bayesian classifier to classify the data in the projected 1-d space. The purpose of this 

experiment is to verify the soundness of our method and to demonstrate the possible advantages of 

our method over other subspace methods. We compare our method with two well-known subspace 

methods, principal component analysis (PCA) and Fisher’s linear discriminant analysis (LDA). We 

also measure the mutual information between the projected 1-d features and the data’s class labels 

to verify the relation between mutual information and classification error.  
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Fig.3: Different subspaces and their classification ability. (a) Two-class 2-d features and the 1-d subspace base vector 

(the line) of different subspaces, from left to right: PCA, LDA, and ISS. (b) Mutual information carried in the 1-d 

feature of different subspaces and classification errors in the 1-d subspace using a naïve Bayesian classifier. 

 

Fig. 3 shows a situation where projecting the data onto the 1-d PCA base will fail to separate the 

two classes while projecting the data onto LDA or ISS bases will make the classes much easier to 

separate. In this case, PCA found the maximal variance direction but failed to find the most 
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discriminative direction. It is also shown that the mutual information and classification error has a 

direct relation. The higher the mutual information carried in the subspace the lower the 

classification errors and vice versus.  
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Fig.4: Different subspaces and their classification ability. (a) Two-class 2-d features and the 1-d subspace base vector 

(the line) of different subspaces, from left to right: PCA, LDA, and ISS. (b) Mutual information carried in the 1-d 

feature of different subspaces and classification errors in the 1-d subspace using a naïve Bayesian classifier. 

 

Fig. 4 shows a situation where projecting the data onto the LDA base will fail to separate the classes 

whilst projecting onto either PCA or ISS bases will make the separation much easier. The reason 

that PCA performs well in this example is because the most discriminative direction happens to 

coincide with the largest variance direction of all the data points. It is seen that in this case, LDA 

found the direction of the maximal ratio of between-class scatter and within-class scatter [1-4] but 

failed to capture the maximal discriminative direction. This shows that LDA will not necessarily 

perform better than PCA even though LDA has used labelled data to develop the projection base. It 

also shows that when the decision boundaries are complex and the class distributions are not 

unimodal, LDA can easily suffer from failure. However, it is clearly seen that ISS projection is free 
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from class distribution assumption and has successfully separated complicated class distributions. 

Again, it is also shown that the mutual information and classification error has a direct relation. The 

higher the mutual information carried in the subspace the lower the classification error and vice 

versus.  
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Fig.5: Different subspaces and their classification ability. (a) Two-class 2-d features and the 1-d subspace base vector 

(the line) of different subspaces, from left to right: PCA, LDA, and ISS. (b) Mutual information carried in the 1-d 

feature of different subspaces and classification errors in the 1-d subspace using a naïve Bayesian classifier 

 

Fig. 5 shows a situation where projecting the data onto either PCA or LDA bases will fail to 

separate the classes whilst project them on the ISS base can successfully separate the classes. In the 

case of PCA, it captures the direction of the maximum variance, whilst LDA captures the direction 

of maximal ratio of between-class scatter and within-class scatter. However, both PCA and LDA 

fail to capture the most discriminative direction whilst ISS has successfully found the most 

discriminative direction. Once again, it is also shown that the mutual information and classification 

error has a direct relation. The higher the mutual information carried in the subspace the lower the 

classification errors and vice versus. 
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Principal Component Analysis (PCA) is a widely used liner transform for dimensionality reduction. 

It is an optimal dimensional reduction technique in the mean square error sense. The eigen subspace 

captures the maximal variance directions of the data. However, as we have seen in Fig. 5, if the 

maximal variance directions and the maximal discriminative directions do not coincide (and there is 

no guarantee for this), then PCA subspace will not be suitable for representing the data for 

classification purpose.  

 

At a first glance, our method is similar to Fisher’s linear discriminant analysis (LDA) [1 - 4] 

because both use labelled data. However, there are fundamental differences. Whilst LDA assumes 

unimodal equal variance Gaussian class distributions which are almost always not true for real 

world data, ISS does not make such a restricted assumption. As seen in Fig.4 and Fig.5, when this 

unimodal assumption is invalid, LDA fails to find the most discriminative subspace. Whilst LDA is 

not directly related to classification rates, maximizing mutual information directly minimizes a 

lower bound of classification errors. Whilst LDA only makes use of the covariance, ISS exploits 

higher than second order, more general statistical information. Although the experimental data used 

in this experiment is relatively simple, the results are nevertheless indicative. By analysing the way 

in which the subspaces are developed, we have reason to believe that the ISS method can overcome 

the limitations of LDA and PCA because ISS captures higher order, more general statistical 

information. 

 

 

4.2 Application to Face/Non-Face Classification (Face Detection) 

 

Human face detection has been a popular research subject in pattern recognition for many years, 

examples of face detection techniques include [15 – 20]. A comprehensive survey of technologies 

developed up to the year 2002 can be found in [16]. In this section, we apply our informative 
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subspace method for representing face/non-face patterns in a low dimensional space for face 

detection. To detect faces, we use a support vector machine (SVM) [15] which takes the 

representations in the low-dimensional informative subspace as inputs and classifies them into 

face/non-face. It is to be noted that here we essentially treat the problem as a classification problem. 

Our purpose is to test the usefulness and effectiveness of the ISS method for representing the 

face/non-face patterns for developing the classifier, rather than building the face detector, which, as 

has been pointed out in [23], is greatly affected by the face detection infrastructures other than the 

classifier.  

 

For training the informative subspace and the SVM classifier, we have collected 3153 face and 

6237 non-face samples. The original face samples are of various scales with different aspect ratios. 

These original samples are then scaled to a uniform size of 32 x 32 pixels. The non-face samples are 

32 x 32 patches collected from various types of images. Therefore the original samples are 1024-d 

data and we make all samples to have zero mean. Obviously, the dimensionality of the data is too 

high to be directly used for classification. We therefore apply our informative sample subspace 

algorithm as described in Section 3 to reduce the dimensionality of the original samples before 

using them to train the SVM classifier. Examples of the first 16 maximal information sample 

subspace projection vectors are shown in Fig. 6. It is seen that some of the projection vectors come 

from face samples because they can be easily identified as faces whilst others come from non-face 

samples.  

 

To study the amount of mutual information carried by the projection base vectors, we compute the 

mutual information between the projections of the training samples on a projection base vector and 

the sample labels. For the lth projection base vector, we compute the mutual information 

( ), ;l lI I e X Y= , where X is the training samples and Y is the sample’s label. Fig. 7 shows the 

mutual information carried by each of the first 8 ISS projection vectors. It is seen that the amount of 
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mutual information carried by the projection vectors is in decreasing order, i.e., the first projection 

vector contains the most mutual information, and so on. We also found that as more projection 

vectors are added, the difference in the amount of information carried by the consecutive projection 

vectors becomes smaller and smaller. 

 

Fig. 6: Sixteen ISS subspace base vectors, red (darker) regions represent positive value; green (lighter) regions 

represent negative value. They are developed from 3153 face and 6237 non-face samples. 
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Fig. 7: Mutual information carried in the first 8 projection vectors (left) and Bayesian classification error of each 

projection vector (right). 

 

Again, as an exercise to study the relation between mutual information and classification error, we 

use every one of the first 8 projections each independently to construct a Bayesian classifier to 

classify the face and non-face training samples. That is, we use the 1-d feature projected onto a 

projection vector to construct a Bayesian classifier. Classification errors of the first 8 projection 
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vectors are also shown in Fig. 7. It is seen that the higher the mutual information a projection vector 

carries, the lower the classification error. 

 

Since the first subspace vector carries the highest mutual information and subsequent bases carry 

less and less mutual information, and high mutual information leads to low classification error, we 

therefore only need to use the first k bases of the ISS to perform classification. As a guide, we 

determine k in following manner: Following the ISS algorithm, we choose the ISS base vector one 

at a time. For each base vector, we use the projection onto the base vector to build a naïve Bayesian 

classifier to classify the training samples. If the classification error rate is >50%, then we stop 

adding more base vectors to the transform matrix G. The rationale is that when the classification 

error is higher than 50%, it is no better than random guesses, therefore adding more bases will 

unlikely improve performances.  

 

In the first testing, we compare the performances of SVM face detectors built in 3 subspaces, PCA, 

LDA and ISS. For the LDA subspace, the projection vectors are developed based on the technique 

of [2]. This testing dataset consists 101 images randomly selected from the FERET database [22]. 

Fig.8 shows the receiver operating curves (ROC) of the SVM face detectors in the 8-d subspaces of 

PCA, LDA and ISS. It is seen that in these low dimensional spaces, the ISS subspace gives better 

performances. Some examples of face detection in the ISS subspace are shown in Fig.9. 
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Fig. 8: Face detection performances in three different subspaces, The original 1024-d data is projected onto the first 8 

projection vectors in the subspaces to form 8-d data which is then used to train the SVMs. The SVMs are then used to 

detect faces in the 101 images randomly selected from the FERET database. 

 

 

 

Fig. 9: Example results of face detection in the ISS subspace on the FERET dataset. 
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A popular face detection benchmark dataset is that of CMU dataset [21]. The dataset contains 130 

images and in them there are 507 faces of various sizes. We have implemented a face detector in a 

64-d ISS subspace to detect faces in this dataset. To train the detector, we first find the first 64 

projection vectors in the ISS subspace according to the algorithm of Fig.2. We then train a 64 input 

SVM to classify the input. For face detection in these images, we use 31 detection window sizes 

ranging from 18 x 22 pixels to 426 x 520 pixels. For each detection window, it is first rescaled to 32 

x 32 pixels. The 1024-d vector is then projected onto the first 64 projection vectors in the ISS 

subspace and then input to the SVM. In total the detector has evaluated 52,129,308 patterns. Results 

of our detector and several well-known face detectors that have used the dataset are shown in Table 

1. By using the same detection threshold for all the images and varying this universal detection 

threshold, Fig. 10 plots the receiver operating curve (ROC) of our ISS subspace face detector for 

this test dataset. Fig. 11 shows some examples of our face detection results. Overall, our detector 

achieves similar performance to state of the art technologies. Note that the first 3 detectors in the 

table did not use the full set whilst ours and the other 2 have used all 130 images in testing.  

 

 

Table 1 Comparison of different face detector on the CMU dataset. 

Detectors Test Set (Faces/Images) False Positives Detection Rate 

Li et al [17] 481/125 31 90.2% 

Schneiderman and Kanade [20] 481/125 65 94.4% 

Osuna et al [15] 155/23 20 74.2% 

Rowley et al [18] 507/130 95 89.2% 

Viola & Jones [19]*  507/130 95 90.8% 

Our ISS/SVM Detector# 507/130 90 91.5% 

*Note in Viola and Jones [19], several additional false positives/detection rates are listed, these are 
78/90.1%, 110/91.1%, 167/91.8% 
# Note our result has been obtained by varying the detection threshold for different images. In the 
literature, it is not always clear whether different thresholds have been used for different images or a 
uniform threshold has been used for all images to obtain the reported results. 
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Fig. 10: Receiver operating curve of ISS subspace face detector performed on the CMU 130 images 507 faces dataset. 
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Fig. 11: Examples of face detection result in the ISS subspace for the CMU dataset. 
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4.3 Application to Car/Non-Car Classification (Car Detection) 

 

In this experiment, we apply our subspace method to another popular object detection application – 

car detection. We use the car and non-car training and testing images from the University of Illinois 

at Urbana-Champaign [6]. The advantage of using this database is that both the training data and 

testing data are publicly available which makes it easier to compare the performances of different 

methods. In this database, the training set contains 550 side-view car images and 500 non-car 

images with a size of 100 by 40 pixels stored in PGN raw data format. The testing set contains 170 

images with 200 cars in them. The scales of the cars in the testing set are approximately the same as 

those in the training set. The testing images are different in size and the number of cars in them. 

Again, we treat the problem as a classification task and evaluate the usefulness of the ISS algorithm 

for representing car/non-car patterns for classification. 

 

In our car detection system the input (detection window of 100 x 40 pixels) is first down-scaled by a 

factor of two in both dimensions. The purposes of down scaling are two folds. One is to reduce the 

dimensionality of the input and the other is to smooth the input (remove noise). We have tried a 

number of scaling factors and found that a down scaling factor of 2 gave the best results. We again 

make the samples to have zero mean. Even though down scaling the detection window from 4000-d 

to 1000-d is a significant reduction, the dimension of the input is still too high. We therefore apply 

our ISS subspace method to project the 1000-d sample vectors to 32-d representation. A SVM is 

then trained in the 32-d subspace to classify the samples.  

 

Using the car/non-car training samples, we first use the algorithm in Fig.2 to find the first 32 

maximal mutual information projection vectors. Fig. 12 shows examples of 6 projection base 

vectors, some clearly come from car samples whilst others come from non-car samples. Fig. 13 

shows the amount of mutual information carried in each individual projection vector.  
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Fig. 12: Examples of the car/non-car sample ISS subspace projection vectors. Red (darker) colour represents positive 

values and green (lighter) colour represents negative values. 
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Fig. 13: Mutual information carried in the first 32 projection vectors of a car/non-car ISS subspace. 

 

We apply our car detector to the test set, which consists of 170 grey-scaled images with 200 cars in 

them. We employ exhaustive search method on the testing set. The 100 by 40 pixel detection 

window moves 4 pixels horizontally and 2 pixels vertically each time during the evaluation. The 

input image patch is then downscaled to 50 by 20 pixels before being projected down to 32-d vector 

in the maximal information sample subspace. We also define that a car is corrected detected if all 

parts of the car is enclosed in the 100 by 40 pixel window, which is a more strict criterion than the 

one defined in [6]. The car detector evaluated 176,792 patterns over the 170 test images, 166,856 

out of which are negative outputs.  
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In order to make comprehensive comparison we adopt three different criteria as defined in [6] to 

characterise the car detector. 

Correct detection rate (recall) = 
setdatatheincarsofnumberTotal

positivescorrectofNumber . 

False detection rate = 
setdatatheinnegativesofnumberTotal

positivesfalseofNumber . 

Precision = 
positivesfalseofNumberpositivescorrectofNumber

positivescorrectofNumber

+
.  

The ideal detector should be of 100% correct detection rate, 0% false detection rate and 100% 

precision. We show our car detector performance in Table 2, and show the performance of UIUC 

car detector in Table 3. We evaluated more windows than [6], this may be one of the reasons that 

we have achieved better performances based on these measures. It is also to be noted that our 

purpose is not to build the best car detector as such but rather we evaluate the usefulness of our ISS 

subspace method for building good classifier. These results further demonstrate that ISS is an 

effective feature vector representation subspace method for classification. Examples of our car 

detection results are shown in Fig. 14. 

 

Table 2: Performance of our ISS subspace car detector.  

Activation 
threshold 

No. of correct 
detections, N 

Recall 

200
N  

No. of false 
detections, M 

Precision 

MN

N

+
 

False detection 
rate, 

166856

M  

0.15 
0.25 
0.35 
0.45 
0.55 
0.65 

188 
184 
182 
180 
179 
174 

94.0% 
92.0% 
91.0% 
90.0% 
89.5% 
87.0% 

45 
39 
34 
30 
25 
23 

80.6% 
82.5% 
84.3% 
85.7% 
87.7% 
88.3% 

0.027% 
0.023% 
0.020% 
0.018% 
0.015% 
0.014% 

 

Table 3: Performance of the car detector in [6].  

Activation 
threshold 

No. of correct 
detections, N 

Recall 

200
N  

No. of false 
detections, M 

Precision 

MN
N
+

 
False detection 
rate, 

112000

M  

0.55 
0.65 
0.75 
0.85 
0.90 
0.95 

181 
178 
171 
162 
154 
140 

90.5% 
89.0% 
85.5% 
81.0% 
77.0% 
70.0% 

98 
92 
76 
48 
36 
29 

64.9% 
65.9% 
69.2% 
77.1% 
81.1% 
82.8% 

0.09% 
0.08% 
0.07% 
0.04% 
0.03% 
0.03% 
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Fig. 12: Examples of our car detection results 
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Concluding Remarks 

 

One of the reasons that information theoretic methods such as mutual information (MI) has not been 

more widely used in real world applications is because of the exponential computational complexity 

in the estimation of MI. Our contribution in this paper has successfully introduced an MI based 

subspace method for representing high dimensional features in low dimensional subspaces for 

classification applications. Our method is a generic one and can be applied to different application 

domains. Our solution is a pragmatic method for employing information theoretic criterion to find a 

compact and discriminative subspace for feature representation for classification. Empirical results 

have demonstrated the method is effective and useful. The drawbacks of our current solution are 

that it is a brute force technique. It is directly affected by the training samples and its computational 

costs are proportional with sample size. However, as computers are getting more powerful, and it 

may also be possible to implement the ISS algorithm directly in hardware, the algorithm can be 

made computationally practicable. Our future work will investigate methods that can overcome 

these drawbacks. An interesting direction is to combine the random projection method [13, 14] with 

our ISS technique. 
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